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Abstract
Laser scanning fluorescence microscopy (LSFM) is a widely used imaging
method, but image quality is often degraded by noise. Averaging techniques
can enhance the signal-to-noise ratio (SNR), but while this can improve image
quality, excessive frame accumulation can introduce photobleaching and may
lead to unnecessarily long acquisition times. A classical software method called
PerfectlyAverage is presented to determine the optimal number of frames for
averaging in LSFMusing SNR, photobleaching, and power spectral density (PSD)
measurements. By assessing temporal intensity variations across frames in a time
series, PerfectlyAverage identifies the point where additional averaging ceases to
provide significant noise reduction. Experiments with fluorescently stained tis-
sue paper and fibroblast cells validated the approach, demonstrating that up to
a fourfold reduction in averaging time may be possible. PerfectlyAverage is open
source, compatible with any LSFM data, and it is aimed at improving imaging
workflows while reducing the reliance on subjective criteria for choosing the
number of averages.
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1 INTRODUCTION

Laser scanning fluorescence microscopy (LSFM) is a
widely used technique in biological and materials sci-
ences, offering high-resolution, multi-dimensional imag-
ing capabilities.1 However, LSFM images are inherently
affected by noise sources such as photon shot noise
and detector noise, which can degrade image quality.
To address these challenges, averaging techniques are
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commonly employed to enhance the signal-to-noise ratio
(SNR) and improve image clarity.2
Averaging in LSFM can be implemented through differ-

ent approaches, with frame and line averaging being the
most commonmethods.3 Frame averaging involves captur-
ingmultiple frames of the same field of view and averaging
the signal to reduce noise, while line averaging averages
multiple signal readings along a scanned line. Both tech-
niques are widely applied in confocal and multiphoton
laser scanning microscopy to improve image SNR without
increasing excitation power.4
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2 FOYLAN et al.

The primary advantage of averaging is its ability to sig-
nificantly enhance SNR by reducing random noise while
preserving the underlying signal. In signal processing, the
improvement in SNR is given by

𝑆𝑁𝑅 ∝
√
𝑛, (1)

where 𝑛 is the number of lines or frames averaged, and in
LSFM the SNR is given by

𝑆𝑁𝑅 =
𝜇

𝜎
, (2)

where 𝜇 is the mean intensity and 𝜎 is the standard
deviation of the pixel values within the image.1
Averaging in LSFM is particularly beneficial for imag-

ing weakly fluorescent specimens or specimens with low
contrast, where noise can obscure fine structural details.5,6
Despite its benefits and widespread use, averaging in laser
scanningmicroscopy also has limitations. Increased acqui-
sition time is a major drawback, as it can lead to specimen
drift, image blurring, andmotion artefacts, which are espe-
cially problematic in live cell imaging or time-sensitive
experiments. Additionally, prolonged laser exposure can
cause photobleaching in fluorescence microscopy and
phototoxicity in living specimens,7 potentially compromis-
ing their viability, and Equation (1) does not take account
of any photobleaching. These factors suggest that a careful
balance between improving image quality and preserving
specimen integrity is needed, yet in practice the num-
ber of frames used for averaging is mostly determined by
subjective visual inspection of image quality.
Here, a classical software method termed PerfectlyAv-

erage is presented to determine the optimal number of
frames in laser scanning microscopy. By analysing tem-
poral variations in pixel intensity across multiple frames,
the method employs power spectral density (PSD) mea-
surement to estimate the point at which additional frames
no longer contribute significant new information and pro-
vides a recommended frame count for improved signal
preservation and noise reduction. Power spectral density
(PSD) analysis is particularly well suited for evaluating
image sequences in laser scanning microscopy because
it provides a frequency-domain representation of noise
and structural information.8 Unlike time-domain anal-
yses, which can be sensitive to local fluctuations, PSD
enables a systematic assessment of noise characteristics
by decomposing image information into spatial frequency
components.8 This allows for the identification of trends
in noise reduction as more frames are averaged, help-
ing to pinpoint the point at which additional frames
cease to provide meaningful improvements. Furthermore,
by incorporating spectral entropy derived from PSD, as
has been previously applied in electroencephalography,9

the method can objectively quantify structural consis-
tency across frames, reducing reliance on subjective visual
inspection. This makes PSD a powerful tool for determin-
ing the optimal number of frames for averaging, balancing
noise reduction, and preserving image integrity while
accounting for photobleaching effects. PerfectlyAverage
also considers the measured SNR and is also resilient
against the deleterious effects of photobleaching within
user-defined limits, and it is open source.

