Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A coupled thermal-mechanical analysis of a mould-billet system during continuous casting

Qin, Yi and Zhou, J. and Peng, X. (2008) A coupled thermal-mechanical analysis of a mould-billet system during continuous casting. International Journal of Advanced Manufacturing Technology, 42 (5-6). pp. 421-428. ISSN 0268-3768

[img] PDF (strathprints013818.pdf)
strathprints013818.pdf
Restricted to Registered users only
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (602kB) | Request a copy from the Strathclyde author

Abstract

The three-dimensional (3-D) thermal-mechanical behavior of a mold-billet system under actual casting conditions is investigated with an FE approach, taking into account the main influencing factors, such as solidification heat, latent heat released during phase transformation, heat transfer, as well as the interaction between the moving billet and the mold. It is based on the coupled thermal-mechanical analysis for the whole mold-billet system, instead of analyzing the thermal-mechanical behavior of the mold and the billet individually, as is often used in practice. Comparison shows that the former approach can provide satisfactory results without making use of the empirical estimation of the heat flux through the inboard surface of the mold based on the difference between the temperature of inlet and outlet cooling water at steady-state and the temperature distribution near the surface of the inboard plate measured experimentally, which are usually necessarily required for the latter approach to be applied in practice.