Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Studies of the photonic and optical-frequency phonon properties of selectively grown GaN micro-pyramids

Coquillat, D. and Le Vassor D'Yerville, M. and Kazan, M. and Liu, C. and Watson, I.M. and Edwards, P.R. and Martin, R.W. and Chong, H.M.H. and De La Rue, R.M. (2008) Studies of the photonic and optical-frequency phonon properties of selectively grown GaN micro-pyramids. Journal of Applied Physics, 103 (4). 004910-004910. ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An array of GaN micropyramids containing a near-surface InxGa1-xN/GaN single quantum well has been fabricated using selective area epitaxial overgrowth above a patterned silica mask. The pyramid array has been studied by means of angle-resolved reflection measurements using s- and p-polarized incident light in the near- and mid-infrared optical ranges. We have found that the periodic array of flat-topped pyramids shows marked resonances in the near-infrared optical range due to resonant Bloch modes within the extraction cone and that the angular dispersion of these modes exhibits strong photonic crystal characteristics. The experimental results are in good agreement with the photonic band structure calculated using a scattering matrix formalism. The mid-infrared optical anisotropy properties of the micropyramids were investigated to probe the infrared active phonons of the pyramid array. The A1(LO) phonon of the InxGa1-xN/GaN single quantum well was identified and the InN mole fraction was estimated from the mode behavior