
ar
X

iv
:2

40
7.

14
11

5v
2

 [
cs

.F
L

]
 2

2
N

ov
 2

02
4

Dual Adjunction Between Ω-Automata and

Wilke Algebra Quotients

Anton Chernev1 , Helle Hvid Hansen1 , and Clemens Kupke2

1 University of Groningen, Netherlands
a.chernev@rug.nl

h.h.hansen@rug.nl
2 University of Strathclyde, United Kingdom

clemens.kupke@strath.ac.uk

Abstract. Ω-automata and Wilke algebras are formalisms for char-
acterising ω-regular languages via their ultimately periodic words. Ω-
automata read finite representations of ultimately periodic words, called
lassos, and they are a subclass of lasso automata. We introduce lasso
semigroups as a generalisation of Wilke algebras that mirrors how lasso
automata generalise Ω-automata, and we show that finite lasso semi-
groups characterise regular lasso languages. We then show a dual adjunc-
tion between lasso automata and quotients of the free lasso semigroup
with a recognising set, and as our main result we show that this dual
adjunction restricts to one between Ω-automata and quotients of the free
Wilke algebra with a recognising set.

Keywords: Infinite words · ω-regular languages · Ultimately periodic
words · Ω-automata · Wilke algebra · Coalgebra

1 Introduction

Ω-automata [8,9] were introduced as a way of capturing ω-regular languages coal-
gebraically [20]. This is based on two main observations. First, every ω-regular
language L is determined by its set of ultimately periodic words {uvω | uvω ∈ L}
(e.g., [6, Fact 1]). Second, for every ω-regular language L, the language {u$v |
uvω ∈ L} is regular [6, Prop. 4]. Ω-automata run on lassos, which are pairs of
finite words (u, v) representing uvω. Thus every ω-regular language L is identi-
fied by an Ω-automaton accepting the lasso language {(u, v) | uvω ∈ L}. The
fact that Ω-automaton bisimilarity corresponds to lasso language equivalence [8]
enables algorithms for deciding language equivalence of Ω-automata, as well as
minimisation algorithms using partition refinement [9] or Brzozowski-style via
dual adjunctions [10, Ch. 8].

Ω-automata are defined as the subclass of lasso automata [8] that satisfy
two conditions (circularity and coherence) which ensure that Ω-automata accept
lasso languages that are saturated, meaning that u1v

ω
1 = u2v

ω
2 implies (u1, v1)

and (u2, v2) are both accepted or both rejected. This is required in order for
Ω-automata languages to correspond to ω-regular languages. Lasso automata

http://arxiv.org/abs/2407.14115v2
http://orcid.org/0009-0002-6232-5604
http://orcid.org/0000-0001-7061-1219
http://orcid.org/0000-0002-0502-391X

2 A. Chernev et al.

(accepting non-saturated languages) are of independent interest. They are stud-
ied in [1] (under the name FDFAs) in the context of learning ω-regular languages.
There it is shown that certain lasso automaton representations of ω-regular lan-
guages can be factorially smaller than their Ω-automaton representations3.

Our motivation for the present work is to better understand the mathemat-
ical connections between the coalgebraic theory of ω-regular languages, given
by Ω-automata, and the algebraic theory of ω-regular languages, given by alge-
braic recognition via Wilke algebras [16, Sec. 2.5]. In the setting of finite words,
[18,12] show an adjunction between deterministic finite automata, on the coalge-
bra side, and monoid congruences [17], on the algebra side. We are interested in
establishing a similar result for Ω-automata and Wilke algebras. In [10, Ch. 5],
a construction is given from Ω-automata to Wilke algebra homomorphisms that
recognise the same language. However, the construction is only defined on ob-
jects, and the converse direction is not treated.

In this paper, we exhibit a dual adjunction between Ω-automata and extended
Wilke algebras. We define the latter as surjective homomorphisms with the freely
generated Wilke algebra as their domain, together with a recognising set. We
obtain this adjunction as the restriction of another adjunction, between lasso
automata and a new type of algebraic structures that we call extended lasso
semigroups. We define lasso semigroups by omitting the circularity and coherence
axioms of Wilke algebras. The lasso automaton adjunction looks as follows:

Ext Lasso Sgp ⊥ Lasso Aut ⊥ Lasso Autop

Aut

Alg

Rev

Revop

(1)

On the right, Rev ⊣ Revop is the transition-reversal adjunction described in [10,
Sec. 8.1]. On the left, Aut and Alg are new constructions between extended
lasso semigroups and lasso automata that reverse the accepted language. In
particular, Alg is different from the construction in [10, Ch. 5]. By taking suitable
restrictions of the functors in Diagram (1), we obtain the adjunction:

Ext Wilke Alg ⊥ Ωrv-Aut ⊥ Ω-Autop

Aut

Alg

Rev

Revop

(2)

Here Ωrv-automata (in words, reverse-Ω-automata) are a new type of lasso au-
tomata that correspond to the reverse of Ω-automata.

Furthermore, we show that lasso semigroups provide an algebraic character-
isation of lasso languages beyond saturated languages. That is, homomorphisms
into finite lasso semigroups recognise precisely the regular lasso languages.

We note that dual adjunctions between coalgebras and algebras have been
shown in [3,5,19] to give rise to abstract minimisation algorithms for a wide range

3 In the terminology of [1], syntactic and recurrent FDFAs can be smaller than L$.

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 3

of automata that operate on finite words. Similar results have been shown for
Ω-automata in [10, Ch. 8]. These dual adjunctions are of a different nature from
the ones studied here, but they have also served as motivation and inspiration.

The paper is organised as follows. In Section 2 we collect basic definitions
and notation on lasso automata, Ω-automata and Wilke algebras. In Section 3
we introduce lasso semigroups, define the maps Aut,Alg and Rev and use them
to show that finite lasso semigroups recognise ω-regular languages (Theorem 2).
In Section 4 we extend these maps to functors and prove the adjunction from
Diagram (1) (Theorem 2). We use it to derive the adjunction from Diagram (2)
(Theorem 3) in Section 5. At the end of Sections 4 and 5, we briefly discuss how
our functors relate minimal automata and maximal Wilke algebra quotients, and
applications of the adjunction. We conclude with a summary and a discussion
of related and future work in Section 6.

2 Preliminaries

We assume familiarity with basic concepts from category theory, such as cat-
egories, functors and adjunctions (see, e.g., [2,15]), and from the theory of ω-
regular languages (e.g., [13]).

2.1 Languages of Infinite Words

Throughout this paper, we fix a set of symbols Σ = {a, b, . . . }, called an alphabet.
Let Σ∗ denote the set of finite words over Σ and Σ+ denote the set of non-empty
words. We have Σ+ = Σ∗ \ {ǫ}, where ǫ stands for the empty word. We often
use the notation au or ua, where a ∈ Σ and u ∈ Σ∗, for an arbitrary non-
empty word. An infinite word over Σ is a sequence of elements of Σ of length
ω. An ultimately periodic word is an infinite word of the form uvω := uvv . . . ,
and the set of all ultimately periodic words is written as Σup. A lasso is a pair
(u, v) ∈ Σ∗×Σ+, with the set of all lassos written as Σ∗+. Intuitively, the lasso
(u, v) represents the ultimately periodic word uvω. A lasso language is a subset of
Σ∗+. Similarly, a language of infinitely periodic words is a subset of Σup. A lasso
language L is saturated if u1v

ω
1 = u2v

ω
2 implies (u1, v1) ∈ L ⇐⇒ (u2, v2) ∈ L.

Given some u = a1 . . . an ∈ Σ∗, we write urv := an . . . a1 for the reverse
word of u. While infinite words cannot be reversed, lassos can, because they are
finite objects. Thus define the reverse of a lasso (u, av) as the lasso (u, av)rv :=
(vrv, aurv). On the level of languages, given a lasso language L, we write Lrv :=
{(u, av)rv | (u, av) ∈ Σ∗+} for the reverse lasso language of L.

2.2 Lasso Automata and Ω-Automata

Lasso automata were introduced in [8,9] as acceptors of lasso languages.

Definition 1 (Lasso automaton [8]). A lasso automaton is a tuple A =
(X,Y, q, ρ, σ, ξ, F) where:

4 A. Chernev et al.

– X and Y are disjoint finite sets whose elements are called states;
– q is a state in X called the initial state;
– the functions ρ : X ×Σ → X, σ : X ×Σ → Y and ξ : Y ×Σ → Y are called

transition functions;
– F is a subset of Y whose elements are called final states.

The transition function ρ will often be tacitly used as a function from X×Σ∗

to X in the standard way. That is, ρ(x, ǫ) := x and ρ(x, ua) := ρ(ρ(x, u), a). This
applies analogously to ξ.

The lasso automaton structure allows for a natural definition of lasso accep-
tance. A lasso (u, av) is read as follows: ρ transitions read u, σ reads a, and ξ reads
v. Formally, given a lasso automaton A = (X,Y, q, ρ, σ, ξ, F), define the lasso lan-
guage accepted by A as Lasso(A) := {(u, av) ∈ Σ∗+ | ξ(σ(ρ(q, u), a), v) ∈ F}. A
lasso language is called regular if it is accepted by some finite lasso automaton.

Example 1. In Figure 1 we see two examples of lasso automata for Σ = {a, b}.
It can easily be verified that Lasso(A1) = {(u, bv) | u, v ∈ Σ∗} and Lasso(A2) =
{(ub, an) | u ∈ Σ∗, n ∈ ω}. Note that Lasso(A1) is not saturated, since it contains
(ǫ, ba), but not (b, ab).

