Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Functionalized nanoparticles for bioanalysis by SERRS

Graham, D. and Faulds, Karen and Thompson, David and McKenzie, Fiona and Stokes, Robert J. and Dalton, Colette and Stevenson, Ross and Alexander, J. and Garside, Paul and McFarlane, Emma (2009) Functionalized nanoparticles for bioanalysis by SERRS. Biochemical Society Transactions, 37. pp. 697-701. ISSN 0300-5127

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Metallic nanoparticles can be used as basic materials for a wide variety of purposes including building blocks for nanoassemblies, substrates for enhanced spectroscopies such as fluorescence and Raman and as labels for biomolecules. In the present paper, we report how silver and gold nanoparticles can be functionalized with specific biomolecular probes to interact in a specific manner with a target molecule to provide a change in the properties of the nanoparticles which can be measured to indicate the molecular recognition event. Examples of this approach include DNA hybridization to switch on SERRS (surface-enhanced resonance Raman scattering) when a specific target sequence is present, the use of nanoparticles for in vivo SERRS imaging and the use of nanoparticles functionalized with antibodies to provide a new type of immunoassay. These examples indicate how nanoparticles can be used to provide highly sensitive and informative data from a variety of biological systems when used in combination with SERRS.