Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Star-shaped oligofluorene nanostructured blend materials : controlled micro-patterning and physical characteristics

Wu, M. and Gu, E. and Zarowna, A. and Kanibolotsky, A.L. and Kuehne, A.J.C. and Mackintosh, A.R. and Edwards, P.R. and Rolinski, O.J. and Skabara, P.J. and Martin, R.W. and Pethrick, R.A. and Birch, D.J.S. and Dawson, M.D. (2009) Star-shaped oligofluorene nanostructured blend materials : controlled micro-patterning and physical characteristics. Applied Physics A: Materials Science and Processing, 97 (1). pp. 119-123. ISSN 0947-8396

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Star-shaped oligofluorene consists of highly-fluorescent macromolecules of considerable interest for organic electronics. Here, we demonstrate controlled micro-patterning of these organic nanostructured molecules by blending them with custom-synthesized photo-curable aliphatic polymer matrices to facilitate solventless inkjet printing. The printed microstructures are spherical with minimum dimensions of 12 μm diameter and 1 μm height when using a cartridge delivering ∼1 pL droplets. We evaluate the physical characteristics of the printed structures. Photoluminescence studies indicate that the blend materials possess similar fluorescence properties to neat materials in solid films or toluene solution. The fluorescence lifetime consists of two components, respectively 0.68±0.01 ns (τ 1) and 1.23±0.12 ns (τ 2). This work demonstrates that inkjet printing of such blends provides an attractive method of handling fluorescent nano-scaled molecules for photonic and optoelectronic applications.