A1 :

x

y1 y2

a, b

a
b

a, b a, b

A2 :

x1 x2

y1 y2

a b

b

a

a, b b a

a, b a
b

Fig. 1. Examples of lasso automata. The dotted arrows are σ-transitions.

A state z in a lasso automaton is called reachable if there exists a path along
ρ, σ and ξ from the initial state to z. If all states in an automaton are reachable,
we call it a reachable automaton.

A lasso automaton morphism is a structure-preserving map between lasso au-
tomata. More precisely, given two lasso automata Ai = (Xi, Yi, qi, ρi, σi, ξi, Fi),
for i ∈ {1, 2}, a lasso automaton morphism is a pair of maps h = (hX , hY) such
that hX : X1 → X2 and hY : Y1 → Y2 satisfy:

– hX(q1) = q2;
– for all x ∈ X1, y ∈ Y1, a ∈ Σ: hX(ρ1(x, a)) = ρ2(h

X(x), a) and
hY (σ1(x, a)) = σ2(h

X(x), a) and hY (ξ1(y, a)) = ξ2(h
Y (y), a);

– for all y ∈ Y1: y ∈ F1 ⇐⇒ hY (y) ∈ F2.

Remark 1. Consider the endofunctor G on Set × Set defined by G(X,Y) :=
〈XΣ × Y Σ , Y Σ × 2〉 on objects [8]. Lasso automata are G-coalgebras, together
with an initial state. Lasso automaton morphisms coincide with initial-state-
preserving G-coalgebra morphisms.

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 5

In order to capture lasso languages of the form {(u, v) | uvω ∈ L} for an
ω-regular language L, [8] introduces a subclass of lasso automata called Ω-
automata.

Definition 2 (Ω-automaton [8]). An Ω-automaton is a lasso automaton A =
(X,Y, q, ρ, σ, ξ, F) that satisfies the following two conditions.

Circularity For all x ∈ X, av ∈ Σ+, k > 0:
ξ(σ(x, a), v) ∈ F ⇐⇒ ξ(σ(x, a), v(av)k) ∈ F .

Coherence For all x ∈ X, abv ∈ Σ+:
ξ(σ(x, a), bv) ∈ F ⇐⇒ ξ(σ(ρ(x, a), b), va) ∈ F .

It is shown in [8] that for any Ω-automaton A, the language Lasso(A) is
saturated. Furthermore, Ω-automata accept precisely the languages of the form
{(u, v) | uvω ∈ L} for an ω-regular language L.

Example 2. In Figure 1, the automaton A2 is an Ω-automaton, and its corre-
sponding ω-regular language is (a + b)∗baω. The automaton A1 is circular, but
not coherent, because ξ(σ(x, b), a) = y2 ∈ F , ξ(σ(ρ(x, b), a), b) = y1 /∈ F .

2.3 Wilke Algebras

Another approach to characterising the ultimately periodic fragments of ω-
regular languages is via recognition by Wilke algebra homomorphisms [22] (see
also [16, Section 2.5]).

Definition 3 (Wilke algebra [22]). A Wilke algebra is a two-sorted algebra
of the form W = (W fin,W inf , ·,×, (−)ω), where W fin,W inf are sets equipped with
the operations:

· : W fin ×W fin → W fin, × : W fin ×W inf → W inf , (−)ω : W fin → W inf ,

satisfying the axioms:

(s · t) · u = s · (t · u), s× (t× α) = (s · t)× α,

(sn)ω = sω, s× (t · s)ω = (s · t)ω.

for all s, t ∈ W fin, α ∈ W inf . The axioms in the second line are called circularity
and coherence, respectively.

If no confusion arises, we write W = (W fin,W inf), i.e., we omit the operations.
A Wilke algebra homomorphism between W1 and W2 is a pair f = (ffin, f inf) of
maps ffin : W fin

1 → W fin
2 and f inf : W inf

1 → W inf
2 that preserves the operations ·,

× and (−)ω. That is:

ffin(s · t) = ffin(s) · ffin(t), f inf(s× α) = ffin(s)× f inf(α),

f inf(sω) = (ffin(s))ω .

6 A. Chernev et al.

The freely generated Wilke algebra with generators (Σ, ∅) is (Σ+, Σup), where ·
is finite-word concatenation, × is finite-infinite-word concatenation, and (−)ω is
infinite power. Given a Wilke algebra W and a homomorphism f : (Σ+, Σup) →
W , we say f recognises a language L of ultimately periodic words if L =
(f inf)−1(P) for some recognising subset P ⊆ W inf , and we write L = UP(W, f, P).
The languages recognised by homomorphisms into finite Wilke algebras are pre-
cisely the languages of the form {uvω | uvω ∈ L} for an ω-regular L.

3 Algebraic Recognition of Lasso Languages

In this section, we introduce lasso semigroups as generalisations of Wilke al-
gebras, and show that homomorphisms into finite lasso semigroups recognise
precisely the regular lasso languages. We do this by defining mappings trans-
forming a lasso automaton into a surjective lasso semigroup homomorphism
with a recognising set, and vice versa.

3.1 Lasso Semigroups

Lasso semigroups are obtained by omitting the circularity and coherence axioms
of Wilke algebras. We show that the freely generated lasso semigroup over an
alphabet Σ consists of Σ+ as its first sort and Σ∗+ as its second sort. This allows
us to define recognition of lasso languages via lasso semigroups, analogously to
language recognition by Wilke algebras.

Definition 4 (Lasso semigroup). A lasso semigroup has the same type as
a Wilke algebra W = (W fin,W inf , ·,×, (−)ω), but the circularity and coherence
axioms need not be satisfied (cf. Definition 3). A lasso semigroup homomorphism
preserves operations in the same way as Wilke algebra homomorphisms.

From the above definition it follows that Wilke algebras are a full subcategory
of lasso semigroups, with their homomorphisms.

Remark 2. A lasso semigroup is, equivalently, a semigroup W fin acting on a set
W inf by ×, together with a function (−)ω : W fin → W inf .

Proposition 1. The free lasso semigroup generated by (Σ, ∅) is (isomorphic to)
(Σ+, Σ∗+), where for every u, v ∈ Σ+ and w ∈ Σ∗:

u · v := uv, u× (w, v) := (uw, v), uω := (ǫ, u).

Proof (sketch). Suppose (W fin,W inf) is a lasso semigroup and f0 : Σ → W fin is a
function. Then f0 can be uniquely extended to a homomorphism f : (Σ+, Σ∗+) →
(W fin,W inf) as follows: ffin(a1 . . . an) := f0(a1) · . . . · f0(an) and f inf(u, v) :=
ffin(u)×

(

ffin(v)
)ω

.

Now, analogously to Wilke algebras, given a lasso semigroup homomorphism
(ffin, f inf) : (Σ+, Σ∗+) → (W fin,W inf) and a set P ⊆ W inf , we have that

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 7

(f inf)−1(P) is a lasso language. We say that (ffin, f inf) recognises (f inf)−1(P) via
P . Note that for every homomorphism (ffin, f inf), there exists a surjective homo-
morphism that recognises the same languages. Indeed, the codomain restriction
(ffin, f inf) : (Σ+, Σ∗+) ։ (Im(ffin), Im(f inf)) recognises the same languages.
Hence in the next definition we only consider surjective homomorphisms.

Definition 5 (Extended lasso semigroup). An extended lasso semigroup
is a triple (W, f, P) where W is a lasso semigroup, f : (Σ+, Σ∗+) ։ W is
a surjective homomorphism and P ⊆ W inf . We call (W, f, P) finite if W is
finite. The lasso language recognised by (W, f, P) is the set Lasso(W, f, P) :=
(f inf)−1(P).

Remark 3. Surjective homomorphisms f : (Σ+, Σ∗+) ։ W are in 1-1 corre-
spondence with congruences on (Σ+, Σ∗+) by taking kernels and quotient maps,
respectively.

In the remainder of this section, we show that the languages recognised by
finite extended lasso semigroups coincide with the regular lasso languages. Our
strategy is to show that: (1) any finite extended lasso semigroup can be trans-
formed into a finite lasso automaton that accepts the reverse language; (2) any
finite lasso automaton can be transformed into a finite extended lasso semigroup
that recognises the reverse language. The result then follows from the fact that
a language is regular precisely when its reverse is regular (see [10, Section 8.1]).

3.2 From Lasso Semigroups to Lasso Automata

We define a mapping Aut that sends an extended lasso semigroup (W, f, P) to
a lasso automaton Aut(W, f, P) accepting L(W, f, P)rv.

Recall from Remark 2 that a lasso semigroup (W fin,W inf) can be seen as
a left-action of the semigroup W fin on the set W inf via the operation ×. The
lasso semigroup operations provide a natural way of defining a lasso automaton
structure on its two-sorted carrier. This construction is similar to the classic
construction of a transition structure from a semigroup S with a semigroup
morphism f : Σ+ → S where the transitions are defined by s

a
−→ s · f(a) [17].

However, since × is a left-action, we define transitions by multiplying on the left
rather than on the right as in the classic construction.

Definition 6 (Aut). For an extended lasso semigroup (W, f, P), we define
Aut(W, f, P) as (W fin ⊔ {∗},W inf , ∗, ρ, σ, ξ, P) where for all t ∈ W fin, α ∈ W inf :

– ρ(∗, a) := ffin(a) and ρ(t, a) := ffin(a) · t;
– σ(∗, a) := ffin(a)ω and σ(t, a) := (ffin(a) · t)ω;
– ξ(α, a) := ffin(a)× α.

