Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Hydrogen peroxide vapour indicator

Mills, A. and Grosshans, P. and Snadden, E. (2009) Hydrogen peroxide vapour indicator. Sensors and Actuators B: Chemical, 136 (2). pp. 458-463. ISSN 0925-4005

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A hydrogen peroxide vapour indicator is described comprising a triarylmethane dye, lissamine green (LG), dissolved in a polymer, polyvinyl alcohol (PVA). The indicator is green/blue in the absence of hydrogen peroxide vapour but is rapidly bleached in the presence of hydrogen peroxide vapour. The kinetics of LG bleaching appear approximately first order with respect [LG] and the concentration of H2O2, which, in turn, is proportional to the partial pressure of H2O2. However, the kinetics also appear to depend directly upon the reciprocal of the film thickness, implying some dependence upon the diffusion of the H2O2 vapour through the indicator film. Like most other H2O2 indicator films (such as starch-iodide paper), the LG/PVA indicator is not particularly selective and responds to most other volatile strong oxidising agents, such as ozone and chlorine. However, it is rapid in response (<5 min) and easy to use and has potential as a simple indicator of strong oxidising agents; in particular it may be used to screen the headspace above liquids for H2O2, which can be used for making in situ explosives, such as triacetone triperoxide (TATP).