2 METHOD

2.1 Specimen preparation

Two specimens were prepared for LSFM imaging to assess
the method. The first was a section of lens tissue paper
stained with 10 µM Safranin O (S2255, Sigma-Aldrich) in
ethanol mounted in a gelvatol medium, and the second
was a fibroblast cell preparation. Fibroblast cells (3T3-
Ll, CL-173) were grown in vented capped tissue culture
flasks containing DMEM (10567-014, Thermo Fisher) sup-
plemented with 10%NBCS (26010066, Thermo Fisher) and
1% penicillin streptomycin (15140-122, Thermo Fisher) and
1% L-glutamine (21051040, Thermo Fisher) and were incu-
bated at a temperature of 37◦C in a 10% CO2 humidified
cell incubator (Heracell VIOS CO2, Thermo Fisher). Cells
were seeded at the desired density and incubated for 24 h
at 37◦C/10% CO2 to promote adherence and then rinsed
twice with PBS (10010023, Thermo Fisher) prior to fixa-
tion in 4% paraformaldehyde (158127, Sigma-Aldrich) for
10 min, and rinsing three times in PBS (10010023, Thermo
Fisher). Cells were permeabilised using 500 µL of 0.1%
Triton X-100 (T8787, Merck) in PBS at room tempera-
ture for 15 min, then washed 3 times with PBS before
adding two drops of ActinGreen 488 ReadyProbes to each
coverslip (R37110, Thermo Fisher), and were incubated
for 30 min at 37◦C/10% CO2. The staining solution was
removed, and the cells were washed three times in PBS
(10010023, Thermo Fisher) before mounting in Prolong
Glass AntiFade Mountant (P36980, Thermo Fisher). Both
the stained lens tissue paper and the 3T3-L1 cell specimens
were mounted between a microscope slide and a Type
1.5 coverslip and were allowed to set overnight at room
temperature without ambient light before subsequent
imaging.

2.2 Data acquisition and generation for
software testing

An image dataset was generated to simulate real data. A
720 pixel × 576 pixel 8-bit image available as a sample
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FOYLAN et al. 3

image in FIJI10 (boats.gif) served as the optimised out-
put to mimic an image with high SNR and low noise
after averaging. This image was converted to a .tif for-
mat in FIJI and saved. A custom Python script read in
this .tif image and added Gaussian noise (𝜎 = 10) to
produce 29 noisy instances, and these data were saved
as a standalone multi-tiff stack. These data were aver-
aged in the same geometric series, that is, 20, 21. . . 29,
to simulate progressive averaging. The resultant images
were compiled into a single .tif stack comprising of
9 images.
Image data to evaluate the method were acquired using

an upright microscope (DM6000CFS, Leica) coupled
to a laser scanning system (SP5, Leica) controlled by
software (LAS-AF v2.7.7.12402, Leica). Image stacks of
each specimen were recorded in xyt format. All data
were acquired at a scan speed of 400 Hz and were saved
in the proprietary format (.lif): these were converted to
individual .tif files and compiled into .tif stacks using
FIJI. These LSFM data served as the input to the soft-
ware code. For all measurements the laser power was
set to 20% from the oscillator as per the manufacturer’s
recommendations for this system to avoid unwanted
amplitude instabilities. All raw data were captured
within the dynamic range of the detector and without
saturation.
For imaging of the tissue paper stained with Safranin