Remark 4. It is clear that if (W, f, P) is finite, then Aut(W, f, P) is finite.

Due to defining transitions by multiplying on the left, we have (by an easy
induction argument) that for all w ∈ Σ+, ρ(∗, w) = ffin(wrv). Similar identities
hold for σ and ξ, and this is essentially the reason why Aut(W, f, P) accepts the
reverse of Lasso(W, f, P) rather than Lasso(W, f, P) itself.

8 A. Chernev et al.

Proposition 2. For every extended lasso semigroup (W, f, P):

Lasso(Aut(W, f, P)) = Lasso(W, f, P)rv.

Proof (sketch). Let Aut(W, f, P) = (W fin ⊔{∗},W inf , ∗, ρ, σ, ξ, P). By definition,
for all (u, av) ∈ Σ∗+:

(u, av) ∈ Lasso(Aut(W, f, P)) ⇐⇒ ξ(σ(ρ(∗, u), a), v) ∈ P, and
(u, av)rv ∈ Lasso(W, f, P) ⇐⇒ f inf((u, av)rv) ∈ P

The proof is completed by showing that:

for all (u, av) ∈ Σ∗+ : ξ(σ(ρ(∗, u), a), v) = f inf((u, av)rv). (3)

3.3 From Lasso Automata to Lasso Semigroups

We now describe a converse transformation, i.e., a mapping Alg sending a lasso
automaton A = (X,Y, q, ρ, σ, ξ, F) to an extended lasso semigroup. Cruchten [10,
Ch. 5] gives a construction of a Wilke algebra from an Ω-automaton which can
be seen as a generalisation of the classic construction of a transition semigroup
from a finite automaton. In the construction in ibid., an element of the algebra
represents paths in the automaton corresponding to a word. Our construction
Alg is a variation of Cruchten’s idea, with the crucial difference that here paths
are reversed. The choice of Alg is justified in Section 4, where we show that Alg

is the (unique) right adjoint of Aut (Proposition 8).
As the carrier of the algebra we take UA := (XX × Y X × Y Y , Y). That is,

elements of Ufin

A are triples (α, β, γ), where α encodes (the endpoints of) ρ-paths,
β encodes ρ-paths with a single σ-transition at the end, and γ encodes ξ-paths.
Elements y ∈ U inf represent the state reached after reading some lasso in reverse,
starting from q. Before defining the operations on UA, it is insightful to see what
the desired homomorphism fA : (Σ+, Σ∗+) → UA is:

ffin

A (av) = (λx.ρ(x, vrva), λx.σ(ρ(x, vrv), a), λy.ξ(y, vrva)), (4)

f inf

A (u, av) = ξ(σ(ρ(q, vrv), a), urv). (5)

In fact, in defining the operations on UA, we are guided by the goal of ensuring fA
becomes a homomorphism. The fact that our construction reverses the language
will follow from the form of fA.

Definition 7. Let A = (X,Y, q, ρ, σ, ξ, F) be a lasso automaton. Define the al-
gebraic structure UA := (XX × Y X × Y Y , Y) with the following operations:

(α1, β1, γ1) · (α2, β2, γ2) := (α1α2, β1α2, γ1γ2),

(α, β, γ)ω := β(q),

(α, β, γ)× y := γ(y),

for each αi ∈ XX , βi ∈ Y X , γi ∈ Y Y , y ∈ Y (here α1α2 denotes α1 ◦ α2).

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 9

Proposition 3. The structure defined in Definition 7 is a lasso semigroup.

Proposition 4. Let A = (X,Y, q, ρ, σ, ξ, F) be a lasso automaton and fA : (Σ+,
Σ∗+) → UA be defined by Equations (4) and (5). Then fA is a lasso semigroup
homomorphism.

Note that fA is not surjective, but we can define the desired extended lasso
semigroup by taking the image of fA.

Definition 8 (Alg). Given a lasso automaton A = (X,Y, q, ρ, σ, ξ, F), we define
Alg(A) := (WA, fA, F), where WA is the image of fA in UA.

Remark 5. It follows immediately that if A is finite, then Alg(A) is finite.

Proposition 5. For every lasso automaton A = (X,Y, q, ρ, σ, ξ, F):

Lasso(Alg(A)) = Lasso(A)rv.

Proof. Suppose Alg(A) = (W, f, P). We have that Lasso(W, f, P) consists of all
lassos (u, av) such that f inf(u, av) ∈ P . By Equation (5), this is equivalent to
ξ(σ(ρ(s, vrv), a), urv) ∈ P = F , i.e., (vrv, aurv) ∈ Lasso(A). Hence Lasso(W, f, P)
= Lasso(A)rv.

3.4 Finite Lasso Semigroups Recognise Regular Lasso Languages

From Proposition 2 and Proposition 5 it follows that the languages recognised
by finite extended lasso semigroups are the reverse of regular lasso languages. In
order to conclude that finite extended lasso semigroups recognise regular lasso
languages, it remains to show that L is regular if and only if Lrv is regular.
This follows from the fact that, analogously to DFAs, every lasso automaton
can be reversed. The construction is described in [10, Section 8.1]. States in the
reversed automaton are sets of states of the original automaton, while transitions
correspond to taking preimages of the original transition functions. We include
the definition here, since it will be used in Sections 4 and 5.

Definition 9 (Reverse lasso automaton [10, Def. 8.17]). Let A = (X,Y, q,
ρ, σ, ξ, F) be a lasso automaton. Define the reverse automaton Rev(A) := (2Y , 2X ,

F, ξ̂, σ̂, ρ̂, {S | q ∈ S}), where, for δ ∈ {ρ, σ, ξ}, δ̂ is defined as:

δ̂(S, a) := {z | δ(z, a) ∈ S}.

Proposition 6 ([10, Prop. 8.22]). Let A be a lasso automaton. Then Lasso(Rev
(A)) = Lasso(A)rv.

We can now state our algebraic characterisation of regular lasso languages.

Theorem 1. A lasso language L is recognised by a finite extended lasso semi-
group if and only if L is regular.

10 A. Chernev et al.

Proof. Suppose L = Lasso(W, f, P) for some finite extended lasso semigroup
(W, f, P). Then L = Lasso(Rev(Aut(W, f, P)), where Rev(Aut(W, f, P)) is a
finite lasso automaton, thus L is regular. Conversely, if L = Lasso(A) for some
finite lasso automaton, then L = Lasso(Alg(Rev(A))), where Alg(Rev(A)) is a
finite extended lasso semigroup.

Noting that (W, f, P) recognises L iff (W, f,W inf \ P) recognises the com-
plement of L, Theorem 1 implies that regular lasso languages are closed under
complementation. This was already proved using automata in [8], but the alge-
braic argument is immediate.4

Corollary 1. Regular lasso languages are closed under complementation.

4 Dual Adjunction Between Lasso Automata and Lasso
Semigroups

In the last section we introduced the mappings Aut and Alg as tools for charac-
terising language recognition by finite extended lasso semigroups. In this section,
we show that Aut and Alg also reveal the categorical relationship between the
category of lasso automata and the category of extended lasso semigroups. More
precisely, we show that Aut and Alg can be extended to a pair of adjoint func-
tors. By composing this adjunction with the adjunction Rev ⊣ Revop proven
in [10, Section 8.1], we arrive at a language-preserving dual adjunction between
extended lasso semigroups and lasso automata. See Diagram (1).

4.1 Categories of Lasso Automata and Lasso Semigroups

A natural notion of a morphism between extended lasso semigroups is a homo-
morphism that preserves the quotient structure and the recognising subset.

Definition 10 (Category of extended lasso semigroups). Given two ex-
tended lasso semigroups (Wi, fi, Pi), an extended lasso semigroup morphism
g : (W1, f1, P1) → (W2, f2, P2) is a homomorphism g : W1 → W2 such that
g ◦ f1 = f2 and α ∈ P1 ⇐⇒ ginf(α) ∈ P2, for all α ∈ W inf

1 . We write ELSgp for
the category of extended lasso semigroups and their morphisms.

On the automaton side, we use the standard notion of automaton morphism
(see Section 2). Apart from the category of all lasso automata, we define its full
subcategory of reachable lasso automata. A restriction to reachable automata is
necessary in Proposition 7 for ensuring Alg is functorial.

Definition 11 (Categories of lasso automata). Let LAut denote the cate-
gory of lasso automata and lasso automata morphisms. Let RLAut denote the
full subcategory of LAut of all reachable lasso automata.

4 To prove closure under union and intersection, we would additionally need to consider
limits of lasso semigroups.

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 11

It follows from surjectivity of f1 that there is at most one extended lasso
semigroup morphism g : (W1, f1, P1) → (W2, f2, P2). Moreover, observe that if
A is a reachable lasso automaton, then there exists at most one morphism with
domain A. That is:

Lemma 1. RLAut and ELSgp are posetal categories.

4.2 Functoriality of Aut and Alg

We begin with an example showing that Alg cannot be extended to a functor
LAut → ELSgp.

