From ultrafast laser-generated radiation to clinical impact : a roadmap for radiobiology and cancer research at the extreme light infrastructure (ELI)

Hideghéty, K. and Cirrone, G. A. P. and Parodi, K. and Prise, K. M. and Borghesi, M. and Malka, V. and Osvay, K. and Biro, B. and Bláha, P. and Bulanov, S. V. and Cammarata, F. P. and Catalano, R. and Kamperidis, C. and Chaudhary, P. and Davídková, M. and Doria, D. and Favetta, M. and Fenyvesi, A. and Fulop, Zs. and Gilinger, T. and Giuffrida, L. and Gizzi, L. A. and Grigalavicius, M. and Grittani, G. M. and Hafz, N. A. M. and Jaroszynski, D. A. and Kahaly, S. and Lazzarini, C. M. and Zsolt, L. and Lukáč, P. and Manti, L. and Molnar, R. and Papp, D. and Petringa, G. and Polanek, R. and Russo, G. and Schettino, G. and Schillaci, F. and Stuhl, L. and Szabó, E. R. and Szabó, G. and Ur, C. A. and Vannucci, L. and Varmazyar, P. and Vondracek, V. and Varju, K. and Zahradníček, O. and Margarone, D. (2025) From ultrafast laser-generated radiation to clinical impact : a roadmap for radiobiology and cancer research at the extreme light infrastructure (ELI). The European Physical Journal Plus, 140 (8). 730. ISSN 2190-5444 (https://doi.org/10.1140/epjp/s13360-025-06662-w)

[thumbnail of Hideghety-etal-2025-From-ultrafast-laser-generated-radiation-to-clinical-impact]
Preview
Text. Filename: Hideghety-etal-2025-From-ultrafast-laser-generated-radiation-to-clinical-impact.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

The extreme light infrastructure (ELI) is emerging as a state-of-the-art facility providing international users with open access to ultrashort laser-driven particle bunches, ranging from a few femtoseconds to a few nanoseconds, for advanced radiobiology studies. ELI offers femtosecond-class laser pulses and ultrafast ionizing radiation characterized by extremely high instantaneous dose rates (107–1012 Gy/s). The versatility of ELI’s cutting-edge technologies enables the generation of high repetition rate (1 Hz–1 kHz) secondary sources (protons, ions, electrons, and neutrons) with energies from a few MeV to several hundred MeV, achieved over sub-millimetre to millimetre-scale acceleration lengths, along with fundamental research in the field of ultrahigh intensity laser-matter interaction based on the use of the highest peak power laser pulses available worldwide. Harnessing these laser-driven particle sources for radiobiology and medical research demands a coordinated international effort, with a strong focus on advancing scientific instrumentation and refining experimental methodologies to support progress in ultrafast laser-driven radiation biology. This roadmap underscores the need for systematically designed experiments across ELI facilities, supported by preparatory research at users’ home laboratories, alongside the ongoing development of instrumentation and infrastructure. These efforts are critical to rigorously assess and validate the therapeutic potential of these novel sources, paving the way for a transformative shift in radiation biology and medicine.

ORCID iDs

Hideghéty, K., Cirrone, G. A. P., Parodi, K., Prise, K. M., Borghesi, M., Malka, V., Osvay, K., Biro, B., Bláha, P., Bulanov, S. V., Cammarata, F. P., Catalano, R., Kamperidis, C., Chaudhary, P., Davídková, M., Doria, D., Favetta, M., Fenyvesi, A., Fulop, Zs., Gilinger, T., Giuffrida, L., Gizzi, L. A., Grigalavicius, M., Grittani, G. M., Hafz, N. A. M., Jaroszynski, D. A. ORCID logoORCID: https://orcid.org/0000-0002-3006-5492, Kahaly, S., Lazzarini, C. M., Zsolt, L., Lukáč, P., Manti, L., Molnar, R., Papp, D., Petringa, G., Polanek, R., Russo, G., Schettino, G., Schillaci, F., Stuhl, L., Szabó, E. R., Szabó, G., Ur, C. A., Vannucci, L., Varmazyar, P., Vondracek, V., Varju, K., Zahradníček, O. and Margarone, D.;