O, a 488 nm laser was used for excitation of fluorescence,
which was detected between 500–550 nm with a spec-
tral detector. A 10×/0.4 numerical aperture dry objective
lens (10×/0.4 HC PL APO, Leica) was used for imaging.
The laser power at the specimen plane was measured
with a power meter (Nova II, Ophir Photonics) to be
0.7 mW, and the detector gain was set to 900. Images
of 4096 pixels × 4096 pixels were captured with a pixel
size of 360 nm to satisfy the Nyquist–Shannon sam-
pling criterion,11 with a total of 28 frames captured in xyt
mode.
For imaging of the 3T3-L1 cells prepared with Actin-

Green dye, the same 488 nm laser was used for excitation
of fluorescence, which was also detected between 500 and
550 nmwith a spectral detector. A 20×/0.7 numerical aper-
ture dry objective lens (20×/0.7 HCX PL APO CS, Leica)
was used with a digital zoom of 2 for imaging. The laser
power at the specimen plane was measured to be 0.2 mW,
and the detector gain was set to 1050. Images of 1024 pix-
els × 1024 pixels were captured at a rate of 400 Hz with 28
frames in xytmode andwith a pixel size of 360 nm, and the
Nyquist–Shannon sampling criterion was not satisfied.11
The laser power at the specimen plane was set to a deliber-
ately low value and the detector gain set to a high value to
provide a poor SNR to best challenge the PerfectlyAverage
software.

2.3 Signal-to-noise ratio (SNR)
calculation

The signal-to-noise ratio (SNR) was computed for
each image in the chosen .tif stack using the Equa-
tion (2). A zero-noise safeguard was implemented to
prevent division errors, ensuring numerical stabil-
ity when processing images with minimal intensity
variation.

2.4 Photobleaching correction

To correct for photobleaching, the mean intensity of each
frame was calculated. Photobleaching was considered as
an exponential decay process,12–14 with an exponential
decay function fitted to the mean intensity values across
the image sequence:

𝐼 (𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐, (3)

where 𝐼(𝑡) represents the mean intensity at frame 𝑡, and
𝑎, 𝑏, and 𝑐 are fitting parameters. The curve-fitting pro-
cedure was performed using the Levenberg–Marquardt
algorithm15 as implemented in SciPy’s curve_fit function.
Each frame was subsequently corrected by applying a nor-
malisation factor derived from the fitted decay function,
ensuring the corrected intensities remained proportional
to their original values.

2.5 Power spectrum domain analysis

A PSD analysis was conducted to examine frequency
components within the image frames. In Python, the two-
dimensional fast Fourier transform (FFT) was applied to
each image, followed by a shift of the zero-frequency com-
ponent to the centre.16 The power spectrumwas computed
as:

𝑃 (𝑢, 𝑣) = |𝐹 (𝑢, 𝑣)|2, (4)

where 𝐹(𝑢, 𝑣) represents the Fourier-transformed
image. The spectral entropy was then calculated as
a measure of frequency distribution randomness.
The PSD values were normalised to create a prob-
ability distribution, and the Shannon entropy was
calculated17:

𝐻 = −
∑

𝑝𝑖log𝑝𝑖, (5)

where 𝑝𝑖 denotes the normalised power spectral density
values.
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4 FOYLAN et al.

Spectral entropy quantifies the complexity and random-
ness of frequency distributions within an image, providing
insight into texture and structural variations.17 A peak sta-
bility detection algorithm was employed to determine the
optimal frame based on spectral entropy variation over
time.

2.6 Optimal frame selection

To identify the optimal frame in the chosen dataset, both
SNR and frequency-domain stability measurements were
performed. The optimal frame based on SNR was selected
by identifying the maximum SNR within the frames that
met the user-defined photobleaching threshold. The opti-
mal averaging conditions were identified by determining
the point at which the normalised spectral entropy sta-
bilised, using a moving average smoothing function with
a window size of five frames and a user-defined stability
threshold (chosen to be 0.1 in this work). The choice of
threshold in measuring PSD significantly influences the
selection of the optimal frame for averaging based on PSD
analysis. A lower threshold (e.g., 0.01) results in a readout
of the earliest point where the rate of change in spectral
entropy isminimal.While this approach is sensitive, itmay
prematurely identify an optimal frame before true stabil-
isation has occurred. Increasing the threshold allows for
greater tolerance to minor fluctuations in spectral entropy,
thereby ensuring that the selection of the optimal frame
aligns with a more sustained plateau in PSD values. This
adjustment reduces the risk of prematurely selecting a
frame where noise reduction is still improving, leading to
a more balanced trade-off between averaging and noise
suppression. Frames exhibiting the highest SNR were pri-
oritised to ensure maximal signal clarity, while frequency
stability was used to confirm minimal structural fluctua-
tions. The integration of these two criteria allowed for a
comprehensive selection of the ideal frame in the imaging
sequence.