Example 3. Consider the lasso automata A := ({x}, {y}, x, ρ, σ, ξ, ∅) (where ρ, σ
and ξ are uniquely determined by their types) and A′ = ({x′

1, x
′

2}, {y
′}, x′

1, ρ
′, σ′,

ξ′, ∅) with ρ′(x′

1, a) = ρ′(x′

1, b) = ρ(x′

2, a) = x′

1, ρ
′(x′

2, b) = x′

2. The map h =
(hX , hY) with hX(x) = x′

1 and hY (y) = y′ is a lasso automaton morphism.
However, there is no map from Alg(A) := (W, f, P) to Alg(A′) := (W ′, f ′, P ′),
because ffin(a) = 〈{x 7→ x}, {x 7→ y}, {y 7→ y}〉 = ffin(b), but (f ′)fin(a) =
〈{x′

1 7→ x′

1, x
′

2 7→ x′

1}, · · · , · · · 〉 6= 〈{x′

1 7→ x′

1, x
′

2 7→ x′

2}, · · · , · · · }〉 = (f ′)fin(b).

Hence in order to obtain a functor Alg , we need to restrict the domain LAut.
In the example above, the automaton A′ was not reachable, which gives us the
idea to restrict the domain to RLAut. Moreover, the next lemma shows that the
codomain of Aut can also be restricted to RLAut.

Lemma 2. Let (W, f, P) be an extended lasso semigroup. Then Aut(W, f, P) is
reachable.

Since ELSgp is a posetal category (Lemma 1), for any lasso automaton mor-
phism h : A1 → A2, there exists at most one candidate for Alg(h). Thus, in
order to show functoriality of Alg, it suffices to prove that such a candidate
exists. Likewise for functoriality of Aut .

We reduce existence of morphisms in ELSgp and RLAut to comparing certain
equivalence relations on Σ+ and Σ∗+.

Definition 12. Let A = (X,Y, q, ρ, σ, ξ, F) be a lasso automaton. We write:

χA(ua) := (λx.ρ(x, ua), λx.σ(ρ(x, u), a), λy.ξ(y, ua)).

Define the pair ≈A = (≈fin

A ,≈inf

A) of equivalence relations ≈fin

A on Σ+ and ≈inf

A on
Σ∗+ by:

u1 ≈fin

A u2 ⇐⇒ χA(u1) = χA(u2)

(v1, a1u1) ≈
inf

A (v2, a2u2) ⇐⇒ ξ(σ(ρ(q, v1), a1), u1) = ξ(σ(ρ(q, v2), a2), u2).

We say that ≈A1
refines ≈A2

if ≈fin

A1
⊆ ≈fin

A2
and ≈inf

A1
⊆ ≈inf

A2
. Define ≈rv

A by:

u1 ≈rv

A u2 ⇐⇒ urv

1 ≈A urv

2 ,

(v1, a1u1) ≈
rv

A (v2, a2u2) ⇐⇒ (v1, a1u1)
rv ≈A (v2, a2u2)

rv.

12 A. Chernev et al.

Compare the definition of ≈A to Equations (4) and (5). We have u1 ≈A

u2 ⇐⇒ ffin

A (urv
1) = ffin

A (urv
2), and (v1, u1) ≈A (v2, u2) ⇐⇒ f inf

A ((v1, u1)
rv) =

f inf

A ((v2, u2)
rv). Furthermore, note that ≈A resembles the relation from [10, Def. 6.3]

used for deriving a Myhill-Nerode theorem [10, Th. 6.13] for Ω-automata. There
u1 and u2 are identified if ρ(q, u1) = ρ(q, u2). Our ≈fin

A is more restrictive, since
it considers all types of transitions ρ, σ, ξ, and all starting states.

Definition 13. Let (W, f, P) be an extended lasso semigroup. Define the pair
∼W = (∼fin

W ,∼inf

W) of equivalence relations ∼fin

W on Σ+ and ∼inf

A on Σ∗+ where
∼fin

W is the kernel of ffin and ∼inf

W is the kernel of f inf. Refinement and ∼rv

W are
defined analogously to Definition 12.

Lemma 3. 1. Let A1 and A2 be reachable lasso automata. There exists an
automaton morphism h : A1 → A2 if and only if ≈A1

refines ≈A2
and

Lasso(A1) = Lasso(A2).
2. Let (W1, f1, P1) and (W2, f2, P2) be extended lasso semigroups. There exists

an extended lasso semigroup morphism g : (W1, f1, P1) → (W2, f2, P2) if and
only if ∼W1

refines ∼W2
and Lasso(W1, f1, P1) = Lasso(W2, f2, P2).

Lemma 4. Let A be a lasso automaton and (W, f, P) be an extended lasso semi-
group. Then ∼Alg(A) = ≈rv

A and ≈Aut(W,f,P) = ∼rv

W .

Proposition 7. The mappings Alg and Aut can be extended uniquely to func-
tors Alg : RLAut → ELSgp and Aut : ELSgp → RLAut.

Proof. First, we prove functoriality of Alg . Let h = (hX , hY) : A1 → A2 be
a lasso automaton morphism. Because of Lemma 1, it suffices to show that
there exists a morphism g : Alg(A1) → Alg(A2). By Lemma 3, ≈A1

refines
≈A2

and Lasso(A1) = Lasso(A2). By Lemma 4, ∼rv

Alg(A1)
refines ∼rv

Alg(A2)
, so

∼Alg(A1) refines ∼Alg(A2). By Proposition 5, Lasso(Alg(A1)) = Lasso(A1)
rv =

Lasso(A2)
rv = Lasso(Alg(A2)). By Lemma 3 again, there exists a morphism

g : Alg(A1) → Alg(A2). Functoriality of Aut follows analogously.

4.3 Lasso Adjunction

Below we prove the dual adjunction between lasso automata and extended lasso
semigroups. It is obtained as the composition of three simpler adjunctions (cf. Di-
agram (6)). We start with the adjunction between reachable lasso automata and
extended lasso semigroups Aut ⊣ Alg . It is the key technical result of this paper.
In the proof, we work with the definition of adjunctions in terms of hom-sets, cf.
[2, Section 9.2].

Proposition 8. There exists an adjunction Aut ⊣ Alg : ELSgp → RLAut.

Proof. Let A = (X,Y, q, ρ, σ, ξ, F) be an arbitrary reachable lasso automaton,
(W, f, P) an arbitrary extended lasso semigroup. Since RLAut and ELSgp are
posetal categories, it suffices to show that there exists a morphism g : (W, f, P) →
Alg(A) if and only if there exists a morphism h : Aut(W, f, P) → A. Suppose

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 13

there exists g : (W, f, P) → Alg(A). By Lemma 3, ∼W refines ∼Alg(A) and
Lasso(Alg(A)) = Lasso(W, f, P). By Lemma 4, ∼W refines ≈rv

A. By Lemma 4
again, ≈rv

Aut(W,f,P) refines ≈rv

A, so ≈Aut(W,f,P) refines ≈A. By Proposition 2 and

Proposition 5, Lasso(A) = Lasso(Alg(A))rv = Lasso(W, f, P)rv = Lasso(Aut(W,
f, P)). By Lemma 3 again, there exists h : Aut(W, f, P) → A. The other direc-
tion is analogous.

Although Aut ⊣ Alg reveals a relationship between lasso automata and ex-
tended lasso semigroups, it leaves more to be desired. Concretely, we look for an
adjunction: (1) that is also defined for non-reachable automata, and (2) whose
constituent functors preserve the accepted language. Language-preservation en-
ables specialising the adjunction to Ω-automata and Wilke algebras in Section 5.

In order to handle the first requirement, we give an adjunction between RLAut

and LAut. It is analogous to a similar adjunction between reachable DFAs and
all DFAs [5, Section 9.4]. In one direction, we have an inclusion functor Inc :
RLAut → LAut. For the the other direction, there exists a functor Rch : LAut →
RLAut mapping an automaton A to its reachable part Rch(A). Moreover, Rch
maps an automaton morphism to its restriction to reachable states.

Proposition 9. There exists an adjunction Inc ⊣ Rch : RLAut → LAut.

Proof (sketch). Every morphism in Hom(A,Rch(B)) can be mapped bijectively
to a morphism in Hom(Inc(A), B) by expanding its codomain.

In order to handle the second requirement, we recall from [10, Section 8.1]
that Rev from Definition 9 can be extended to a functor which is its own dual
adjoint. That is, [10, Def. 8.23] extends Rev to a functor by defining it on mor-
phisms as Rev(hX , hY) = ((hX)−1, (hY)−1). Then [10, Cor. 8.24] states that
there is an adjunction Rev ⊣ Revop : LAut → LAutop.

Now we are ready to collect all adjunctions into the main result of this section.

Theorem 2. The functors Rev ◦ Inc ◦Aut and Aut ◦Rch ◦Revop are language-
preserving adjoints, with Rev ◦ Inc ◦Aut ⊣ Alg ◦Rch ◦Revop : ELSgp → LAutop.

ELSgp ⊥ RLAut ⊥ LAut ⊥ LAutop

Aut

Alg

Inc

Rch

Rev

Revop

(6)

We make some observations about the adjunction. The functor Rev maps
a reachable lasso automaton to an observable lasso automaton [10, Chap.8].
Informally, a lasso automaton is observable if distinct states accept distinct lasso
languages. A lasso automaton is minimal if it is both reachable and observable. It
follows that for all (W, f, P) ∈ ELSgp, the automaton (Rev ◦Inc◦Aut)(W, f, P) is
observable. Hence by taking its reachable part, we obtain a minimal automaton
accepting Lasso(W, f, P).

