Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS

Torrance, K. and Keenan, H.E. and Hursthouse, A.S. and Stirling, D. (2010) Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS. Journal of Environmental Science and Health Part A, 45 (4). pp. 471-475. ISSN 1093-4529

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900mgL-1. Lapping slurries had much lower dissolved arsenic (<90mgL-1) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15mgL-1.