2.7 Software and data presentation

All code was developed using Python (v3.12) within the
Spyder (v5.5.1) integrated development environment,man-
aged via Anaconda Navigator (v2.6.3). The software was
run on a Dell XPS 13 9370 laptop computer with an i7-
8550U 1.8 GHz processor and 16 GB RAM, with aMicrosoft
Windows 10 Pro operating system. A Python version and a
standalone Windows executable of PerfectlyAverage were
produced.
A schematic diagram of the workflow is presented in

Figure 1. Upon running the software, a dialog box asks

the user to choose the dataset to be analysed. This is
advised to be a dataset from the same or a similar speci-
men to be studied, using the preferred LSFM in an adjacent
region of the preparation. Images are acquired in xyt
format and are saved. Upon execution of the software
code, the user is prompted to specify an acceptable level
of photobleaching, expressed as a percentage decrease
in normalised fluorescence signal intensity. This input
ensured that the analysis focused on frames retaining
sufficient fluorescence intensity for accurate interpreta-
tion. The photobleaching threshold is set by the user to
exclude frames where the intensity drops below a user-
defined percentage of the initial value, thereby preventing
overcorrection or inclusion of frames with excessive sig-
nal degradation. The user is also prompted to specify an
acceptable PSD value: as discussed above a value of 0.1 is
recommended as default.
Upon execution, results are visualised using

Matplotlib,18 displaying normalised mean intensity,
SNR, and spectral entropy using PSD across frames. The
optimal frames determined from SNR and frequency-
domain analyses are highlighted, with a summary of
the optimal frame selection criteria and photobleaching
correction parameters presented to the user. This interface
was designed to provide a user-friendly mechanism for
interpreting the results. Data outputs are the analysis
plot, as well as a new multi-tiff stack of the 2n averaged
images, where the first image is not averaged, that is, 20 =
1 averages, the second image is 21 averages = 2, etc., until
2n.
To produce the cropped region of datasets for analysis of

the dependence of the image size on the number of aver-
ages recommended by PerfectlyAverage, a custom Python
script was produced to automate this process.

3 RESULTS

An example image dataset using a sample image from
FIJI and the output of the PerfectlyAverage software code
is shown in Figure 2. The data comprising a 720 pixel ×
576 pixel 8-bit image is shown in Figure 2A–I, with 20 =
1 averaging (i.e. no averaging) in Figure 2A, 21 = 2 frame
averaging in Figure 2B, etc., up to the original input image
shown in Figure 2J. These images were compiled as an
image stack and used with the Python version of Per-
fectlyAverage. An acceptable limit of 0% photobleaching
was chosen with a PSD cut-off frequency of 0.1, and the
plot of the mean intensity, SNR and PSD are shown in
Figure 2K. The mean total processing time to run the code
with these data was 1.02 s on a standard laptop computer.
As expected for this dataset chosen to demonstrate the

method, the SNR of the noisy data improves with the
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FOYLAN et al. 5

F IGURE 1 Schematic workflow of PerfectlyAverage. Microscope image data are acquired in xyt format and are saved as a multi-tiff
stack. Upon execution of the PerfectlyAverage software code, the user is prompted to specify the file to be loaded. After this, the user enters an
acceptable level of photobleaching, expressed as a percentage decrease in normalised fluorescence signal intensity, and an acceptable power
spectral density (PSD) value: a value of 0.1 is recommended as default. The data analysis output of PerfectlyAverage is a recommendation of
the optimal number of averaged frames based on the user input. Confocal microscope schematic from scidraw.io.