14 A. Chernev et al.

Going in the other direction, if we start with a reachable lasso automaton A
accepting L, then (Rch ◦ Revop)(A) is a minimal automaton accepting Lrv, and
(Alg ◦Rch ◦Revop)(A) is the maximal quotient of (Σ+, Σ∗+) that recognises L.
This comes about as follows, cf. [5, Sec. 9.2]. The categories ELSgp and RLAut

do not have initial or final objects, since morphisms preserve the language, but
if we fix a lasso language L and denote by ELSgp(L) and RLAut(L) the full
subcategories of structures that recognise, resp. accept, L then we do obtain
initial and final objects in ELSgp(L) and RLAut(L). Since Aut and Alg reverse
the language, they restrict to an adjunction between ELSgp(L) and RLAut(Lrv).
The final object in RLAut(Lrv) is the minimal lasso automaton for Lrv, and the
final object in ELSgp(L) is the maximal quotient of (Σ+, Σ∗+) that recognises
L. Since Alg is a right adjoint, it preserves final objects, hence Alg maps the
minimal lasso automaton for Lrv to the maximal quotient of (Σ+, Σ∗+) that
recognises L.

This, in particular, shows that Alg ◦Rch ◦Revop differs from Cruchten’s con-
struction [10, Ch. 5], because the latter does not map all reachable Ω-automata
accepting L to the maximal Wilke algebra quotient for L. For instance, one can
observe that Cruchten’s construction maps the initial Ω-automaton for L = Σ∗+,
with states X = Σ∗, Y = Σ∗+, to the minimal Wilke algebra quotient (Σ+, Σup).

5 Restricting the Adjunction to Ω-Automata and Wilke
Algebras

In this section, we show that the adjunction from Theorem 2 restricts to Ω-
automata and Wilke algebras. First, we note that we can define a notion of
extended Wilke algebra by adding a recognising subset to a Wilke algebra ho-
momorphisms f : (Σ+, Σup) → W . The main observation is that Ω-automata
are a full subcategory of LAut, and extended Wilke algebras can be identified
with a full subcategory of ELSgp. In general, restricting an adjunction to full
subcategories yields another adjunction, as long as the restricted functors are
well-defined on objects. This is because hom-sets in a full subcategory are inher-
ited from the ambient category. Therefore our task is to show that restricting
the functors from Theorem 2 to Ω-automata and Wilke algebras is well-defined.

We begin with specialising extended lasso semigroups to Wilke algebras.

Definition 14 (Extended Wilke Algebra). An extended Wilke algebra is
an extended lasso semigroup (W, f, P) such that W is a Wilke algebra, i.e.,
W satisfies the circularity and coherence axioms. We write EWAlg for the full
subcategory of ELSgp of all extended Wilke algebras.

Note that in the above definition f : (Σ+, Σ∗+) ։ W has the free lasso semi-
group as its domain, instead of the free Wilke algebra. But, given a Wilke algebra
W , there exists a bijective correspondence between maps of type (Σ+, Σup) ։ W
and maps of type (Σ+, Σ∗+) ։ W . This correspondence is given by precom-
position with the map φ : (Σ+, Σ∗+) ։ (Σ+, Σup) defined by φfin(s) = s and

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 15

φinf(u, v) = uvω. We prefer the type (Σ+, Σup) ։ W , as it allows us to view
EWAlg as a subcategory of ELSgp.

Next, we turn to the automaton categories. As we remarked, Ω-automata
form a full subcategory of LAut, which we write as ΩAut. However, the functor
Rev : LAut → LAutop does not restrict to Rev : ΩAut → ΩAutop. In order to see
why the reverse of an Ω-automaton is not an Ω-automaton, recall that for any
Ω-automaton A, the language Lasso(A) is saturated. But we cannot expect that
Lasso(Arv) = Lasso(A)rv is also saturated. Hence we introduce a new type of
lasso automata which turn out to be exactly the reverse of some Ω-automaton.

Definition 15 (Ωrv-automata). A Ωrv-automaton (in words, reverse-Ω-auto-
maton) is a lasso automaton A = (X,Y, q, ρ, σ, ξ, F) satisfying, for all va, vba
∈ Σ+ and k > 0:

σ(ρ(q, v), a) = σ(ρ(q, (va)kv), a) and σ(ρ(q, vb), a) = ξ(σ(ρ(q, av), b), a).

We call these identities reverse-circularity and reverse-coherence, respectively.

Proposition 10. Let A be a lasso automaton. If A is circular, then Rev(A) is
reverse-circular, and if A is reverse-circular, then Rev(A) is circular. Likewise
for coherence and reverse coherence.

Proof (sketch). Let A = (X,Y, q, ρ, σ, ξ, F) and Rev(A) = (X rv, Y rv, qrv, ρrv, σrv,
ξrv, F rv). If A is circular, va ∈ Σ+ and k > 0:

σrv(ρrv(qrv, v), a) = {x ∈ X | ξ(σ(x, a), vrv) ∈ F} =

= {x ∈ X | ξ(σ(x, a), vrv(avrv)k) ∈ F} = σrv(ρrv(F, (va)kv), a),

where the second equality uses circularity, and the first and third equalities use
the identity ξrv(σrv(ρrv(qrv, v), a), w) = {x ∈ X | ξ(σ(ρ(x,wrv), a), vrv) ∈ F}.
Hence Rev(A) is reverse-circular. The other parts of the proposition follow by
similar reasoning.

Proposition 11. Let A ∈ LAut and (W, f, P) ∈ ELSgp. If A is reverse-circular,
then Alg(A) satisfies the circularity axiom, and if (W, f, P) satisfies the circular-
ity axiom, then Aut(W, f, P) is reverse-circular. Likewise for reverse-coherence
and the coherence axiom.

Proof (sketch). We show that applying Alg to a reverse-coherent automaton
yields a coherent algebra. The other parts of the proposition follows by similar
reasoning. Let A = (X,Y, q, ρ, σ, ξ, F) and Alg(A) = (WA, fA, PA). Suppose
that A is reverse-coherent and let (αi, βi, γi) ∈ W fin

A , for i ∈ {1, 2}. We have
(α1, β1, γ1) = ffin(a1 . . . an) and (α2, β2, γ2) = ffin(bv), for some a1, . . . , an, b ∈
Σ, v ∈ Σ∗. Hence:

(α1, β1, γ1)×
(

(α2, β2, γ2) · (α1, β1, γ1)
)ω

= (α1, β1, γ1)× (α1α2, β1α2, γ1γ2)
ω

= (α1, β1, γ1)× β1α2(q) = γ1β2α1(q) = ξ(σ(ρ(q, an . . . a1v
r), b), an . . . a1)

= ξ(σ(ρ(q, an−1 . . . a1v
rvb), an), an−1 . . . a1) = . . . = σ(ρ(q, vrvban . . . a2), a1)

= β1(α2(q)) = (α1α2, β1α2, γ1γ2)
ω =

(

(α1, β1, γ1) · (α2, β2, γ2)
)ω

,

16 A. Chernev et al.

where we use reverse-coherence n-many times in the third line.

Now we are ready to present the adjunction from Theorem 2, restricted to
Ω-automata and Wilke algebras.

Definition 16. Write ΩAut for the full subcategory of LAut of all Ω-automata.
Write ΩrvAut for the full subcategory of LAut of all Ωrv-automata. Finally, write
RΩrvAut for the full subcategory of ΩrvAut of all reachable Ωrv-automata.

Theorem 3. The adjunction from Theorem 2 restricts to:

EWAlg ⊥ RΩrvAut ⊥ ΩrvAut ⊥ ΩAutop

Aut

Alg

Inc

Rch

Rev

Revop

Proof. It follows from Proposition 11 that the restrictions Aut : EWAlg →
RΩrvAut and Alg : RΩrvAut → EWAlg are well-defined. It is straightforward
to see that reverse-circularity and reverse-coherence are preserved by Rch, so
the restrictions Inc : RΩrvAut → ΩrvAut and Rch : ΩrvAut → RΩrvAut are
well-defined. Finally, from Proposition 10, we have that the restrictions Rev :
ΩrvAut → ΩAutop and Revop : ΩAutop → ΩrvAut are well-defined. Therefore
Rev ◦ Inc ◦Aut ⊣ Alg ◦ Rch ◦ Revop : EWAlg → ΩAutop.

The observations made below Theorem 2 apply also in the setting of The-
orem 3, including the relationships between minimal automata and maximal
quotients. In [9], a decision procedure was given for checking whether a lasso au-
tomaton is an Ω-automaton. Theorem 2 and Theorem 3 provide an alternative
algebraic procedure via the following proposition.

Proposition 12. A lasso automaton A is circular and coherent iff the extended
lasso semigroup (Alg ◦Rch ◦Rev)(A) is circular and coherent. Checking whether
a finite lasso semigroup (W fin,W inf) is circular and coherent can be done in time
O(n2) where n = |W fin|.

The size of (Alg ◦ Rch ◦ Rev)(A) is in the worst case doubly-exponential in
the number of states of A. However, the exponential blow-up in the reverse-
determinise construction is known to often not turn up in practice [7], so it
could be interesting to evaluate the algebraic decision procedure on some real-
life examples.

6 Conclusion

In this paper, we introduced and studied lasso semigroups as generalisations
of Wilke algebras. We proved that homomorphisms into finite lasso semigroups
characterise regular lasso languages by giving language-preserving transforma-
tions between lasso automata and extended lasso semigroups. We extended these

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 17

transformations to dually adjoint functors between the categories of lasso au-
tomata and of lasso semigroups extended with a recognising set, and showed
that this adjunction restricts to a dual adjunction between Ω-automata and
extended Wilke algebras.

