Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Practical application of CFD for wind loading on tall buildings

Clannachan, G.H. and Lim, J.B.P. and Bicanic, N. and Taylor, I.J. and Scanlon, T.J. (2009) Practical application of CFD for wind loading on tall buildings. In: 7th International Conference on Tall Buildings, 2009-10-29 - 2009-10-30, Hong Kong, China.

[img]
Preview
PDF (Scanlon_TJ_&_Taylor_IJ_-_strathprints_-_Practical_application_of_CFD_for_wind_loading_on_tall_buildings_18_Nov_09.pdf)
Scanlon_TJ_&_Taylor_IJ_-_strathprints_-_Practical_application_of_CFD_for_wind_loading_on_tall_buildings_18_Nov_09.pdf

Download (165kB) | Preview

Abstract

This paper is concerned with assessing the scope of appicabiity for computational fluid dynamics(CFD) in the field of structural engineering, with a particular reference to tall buildings. Modern design trends and advances in engineering materials have encouraged the demand for taller and more slender structures. This pattern induces inherent structural flexibility; these cases exceed the limitations of the quasi-static method offered by current codes of practice. Wind tunnel testing is the traditional solution for such dynamically sensitive structures. However, even this scaled modelling approach is clouded by some uncertainties, including scaling the Reynolds number and assuming damping values for the aeroelastic model. While CFD cannot be used as a replacement for wind tunnel testing, there are results within the literature to suggest it has the potential to act as a complimentary tool - provided it is used within its capabilities. The paper outlines the various turbulence models that are available and summarises the extent of their application in a practical structural engineering sense. It also details the user-defined criteria that must be satisfied and discusses the potential for simplified models in tall building CFD analyses, with a view to promoting more efficient and practical solutions.