amount of computationally applied averaging. However,
consideration of the PSD suggests that fewer denoising
steps could be used to achieve a good imaging result
and minimising exposure to light in practical imaging:
in this example, with a PSD cut-off frequency of 0.1
defined by the user, the PSD reaches a plateau after 24
= 16 averaged frames, whereas consideration of the SNR
suggests that averaging over 29 = 512 frames should be
performed.
Figure 3 shows the input LSFM images of lens tis-

sue paper stained with Safranin O, and the output of the
PerfectlyAverage code used with no limit to the photo-
bleaching and PSD = 0.1. Figure 3A shows the full field
of view, with a white box and a red box highlighting two
regions of interest (ROI) with different relative intensities,
with the higher intensities contained in the ROI high-
lighted with the white box and dimmer regions of the
specimen highlighted with the red box. All images are
shown with the ‘physics’ look up table. The ROI high-
lightedwith thewhite box is digitally zoomed and is shown
in Figure 3B–J. Figure 3B shows the first ROI in the time
series, that is, with no averaging, and Figure 3C–J shows
computationally averaged image data from 21 = 2 aver-
aged frames, up to 28 = 256 averaged frames. The scale

bar in Figure 3A is 200 µm, and the scale bar for Figure
3B–J is 20 µm. Through subjective visual inspection, as
expected Figure 3B has the most noise, and improve-
ments in SNR may still be occurring at higher image
numbers. The output of the PerfectlyAverage code, shown
in Figure 3K, confirms this observation, but the mean
intensity responds nonlinearly, with some photobleaching.
Based on the user-defined photobleaching limit of 0% and
considering the SNR the ideal number of averaged images
is 28 = 256, corresponding to Figure 3J. However, by anal-
ysis of the PSD, the ideal number of frame averages is
24 = 16. Figure S1 shows data from the ROI highlighted
with the red box. The mean intensity of the image differs
slightly from the data shown in Figure 3K; however, the
recommended optimal number of averages based on both
the SNR within the prescribed acceptable photobleaching
limit and on the PSD are unchanged at 28 = 256 and 24 = 16
respectively.
Figure S2 shows a plot of the optimal number of aver-

ages per image based on SNR and photobleaching, shown
inmagenta, and the optimal number of averages per image
based on the PSD for the dataset presented in Figure 3,
but with a central cropped region ranging from 8 pixels
in diameter to no cropping, taking into account the full
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6 FOYLAN et al.

F IGURE 2 A sample image from FIJI,10 boats.gif, was saved as a .tif file. This is presented in J. Gaussian noise (𝜎 = 10) was applied to
this image, and this was repeated 29 times to produce 29 noisy instances of the input image. The first noisy instance is shown in A, and
successive averages of 2n images. Images A–J, compiled as a .tif stack, served as the input stack to the PerfectlyAverage software code. (K)
Output plot from the PerfectlyAverage software code based on input images A–J, for a chosen photobleaching limit of 0%. Based on the
signal-to-noise (SNR) ratio with respect to this photobleaching limit set by the user, the optimal parameter is defined as the input image with
29 averages, shown in J, but power spectral density (PSD) analysis revealed that the optimal output image is that obtained with only 24

averaged frames, shown in E.

4096 pixel × 4096 pixel image size during the measure-
ment. The optimal averaging parameters based on SNR
and photobleaching and on the PSD are unchanged irre-
spective of image diameter until the image is of 8 pixels
× 8 pixels diameter, when the number of averages rec-
ommended based on the PSD cut-off frequency = 0.1
decreases from 16 to 8. These data suggest that it may be
possible to acquire data from subregions of the field of
view, for example, using ROI scanning, for use with Per-
fectlyAverage and PSD measurement for robust and rapid

assessment of the optimal number of averages in practical
imaging studies, if the ROI is not too small.
Figure 4 shows results of line averaging of the fixed 3T3-

