Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

LmxPK4, a mAP kinase kinase homologue of leishmania mexicana with a potential role in parasite differentiation

Kuhn, D. and Wiese, M. (2005) LmxPK4, a mAP kinase kinase homologue of leishmania mexicana with a potential role in parasite differentiation. Molecular Microbiology, 56 (5). pp. 1169-1182. ISSN 0950-382X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Members of the mitogen-activated protein (MAP) kinase cascade are important for the establishment of a Leishmania mexicana infection and are involved in flagellar length control, although the underlying molecular mechanisms remain to be elucidated. This study reports the cloning and characterization of LmxPK4, a MAP kinase kinase homologue of L. mexicana displaying putative plant-like regulatory phosphorylation sites. The recombinant protein has autophosphorylating activity and phosphorylates myelin basic protein. An LmxPK4 gene deletion mutant showed a proliferation defect after infection of macrophages and no or delayed lesion development in mice. Irrespective of the onset of lesion development parasites showed an early and homogeneous lesion development in re-infection experiments. This is indicative for a compensation of the null mutant phenotype. Additionally, this phenotype could be reverted by reintroduction of the wild-type gene into the deletion background. Mutants expressing loss-of-function or N-terminally truncated versions of LmxPK4 retained the null mutant phenotype. LmxPK4 is stage-specifically expressed in promastigotes and during differentiation to amastigotes, but is not detectable in amastigotes isolated from the mammalian host. Moreover, its in vitro kinase activity increases with temperature rise up to 40 degrees C. Our results suggest that LmxPK4 is involved in the differentiation process and affects virulence of Leishmania mexicana.