Since lasso semigroups characterise regular lasso languages, we believe that
they are also of interest in their own right. This is motivated by the relevance
of non-saturated lasso languages (which cannot be described by a Wilke al-
gebra) in automata learning [1]. A categorical approach to learning ω-regular
languages [21] is also based on lasso languages and algebraic recognition. Ideas
from [21] relating language acceptance via Wilke algebras with automata accep-
tance provided useful inspiration for our own constructions. A different algebraic
approach to lasso languages is found in [11] where so-called lasso algebras are
introduced as counterparts of Kleene algebra for reasoning about language equiv-
alence of lasso expressions.

Closely related to our work is a very recent and independently developed dual
adjunction [12] between lasso/Ω-automata and certain bisimulation congruences.
Bisimulation congruences correspond to lasso semigroup quotients satisfying an
extra bisimulation condition. Another difference with the present work is that
the adjunction in [12], which is based on constructions from [10], is language-
preserving whereas the adjunction Aut ⊣ Alg is language-reversing. We leave a
detailed comparison between the two approaches as future work.

The adjunctions we have established are instrumental for clarifying the re-
lationship between coalgebraic and algebraic approaches to languages of infinite
words (although we deliberately kept the coalgebraic perspective implicit). This
could aid the discovery of new coalgebraic or algebraic approaches to language
theory beyond infinite words. In particular, there are extensions of Wilke alge-
bras for infinite trees [4,14], but no notions of lasso or Ω-automata on infinite
trees. We see this as a fruitful direction for future work.

References

1. Angluin, D., Fisman, D.: Learning regular omega languages. Theoretical Computer
Science 650, 57–72 (2016). https://doi.org/10.1016/j.tcs.2016.07.031

2. Awodey, S.: Category Theory. Oxford University Press, Inc., 2nd edn. (2010),
https://dl.acm.org/doi/10.5555/2060081

3. Bezhanishvili, N., Bonsangue, M.M., Hansen, H.H., Kozen, D., Kupke, C., Panan-
gaden, P., Silva, A.: Minimisation in logical form. In: Palmigiano, A., Sadrzadeh,
M. (eds.) Samson Abramsky on Logic and Structure in Computer Science and Be-
yond, pp. 89–127. Springer (2023). https://doi.org/10.1007/978-3-031-24117-8_3

4. Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an appli-
cation to the temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009 - Concurrency Theory. pp. 131–145. Springer (2009).
https://doi.org/10.1007/978-3-642-04081-8_10

5. Bonchi, F., Bonsangue, M.M., Hansen, H.H., Panangaden, P., Rutten,
J.J.M.M., Silva, A.: Algebra-coalgebra duality in Brzozowski’s minimization
algorithm. ACM Transactions in Computational Logic 15(1), 1–29 (2014).
https://doi.org/10.1145/2490818

https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.tcs.2016.07.031
https://dl.acm.org/doi/10.5555/2060081
https://doi.org/10.1007/978-3-031-24117-8_3
https://doi.org/10.1007/978-3-031-24117-8_3
https://doi.org/10.1007/978-3-642-04081-8_10
https://doi.org/10.1007/978-3-642-04081-8_10
https://doi.org/10.1145/2490818
https://doi.org/10.1145/2490818

18 A. Chernev et al.

6. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D.
(eds.) Mathematical Foundations of Programming Semantics (MFPS 1993). LNCS,
vol. 802, pp. 554–566. Springer (1994). https://doi.org/10.1007/3-540-58027-1_27

7. Champarnaud, J.M., Khorsi, A., Paranthoën, T.: Split and join for minimizing:
Brzozowski’s algorithm. In: Proceedings of the Prague Stringology Conference. pp.
96–104 (2002), https://www.stringology.org/event/2002/p11.html

8. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Pat-
tinson, D., Schröder, L. (eds.) Coalgebraic Methods in Computer Sci-
ence (CMCS 2012). LNCS, vol. 7399, pp. 90–108. Springer (2012).
https://doi.org/10.1007/978-3-642-32784-1_6

9. Ciancia, V., Venema, Y.: Ω-automata: A coalgebraic perspective on regular
ω-languages. In: 8th Conference on Algebra and Coalgebra in Computer Sci-
ence (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 139, pp. 5:1–5:18 (2019). https://doi.org/10.4230/LIPIcs.CALCO.2019.5

10. Cruchten, M.: Topics in Ω-Automata: A Journey Through Lassos, Algebra,
Coalgebra and Expressions. Master’s thesis, University of Amsterdam (2022),
https://eprints.illc.uva.nl/id/eprint/2209

11. Cruchten, M.: Kleene theorems for lasso languages and ω-languages. In: Chen,
X., Li, B. (eds.) Theory and Applications of Models of Computation. pp. 111–123.
Springer Nature Singapore (2024). https://doi.org/10.1007/978-981-97-2340-9_10

12. Cruchten, M.: On transition constructions for automata: A categorical perspective.
Tech. rep. (2024), http://arxiv.org/abs/2406.19312

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata logics, and in-
finite games: a guide to current research. Springer-Verlag (2002).
https://doi.org/10.1007/3-540-36387-4

14. Idziaszek, T., Skrzypczak, M., Bojanczyk, M.: Regular languages
of thin trees. Theory Comput. Syst. 58(4), 614–663 (2016).
https://doi.org/10.1007/S00224-014-9595-Z

15. MacLane, S.: Categories for the Working Mathematician, Graduate Texts in Math-
ematics, vol. 5. Springer-Verlag (1971). https://doi.org/10.1007/978-1-4757-4721-8

16. Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic
and Games, Pure and applied mathematics, vol. 141. Elsevier (2004).
https://doi.org/10.1017/S107989860000336X

17. Pin, J.E.: Mathematical foundations of automata theory,
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf , version February 18, 2022

18. Planting, A.: From Automata to Monoids and Back Again. Master’s thesis, Rad-
boud University (2013)

19. Rot, J.: Coalgebraic minimization of automata by initiality and finality. In:
Birkedal, L. (ed.) Mathematical Foundations of Programming Semantics, MFPS
2016. Electronic Notes in Theoretical Computer Science, vol. 325, pp. 253–276.
Elsevier (2016). https://doi.org/10.1016/J.ENTCS.2016.09.042

20. Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

21. Urbat, H., Schröder, L.: Automata learning: An algebraic approach. In: Proceed-
ings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science.
p. 900–914. LICS ’20 (2020). https://doi.org/10.1145/3373718.3394775

22. Wilke, T.: An algebraic theory for regular languages of finite
and infinite words. Int. J. Algebra Comput. 3(4), 447–490 (1993).
https://doi.org/10.1142/S0218196793000287

https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://www.stringology.org/event/2002/p11.html
https://doi.org/10.1007/978-3-642-32784-1_6
https://doi.org/10.1007/978-3-642-32784-1_6
https://doi.org/10.4230/LIPIcs.CALCO.2019.5
https://doi.org/10.4230/LIPIcs.CALCO.2019.5
https://eprints.illc.uva.nl/id/eprint/2209
https://doi.org/10.1007/978-981-97-2340-9_10
https://doi.org/10.1007/978-981-97-2340-9_10
http://arxiv.org/abs/2406.19312
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/S00224-014-9595-Z
https://doi.org/10.1007/S00224-014-9595-Z
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1017/S107989860000336X
https://doi.org/10.1017/S107989860000336X
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1016/J.ENTCS.2016.09.042
https://doi.org/10.1016/J.ENTCS.2016.09.042
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/3373718.3394775
https://doi.org/10.1145/3373718.3394775
https://doi.org/10.1142/S0218196793000287
https://doi.org/10.1142/S0218196793000287

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 19

A Proofs for Section 3 (Algebraic Recognition of Lasso
Languages)

Proposition 1. The free lasso semigroup generated by (Σ, ∅) is (isomorphic to)
(Σ+, Σ∗+), where for every u, v ∈ Σ+ and w ∈ Σ∗:

u · v := uv, u× (w, v) := (uw, v), uω := (ǫ, u).

Proof. The fact that (Σ+, Σ∗+) is a lasso semigroup follows directly from asso-
ciativity of word concatenation. In order to prove that it is freely generated from
(Σ, ∅), suppose (W fin,W inf) is a lasso semigroup and f0 : Σ → W fin is a func-
tion. We show f0 can be uniquely extended to a homomorphism f : (Σ+, Σ∗+) →
(W fin,W inf). Given a1, . . . , an ∈ Σ+ and (u, v) ∈ Σ∗+, define:

ffin(a1 . . . an) := f0(a1) · . . . · f0(an),

f inf(u, v) := ffin(u)×
(

ffin(v)
)ω

.

It is straightforward to verify that (ffin, f inf) is a homomorphism and that every
homomorphism that extends f0 coincides with (ffin, f inf).

Proposition 2. For every extended lasso semigroup (W, f, P):

Lasso(Aut(W, f, P)) = Lasso(W, f, P)rv.

Proof. Let Aut(W, f, P) = (W fin⊔{∗},W inf, ∗, ρ, σ, ξ, P). We have for all (u, av) ∈
Σ∗+:

(u, av) ∈ Lasso(Aut(W, f, P)) ⇐⇒ ξ(σ(ρ(∗, u), a), v) ∈ P, and
(u, av)rv ∈ Lasso(W, f, P) ⇐⇒ f inf((u, av)rv) ∈ P

The proof is completed by showing that :

for all (u, av) ∈ Σ∗+ : ξ(σ(ρ(∗, u), a), v) = f inf((u, av)rv). (7)

First, we show ρ(∗, w) = ffin(wrv) whenever w ∈ Σ+. We proceed by induc-
tion on |w| ≥ 1. For the base case, if w = a for a ∈ Σ, we have:

ρ(∗, w) = ρ(∗, a) = ffin(a) = ffin(wrv).

