Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock

Moir, Heather and Lunn, R.J. and Shipton, Z. and Kirkpatrick, Jamie (2010) Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock. Journal of Structural Geology, 32 (11). pp. 1742-1752. ISSN 0191-8141

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many faults grow by linkage of smaller structures, and damage zones along faults may arise as a result of this linkage process. In this paper we present the first numerical simulations of the temporal and spatial evolution of fault linkage structures from more than 20 pre-existing joints, the initial positions of which are based on field observation. We show how the constantly evolving geometry and local stress field contribute to fault zone evolution. Markedly different fault zone trace geometries are predicted when the joints are at different angles to the maximum compressive far field stress ranging from evolving smooth linear structures to producing complex 'stepped' fault zone trace geometries. We show that evolution of the complex fault zone geometry is governed by 1) the strong local variations in the stress field due to complex interactions between neighbouring joints and 2) the orientation of the initial joint pattern with respect to the far field stress.