Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Laser ultrasound for the non contact characterisation of the mechanical properties of materials

Culshaw, B. and Sorazu, B.L. and Pierce, S.G. and McKee, Campbell S.R. and Thursby, G.J. (2008) Laser ultrasound for the non contact characterisation of the mechanical properties of materials. In: 1st international conference on laser ultrasonics science, technology and applications, 2008-07-16 - 2008-07-18. (Unpublished)

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present our perspectives on using laser ultrasound, coupled with optical detection, to characterise the properties of plate like structures. The laser source launches a wideband signal in spatial and temporal domains exciting a Lamb wave spectrum over several octaves. Optical detection picks out the modal dispersion curves and inverting these mathematically presents values for thickness, density, modulus and Poisson ratio with confidence levels of a few per cent. Our investigations have compared approaches to dispersion curve measurement involving both 2-D and short time FFT to examine different areas of the specimen. We have compared high peak power impulse excitation with synthetic pulse generation using frequency scanned (or Pseudo Random Binary Sequence pulsed) low power sources based on semiconductor lasers or fibre amplifier based systems. A thorough analysis of the numerical inversion process has demonstrated that, with careful optimisation, the data obtained from the sample may be confidently inverted. Our demonstrations to date have been on large scale (mm thick by cm longitudinal dimensions) samples and studies of the application of the concepts to micro-systems are currently under way.