Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A f-19 and deuterium nmr-study of two novel fluorosterols and their properties in model membranes and high-density-lipoprotein

Reid, David G. and MacLachlan, L.K. and Suckling, K.E. and Gee, A. and Cresswell, S. and Suckling, C.J. (1991) A f-19 and deuterium nmr-study of two novel fluorosterols and their properties in model membranes and high-density-lipoprotein. Chemistry and Physics of Lipids, 58 (1-2). pp. 175-181. ISSN 0009-3084

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fluorine-19 nuclear magnetic resonance at 235 MHz has been used to characterize the NMR properties of two novel fluorinated sterols, 6,6-difluorocholestanol and 7,7-difluorocholestanol, and various 3-ester derivatives. F-19-F-19 and F-19-H-1 coupling constants in chloroform are reported. H-2-NMR studies of side-chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) prove that the two unesterified fluorosterols affect model membrane dynamical properties in a manner analogous to cholesterol. In aqueous detergent the F-19 chemical shifts of both 6,6- and 7,7-difluorocholestanols are perturbed about 1 ppm upfield by esterification at the 3-position, suggesting that F-19-NMR may be a useful monitor of enzyme catalyzed sterol acylation in vitro. Finally 6,6-difluorocholestanol oleate has been incorporated into human high density lipoprotein (HDL) and its F-19 signals observed in this environment. The appearance of the spectrum, and the results of lipophilic relaxation probe experiments, indicate that the acyl sterol partitions into at least two environments, and exhibits slightly different chemical shift and homonuclear scalar coupling characteristics in each.