L1 cell specimen stained with ActinGreen, with no limit
to the acceptable photobleaching. Figure 4A shows the
full field of view, with a yellow box highlighting an ROI.
This ROI is digitally zoomed and shown in Figure 4B–J.
Figure 4B shows the ROI of the first image in the time
series, that is, with no averaging, and Figure 4C–J shows
computationally averaged image data from 21 = 2 aver-
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FOYLAN et al. 7

F IGURE 3 Laser scanning fluorescence microscope images of lens tissue paper stained with Safranin O. (A) The full field of view, with a
white box and a red box highlighting two regions of interest (ROIs) with different relative intensities, with the higher intensities contained in
the ROI highlighted with the white box and dimmer regions of the specimen highlighted with the red box. All images are shown with the
‘physics’ look up table. The ROI highlighted with the white box is digitally zoomed and shown in B–J. (B) The first ROI in the time series, that
is, with no averaging, and (C)–(J) computationally averaged image data in increments of 2n where n is image number, up to increasing
numbers of averaged frames up to 28 = 256 images. The scale bar in A is 200 µm, and the scale bar for images B–J is 20 µm. The output of the
PerfectlyAverage code is shown in K. Based on the user-defined photobleaching limit of 0% and considering the SNR the ideal number of
averaged images is 28 = 256, corresponding to image J. However, by analysis of the PSD, the ideal number of frame averages is 24 = 16. Figure
S1 shows data from the ROI highlighted with the red box.

aged frames, up to 28 = 256 averaged frames. All images
are shown with the ‘Fire’ look up table.10 Based on the
user-defined photobleaching limit and considering the
SNR the ideal number of averaged images is 26 = 64,
corresponding to Figure 4H. However, analysis of the
PSD suggests that the ideal number of line averaging is
24 = 16, shown in Figure 4F. Reducing the number of

line averages from 26 to 24 reduces the overall imaging
time by a factor of 22: given the scan speed of 400 Hz
and the image size of 1024 pixels × 1024 pixels for these
data a total image capture time of 162 s for 26 images
based on the SNR and user-defined photobleaching limit
would reduce to 41 s for 24 images by consideration of the
PSD.
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8 FOYLAN et al.

F IGURE 4 (A) Laser scanning fluorescence microscope image of fixed 3T3-L1 cells stained with ActinGreen, shown using the ‘Fire’
false colour look up table. A yellow box highlights a region of interest (ROI), scale bar = 50 µm. This ROI is digitally zoomed and shown in
B–J. (B) The ROI of the first image in the time series, that is, with no averaging and (C)–(J) computationally averaged image data in
increments of 2n, up to 28 = 256 images. Based on the user-defined photobleaching limit and considering the SNR the ideal number of
averaged images is 26 = 64, corresponding to H. However, analysis of the PSD suggests that the ideal number of line averaging is 24 = 16,
shown here in F. (K) Output plot from the PerfectlyAverage software code based on input images B–J. Based on the signal-to-noise (SNR)
ratio, the optimal image is defined as the input image with an average of 26 = 64, but power spectral density (PSD) analysis revealed that the
optimal output image was obtained with frame averaging of 24 = 16 frames per image.

4 DISCUSSION

PerfectlyAverage presents a systematic software approach
for determining the optimal number of frames for averag-
ing in LSFM. Using SNR measurements and PSD analysis
of time lapse imaging data recorded without averaging,

this method identifies the point at which additional frame
averaging ceases to provide significant noise reduction,
while also considering the effects of photobleaching. This
is likely to have the greatest impact for LSFM images
comprised of a large number of pixels, such as Mesolens
data where LSFM images of up to 24,000 pixels × 24,000
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FOYLAN et al. 9

pixels are produced,19 and in other gigapixel-scale LSFM
methods for imaging at the mesoscale.20,21
The application of the PerfectlyAverage algorithm sug-

gests that relying solely on SNR for optimising averaging
may lead to excessive image acquisition, resulting in
unnecessary photobleaching and increased imaging times.
Instead, PSD analysis potentially provides a more robust
criterion for determining the optimal frame count, often
requiring significantly fewer averages than SNR-based
selection.
The primary implication of these findings is that tradi-

