Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Hydrogen peroxide vapour indicator

Mills, A. and Grosshans, P. and Snadden, E. (2009) Hydrogen peroxide vapour indicator. Sensors and Actuators B: Chemical, 136 (2). pp. 458-463. ISSN 0925-4005

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A hydrogen peroxide vapour indicator is described comprising a triarylmethane dye, lissamine green (LG), dissolved in a polymer, polyvinyl alcohol (PVA). The indicator is green/blue in the absence of hydrogen peroxide vapour but is rapidly bleached in the presence of hydrogen peroxide vapour. The kinetics of LG bleaching appear approximately first order with respect [LG] and the concentration of H2O2, which, in turn, is proportional to the partial pressure of H2O2. However, the kinetics also appear to depend directly upon the reciprocal of the film thickness, implying some dependence upon the diffusion of the H2O2 vapour through the indicator film. Like most other H2O2 indicator films (such as starch-iodide paper), the LG/PVA indicator is not particularly selective and responds to most other volatile strong oxidising agents, such as ozone and chlorine. However, it is rapid in response (<5 min) and easy to use and has potential as a simple indicator of strong oxidising agents; in particular it may be used to screen the headspace above liquids for H2O2, which can be used for making in situ explosives, such as triacetone triperoxide (TATP).