Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Synthesis and structural elucidation of alkyl, amido, and mixed. alkyl-amido "highly-coordinated" zincates

Armstrong, D.R. and Dougan, C. and Graham, D.V. and Hevia, E. and Kennedy, A.R. (2008) Synthesis and structural elucidation of alkyl, amido, and mixed. alkyl-amido "highly-coordinated" zincates. Organometallics, 27 (23). pp. 6063-6070. ISSN 0276-7333

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The solution and solid-state characterization of the tetraorganozincates [(TMEDA)2Li2ZnMe(NMe2)3] (2) and [(TMEDA)2Li2ZnMe4] (4) and the all-amido triorganozincate [{(TMEDA)LiZn(NMe2)3}2] (3) are reported. X-ray crystallographic studies reveal that 2 and 4 exhibit similar structural motifs, namely trinuclear Li···Zn···Li chain arrangements held together by a methyl and three amido ligands in the former and exclusively by methyl groups in the latter, whereas 3 adopts a longer tetranuclear Li···Zn···Zn···Li chain arrangement with all NMe2 ligands. The zinc coordination in all these structures is distorted tetrahedral. DFT calculations revealed that the formation of tetraorganozincate 4 by cocomplexation of 2 equiv of MeLi and Me2Zn is thermodynamically preferred over the parent triorganozincate [(TMEDA)LiZnMe3]. Preliminary studies show that the tris(amido)alkyl zincate 2 is a poor Brønsted base for metalation (zincation) of functionalized aromatic substrates such as anisole, N,N-diisopropylbenzamide, and benzonitrile.