tional approaches to determining averaging parameters in
LSFM, which typically rely on subjective visual inspection
or SNR maximisation, may be suboptimal. The use of PSD
analysis offers an alternative, mathematically grounded
method for balancing noise reduction and photobleaching.
PSD analysis provides insight into the frequency-domain
characteristics of image noise and structural consistency,
revealing when further averaging ceases to add valuable
image information. The ability to establish an objec-
tive, reproducible criterion for optimal frame averaging
represents a step forward in designing experiments, stan-
dardising LSFM imaging workflows, and communicating
methods and results.22–25
The findings of this study align with prior research

on noise reduction in LSFM imaging, which has largely
focused on the trade-off between SNR improvements and
photobleaching effects.1,6 These previous studies have
shown that averaging improves SNR proportionally to
the square root of the number of frames averaged, but
PerfectlyAverage adds value by considering user-defined
photobleaching limits and frequency-domain analysis to
optimise frame selection.
The use of PSD-based noise assessment has been applied

in other fields, such as magnetic resonance imaging26 and
atom probe tomography,27 but its application to LSFM has
been limited. Some prior works have suggested alterna-
tive methods for reducing noise, such as deep learning-
based denoising techniques,28 but these approaches often
require extensive training datasets from many different
specimens and specific computational resources may be
needed. In contrast, PerfectlyAverage provides an easily
implementable, open-source solution that can be read-
ily adopted by LSFM users without requiring machine
learning expertise.
Limitations of PerfectlyAverage must be acknowledged.

Firstly, the implementation of PerfectlyAverage assumes
a stationary noise process, which may not be univer-
sally applicable across all LSFM imaging conditions.29
Some biological samples may exhibit dynamic fluores-
cence variations due to photophysical effects such as
reversible photoswitching30 that are not fully captured by
PerfectlyAverage. Additionally, the study focuses primar-

ily on fluorescence-based LSFM imaging; the applicability
of PerfectlyAverage to other image contrast modalities,
such as scanned transmission or reflectance,31 where
photobleaching is unlikely to feature, remains to be
tested.
Another limitation is that the selection of the photo-

bleaching threshold and PSD cut-off frequency in Per-
fectlyAverage are user-defined. While this allows for
flexibility, it introduces a degree of subjectivity into the pro-
cess. Future refinements to the PerfectlyAverage algorithm
could incorporate automated photobleaching estimation
or automated determination of the PSD cut-off frequency,
potentially improving the reproducibility of results across
different experimental conditions.
PerfectlyAverage also requires an input dataset to esti-

mate the optimal averaging conditions. This will be both
microscope and specimen dependent. As such, it is rec-
ommended that in practice the user obtains image data
in xyt format for the purpose of applying PerfectlyAver-
age from a region of the specimen different to those which
will form the area for routine study. We also advise that
PerfectlyAverage may not be useful for imaging of live
specimens where rapid changes, for example, in inten-
sity, morphology etc., are visible between image frames.
However, the method may be suitable for slowly varying
living specimens. As the data here have shown, differ-
ent specimen types will yield different recommendations
for averaging, and PerfectlyAverage should be applied at
the outset of any study where averaging is needed, but
Figure S2 suggests that it may be possible to reduce acqui-
sition time of these data by considerably reducing the
pixel number of the image dataset. Future research could
explore whether machine learning approaches could com-
plement PerfectlyAverage by dynamically adjusting PSD
thresholds based on specimen properties or microscope
configuration.

5 CONCLUSIONS

The development of PerfectlyAverage addresses a long-
standing challenge in LSFM imaging by providing an
objective, reproducible method for optimising averaging
conditions for routine study. By integrating PSD anal-
ysis, SNR calculations, and photobleaching corrections,
this method helps to determine the point at which
averaging ceases to provide benefit and it enhances
experimental efficiency by reducing unnecessary frame
acquisition.
By offering an open-source software solution that is

compatible with any LSFM, the aim is to make this
tool widely accessible to the microscopy community to
encourage adoption, integration into existing tools, fur-
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ther development to extend capability, and to overcome the
current reliance on subjective or biased methods.
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