For the induction step, if w = w′a, for |w′| ≥ 1, then:

ρ(∗, w) = ρ(ρ(∗, w′), a) = ρ(ffin((w′)rv), a) = ffin(a) · ffin((w′)rv) = ffin(wrv).

Second, we prove that if α ∈ W inf and w ∈ Σ+, then ξ(α,w) = ffin(wrv)×α.
We proceed by induction on |w| ≥ 1. For the base case, if w = a for a ∈ Σ, we
have:

ξ(α,w) = ffin(a)× α = ffin(wrv)× α.

20 A. Chernev et al.

For the induction step, if w = w′a for |w′| ≥ 1, then:

ξ(α,w) = ξ(ξ(α,w′), a) = ξ(ffin((w′)rv)× α, a) = ffin(a)× (ffin((w′)rv)× α) =

= ffin(a · (w′)rv)× α = ffin(wrv)× α.

Finally, we show (7), i.e., that for all (u, av) ∈ Σ∗+: ξ(σ(ρ(∗, u), a), v) =
f inf(vrv, aurv). We first evaluate σ(ρ(∗, u), a). If u = ǫ, then:

σ(ρ(∗, u), a) = σ(∗, a) = ffin(a)ω = f inf(aω) = f inf(ǫ, a) = f inf(ǫ, aurv).

Otherwise, we use ρ(∗, u) = ffin(urv) to obtain:

σ(ρ(∗, u), a) = σ(ffin(urv), a) = (ffin(a) · ffin(urv))ω = f inf(ǫ, aurv)).

Now we evaluate ξ(σ(ρ(∗, u), a), v). If v = ǫ, we have:

ξ(σ(ρ(∗, u), a), v) = σ(ρ(∗, u), a) = f inf(ǫ, aurv) = f inf(vrv, aurv).

And in case |v| ≥ 1:

ξ(σ(ρ(∗, u), a), v) = ξ(f inf(ǫ, aurv), v) = ffin(vrv)× f inf(ǫ, aurv) =

= f inf(vrv, aurv).

Proposition 3. The structure defined in Definition 7 is a lasso semigroup.

Proof. For all (αi, βi, γi) ∈ Ufin

A , where i ∈ {1, 2, 3}, and y ∈ U inf

A :

(

(α1, β1, γ1) · (α2, β2, γ2)
)

· (α3, β3, γ3) = (α1α2, β1α2, γ1γ2) · (α3, β3, γ3)

= (α1α2α3, β1α2α3, γ1γ2γ3)

= (α1, β1, γ1) · (α2α3, β2α3, γ2γ3)

= (α1, β1, γ1) ·
(

(α2, β2, γ2) · (α3, β3, γ3)
)

(

(α1, β1, γ1) · (α2, β2, γ2)
)

× y = (α1α2, β1α2, γ1γ2)× y

= γ1γ2(y)

= (α1, β1, γ1)× γ2(y)

= (α1, β1, γ1)×
(

(α2, β2, γ2)× y
)

.

Proposition 4. Let A = (X,Y, q, ρ, σ, ξ, F) be a lasso automaton and fA : (Σ+,
Σ∗+) → UA be defined by Equations (4) and (5). Then fA is a lasso semigroup
homomorphism.

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 21

Proof. For all au, bv ∈ Σ+ and w ∈ Σ∗:

ffin

A (au) · ffin

A (bv) = (λx.ρ(x, urva), λx.σ(ρ(x, urv), a), λy.ξ(y, urva)) ·

(λx.ρ(x, vrvb), λx.σ(ρ(x, vrv), b), λy.ξ(y, vrvb))

= (λx.ρ(x, vrvburva), λx.σ(ρ(x, vrvburv), a), λy.ξ(y, vrvburva))

= ffin

A (aubv) = ffin

A (au · bv),

ffin

A (au)ω = (. . . , λx.σ(ρ(x, urv), a), . . .)ω = σ(ρ(q, urv), a)

= f inf

A (ǫ, au) = f inf

A ((au)ω),

ffin

A (au)× f inf

A (w, bv) = (. . . , . . . , λy.ξ(y, urva))× ξ(σ(ρ(q, vr), b), wrv)

= ξ(σ(ρ(q, vrv), b), wrvurva) = f inf

A (auw, bv)

= f inf

A (au× (w, bv)).

B Proofs for Section 4 (Dual Adjunction Between Lasso
Automata and Lasso Semigroups)

Lemma 2. Let (W, f, P) be an extended lasso semigroup. Then Aut(W, f, P)
is reachable.

Proof. Suppose Aut(W, f, P) = (X,Y, q, ρ, σ, ξ, F). Let x ∈ X , we show that
x = ρ(q, v) for some v in Σ∗. If x = q, then x = ρ(q, ǫ). Otherwise, x ∈ W fin, so
x = ffin(w) for some w in Σ+. If w = a1 . . . an for a1, . . . , an in Σ, then:

x = ffin(a1 . . . an) = ffin(a1) . . . f
fin(an) = ρ(q, an . . . a1).

Let y ∈ Y , we show that y = ξ(σ(ρ(q, u), a), v) for some (u, av) ∈ Σ∗+.
By surjectivity of f , we know y = f inf(α) for some α in Σ∗+. Suppose α =
(a1 . . . am, b1 . . . bn) for some a1, . . . , am, b1, . . . , bm ∈ Σ, where m ≥ 0, n > 0.
Then:

y = ffin(a1)× (. . . ffin(am−1)× (ffin(am)×
(

ffin(b1) . . . f
fin(bn)

)ω
) . . .),

thus y = ξ(σ(ρ(q, bn . . . , b2), b1), am . . . a1).

Lemma 3.

1. Let A1 and A2 be reachable lasso automata. There exists an automaton
morphism h : A1 → A2 if and only if ≈A1

refines ≈A2
and Lasso(A1) =

Lasso(A2).
2. Let (W1, f1, P1) and (W2, f2, P2) be extended lasso semigroups. There exists

an extended lasso semigroup morphism g : (W1, f1, P1) → (W2, f2, P2) if and
only if ∼W1

refines ∼W2
and Lasso(W1, f1, P1) = Lasso(W2, f2, P2).

Proof. 1. (⇒) Suppose h : A1 → A2 is a lasso automaton morphism, where
Ai = (Xi, Yi, qi, ρi, σi, ξi, Fi). We have:

u1 ≈fin

A1
u2 ⇐⇒ χA1

(u1) = χA1
(u2) =⇒ χA2

(u1) = χA2
(u2)

⇐⇒ u1 ≈fin

A2
u2.

22 A. Chernev et al.

Analogously, (v1, a1u1) ≈inf

A1
(v2, a2u2) implies (v1, a1u1) ≈inf

A2
(v2, a2u2).

Hence ≈A1
refines ≈A2

. Lastly:

(v, av) ∈ Lasso(A1) ⇐⇒ ξ1(σ1(ρ1(q1, v), a), u) ∈ F1 ⇐⇒

hY (ξ1(σ1(ρ1(q1, v), a), u)) ∈ F2 ⇐⇒ ξ2(σ2(ρ2(q2, v), a), u) ∈ F2 ⇐⇒

(v, au) ∈ Lasso(A2).

(⇐) Suppose ≈A1
refines ≈A2

and Lasso(A1) = Lasso(A2). Define h =
(hX , hY) as follows:

hX(x) := ρ2(q2, u), for some u such that x = ρ1(q1, u),

hY (y) := ξ2(σ2(ρ2(q2, v), a), u), for some (v, au) such that

y = ξ1(σ1(ρ1(q1, v), a), u).

Note that ≈fin

A1
⊆ ≈fin

A2
ensures that hX is well-defined, and ≈inf

A1
⊆ ≈inf

A2
en-

sures that hY is well-defined. Totality of hX and hY follows from reachability
of A1. Preservation of the initial state and transitions follows from the defi-
nition of h. Preservation of final states follows from Lasso(A1) = Lasso(A2).
Hence h is a lasso automaton morphism.

2. (⇒) Suppose g : (W1, f1, P1) → (W2, f2, P2) is an extended lasso semigroup
morphism. Then:

u1 ∼fin

W1
u2 ⇐⇒ ffin

1 (u1) = ffin

1 (u2) =⇒ gffin

1 (u1) = gffin

1 (u2) ⇐⇒

ffin

2 (u1) = ffin

2 (u2) ⇐⇒ u1 ∼
fin

W2
u2.

Analogously, (v1, a1u1) ∼inf

W1
(v2, a2u2) implies (v1, a1u1) ∼inf

W2
(v2, a2u2).

Hence ∼W1
refines ∼W2

. Moreover:

Lasso(W1, f1, P1) = (f inf

1)−1(P1) = (f inf

1)−1(g−1(P2)) = (f inf

2)−1(P2) =

= Lasso(W2, f2, P2).

(⇐) Suppose ∼W1
refines ∼W2

and Lasso(W1, f1, P1) = Lasso(W2, f2, P2).
Define g as follows:

gfin(s) := ffin

2 (u), for some u such that s = ffin

1 (u),

ginf(α) := f inf

2 (v, u), for some (v, u) such that α = f inf

2 (v, u).

Observe that gfin is well-defined since ∼fin

W1
⊆∼fin

W2
, and ginf is well-defined

since ∼inf

W1
⊆∼inf

W2
. Totality of g follows from surjectivity of f1. The property

f2 = gf1 follows from the definition of g. The property α ∈ P1 ⇐⇒ ginf(α) ∈
P2 follows from Lasso(W1, f1, P1) = Lasso(W2, f2, P2).

