Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in leishmania mexicana

Bengs, F. and Scholz, A. and Kuhn, D. and Wiese, M. (2005) LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in leishmania mexicana. Molecular Microbiology, 55 (5). pp. 1606-1615. ISSN 0950-382X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Components of mitogen-activated signal transduction pathways have been shown to be involved in flagellum biogenesis and maintenance. A mitogen-activated protein kinase homologue, designated LmxMPK9 from Leishmania mexicana, has been recently identified in a homology screen and its mRNA found to be present in all life stages. Three different splice-addition sites were used for mRNA maturation in trans-splicing in the different life stages. However, here we show that LmxMPK9 protein is exclusively found in the promastigote stage. Recombinant expression of LmxMPK9 in Escherichia coli and kinase assays revealed a temperature optimum at 27 degrees C, the optimal growth temperature for L. mexicana promastigotes, and a preference for manganese to promote substrate phosphorylation of myelin basic protein. A deletion mutant for the single-copy gene revealed significantly elongated flagella, whereas overexpression led to a subpopulation with rather short to no flagella suggesting a role for LmxMPK9 in flagellar morphogenesis.