A Bayesian framework for parameter estimation in dynamical models

Coelho, Flávio Codeço and Codeço, Cláudia Torres and Gomes, M. Gabriela M. (2011) A Bayesian framework for parameter estimation in dynamical models. PLoS ONE, 6 (5). e19616. ISSN 1932-6203 (https://doi.org/10.1371/journal.pone.0019616)

[thumbnail of Coelho=etal-PlosOne-2011-A-Bayesian-framework-for-parameter-estimation]
Preview
Text. Filename: Coelho_etal-PlosOne-2011-A-Bayesian-framework-for-parameter-estimation.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (329kB)| Preview

Abstract

Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

ORCID iDs

Coelho, Flávio Codeço, Codeço, Cláudia Torres and Gomes, M. Gabriela M. ORCID logoORCID: https://orcid.org/0000-0002-1454-4979;