Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Design and implementation of non-linear minimum variance filters

Naz, Shamsher Ali and Grimble, M.J. (2009) Design and implementation of non-linear minimum variance filters. International Journal of Advanced Mechatronic Systems, 1 (4). pp. 233-241. ISSN 1756-8412

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The non-linear minimum variance (NMV) filtering problem for a non-linear multi-input and multi-output (MIMO) discrete-time system is considered. The NMV filter is designed to minimise a minimum variance criterion. The system model includes channel non-linearities that may be treated as a black box. The NMV filter can avoid the need for a linearisation stage that is required in the extended Kalman filter (EKF). The MIMO NMV filter algorithm is easy to implement, in comparison to the EKF. The main contribution of this paper lies in the design and evaluation of the NMV algorithm for the non-linear MIMO filtering problem. A case study is used to demonstrate performance that is based upon a problem in the medical signal processing area. The design and the real time implementation of the NMV estimator is also considered, for a laboratory based ball and beam experiment. The performance is compared with that of an EKF and real time implementation of both estimators is discussed.