Lemma 4. Let A be a lasso automaton and (W, f, P) be an extended lasso
semigroup. Then ∼Alg(A) = ≈rv

A and ≈Aut(W,f,P) = ∼rv

W .

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 23

Proof. Let A = (X,Y, q, ρ, σ, ξ, F) and Alg(A) = (WA, fA, PA). Using Equa-
tions (4) and (5):

u1 ∼fin

Alg(A) u2 ⇐⇒ ffin

A (u1) = ffin

A (u2) ⇐⇒ χA(u
rv

1) = χA(u
rv

2)

⇐⇒ urv

1 ≈fin

A urv

2 ,

(v1, a1u1) ∼
inf

Alg(A) (v2, a2v2) ⇐⇒ f inf

A (v1, a1u1) = f inf

A (v2, a2u2) ⇐⇒

ξ(σ(ρ(q, urv

1), a1), v
rv

1) = ξ(σ(ρ(q, urv

2), a2), v
rv

2) ⇐⇒

(v1, a1u1)
rv ≈inf

A (v2, a2u2)
rv.

Hence ∼Alg(A) = ≈rv

A.

Let (W, f, P) be an extended lasso semigroup and Aut(W, f, P) = (XW , YW ,
qW , ρW , σW , ξW , FW). Using Definition 6 and equation (3) on page 8:

u1 ≈fin

Aut(W,f,P) u2 ⇐⇒ χAut(W,f,P)(u1) = χAut(W,f,P)(u2)

⇐⇒ ffin(urv

1) = ffin(urv

2) ⇐⇒ urv

1 ∼fin

W urv

2 ,

(v1, a1u1) ≈
inf

Aut(W,f,P) (v2, a2u2)

⇐⇒ ξW (σW (ρW (qW , v1), a1), u1) = ξW (σW (ρW (qW , v2), a2), u2)

⇐⇒ f inf((v1, a1u1)
rv) = f inf((v2, a2u2)

rv) ⇐⇒ (v1, a1u1)
rv ∼inf

W (v2, a2u2)
rv.

Hence ≈Aut(W,f,P) = ∼rv

W .

Proposition 9. There exists an adjunction Inc ⊣ Rch : RLAut → LAut.

Proof. Let A ∈ RLAut, B ∈ LAut. We show the existence of a natural isomor-
phism:

φA,B : Hom(A,Rch(B)) → Hom(Inc(A), B).

Let f : A → Rch(B) be a morphism in RLAut. Since Inc(A) = A and Rch(B) ⊆
B, f can also be seen as a morphism between Inc(A) and B by expanding
its codomain. Define φA,B(f) to be the result of this codomain change on f .
Now φA,B is clearly injective. Moreover, by reachability of Inc(A) and the fact
that morphisms send reachable states to reachable states, the range of every
morphism between Inc(A) and B is contained in Rch(B). Hence φA,B is also
surjective. Naturality of the isomorphism is simple to verify.

C Proofs for Section 5 (Restricting the Adjunction to
Ω-Automata and Wilke Algebras)

Proposition 10. Let A be a lasso automaton. If A is circular, then Rev(A) is
reverse-circular, and if A is reverse-circular, then Rev(A) is circular. Likewise
for coherence and reverse coherence.

24 A. Chernev et al.

Proof. Let A = (X,Y, q, ρ, σ, ξ, F) and Rev(A) = (X rv, Y rv, qrv, ρrv, σrv, ξrv, F rv).
From the proof of [10, Prop. 8.22], we deduce two useful identities:

ξrv(σrv(ρrv(qrv, v), a), w) = {x ∈ X | ξ(σ(ρ(x,wrv), a), vrv) ∈ F} (8)

ξrv(σrv(ρrv(Z, v), a), w) ∈ F rv ⇐⇒ ξ(σ(ρ(q, wrv), a), vrv) ∈ Z, (9)

for all Z ∈ X rv = P(Y), v, w ∈ Σ∗, a ∈ Σ.
If A is circular, va ∈ Σ+ and k > 0:

σrv(ρrv(qrv, v), a) = {x ∈ X | ξ(σ(x, a), vrv) ∈ F} =

= {x ∈ X | ξ(σ(x, a), vrv(avrv)k) ∈ F} = σrv(ρrv(F, (va)kv), a),

where the first and third equalities use Equation (8) and the second equality uses
circularity. Hence Rev(A) is reverse-circular. If A is coherent and vba ∈ Σ+:

σrv(ρrv(qrv, vb), a) = {x ∈ X | ξ(σ(x, a), bvrv) ∈ F} =

= {x ∈ X | ξ(σ(ρ(x, a), b), vrva) ∈ F} = ξrv(σrv(ρrv(qrv, av), b), a),

where the first and third equalities use Equation (8) and the second equality uses
coherence. Hence Rev(A) is reverse-coherent. If A is reverse-circular, av ∈ Σ+

and k > 0:

ξrv(σrv(Z, a), v) ∈ F rv ⇐⇒ σ(ρ(q, vrv), a) ∈ Z ⇐⇒

σ(ρ(q, (vrva)kvrv), a) ∈ Z ⇐⇒ ξrv(σrv(Z, a), v(av)k) ∈ F rv,

where the first and third equivalences use Equation (9) and the second equiva-
lence uses reverse-circularity. Hence Rev(A) is circular. Finally, if A is reverse-
coherent and abv ∈ Σ+:

ξrv(σrv(Z, a), bv) ∈ F rv ⇐⇒ σ(ρ(q, vrvb), a) ∈ Z ⇐⇒

ξ(σ(ρ(q, avrv), b), a) ∈ Z ⇐⇒ ξrv(σrv(ρrv(Z, a), b), va) ∈ F rv,

where the first and third equivalences use Equation (9) and the second equiva-
lence uses reverse-coherence. Hence Rev(A) is coherent.

Proposition 11. Let A ∈ LAut and (W, f, P) ∈ ELSgp. If A is reverse-circular,
then Alg(A) satisfies the circularity axiom, and if (W, f, P) satisfies the circular-
ity axiom, then Aut(W, f, P) is reverse-circular. Likewise for reverse-coherence
and the coherence axiom.

Proof. Let A = (X,Y, q, ρ, σ, ξ, F) and Alg(A) = (WA, fA, PA). Suppose A is
reverse-circular and let (α, β, γ) ∈ W fin

A , k > 0. We have (α, β, γ) = ffin

A (au) for
some au ∈ Σ+. Therefore:

((α, β, γ)k)ω = (αk, βαk−1, γk)ω = βαk−1(q) = σ(ρ(q, (urva)k−1urv), a) =

= σ(ρ(q, urv), a) = β(q) = (α, β, γ)ω ,

Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients 25

where we use reverse-circularity in the fourth equality. Therefore (WA, fA, PA)
satisfies the circularity axiom. Now suppose that A is reverse-coherent and let
(αi, βi, γi) ∈ W fin

A , for i ∈ {1, 2}. We have (α1, β1, γ1) = ffin(a1 . . . an) and
(α2, β2, γ2) = ffin(bv), for some a1, . . . , an, b ∈ Σ, v ∈ Σ∗. Hence:

(α1, β1, γ1)×
(

(α2, β2, γ2) · (α1, β1, γ1)
)ω

= (α1, β1, γ1)× (α1α2, β1α2, γ1γ2)
ω

= (α1, β1, γ1)× β1α2(q) = γ1β2α1(q) = ξ(σ(ρ(q, an . . . a1v
r), b), an . . . a1)

= ξ(σ(ρ(q, an−1 . . . a1v
rvb), an), an−1 . . . a1) = . . . = σ(ρ(q, vrvban . . . a2), a1)

= β1(α2(q)) = (α1α2, β1α2, γ1γ2)
ω =

(

(α1, β1, γ1) · (α2, β2, γ2)
)ω

,

where we use reverse-coherence n-many times in the equalities on the third line.
Therefore (WA, fA, PA) satisfies the coherence axiom.

Let Aut(W, f, P) = (XW , YW , qW , ρW , σW , ξW , FW). Suppose (W, f, P) sat-
isfies the circularity axiom and let va ∈ Σ+, k > 0. Then:

σW (ρW (qW , v), a) = (ffin(avrv))ω = (ffin(avrv) · ffin((avrv)k)ω =

= (ffin(a) · ffin(vrv(avrv)k)ω = σW (ρW (qW , (va)kv), a),

where we use the circularity axiom in the second equality. Hence Aut(W, f, P)
is reverse-circular. Now suppose (W, f, P) satisfies the coherence axiom and let
vba ∈ Σ+. Then:

σW (ρW (qW , vb), a) = (ffin(abvrv))ω = (ffin(a) · ffin(bvrv))ω =

= ffin(a)× (ffin(bvrv) · ffin(a))ω = ξW (σW (ρW (qW , av), b), a),

where we use the coherence axiom in the third equality. Hence Aut(W, f, P) is
reverse-coherent.

Proposition 12. A lasso automaton A is circular and coherent iff the extended
lasso semigroup (Alg ◦Rch ◦Rev)(A) is circular and coherent. Checking whether
a finite lasso semigroup (W fin,W inf) is circular and coherent can be done in time
O(n2) where n = |W fin|.

Proof. (⇒) follows from the well-definedness of Alg ◦ Rch ◦ Rev in Theorem 3.
(⇐): By contraposition, suppose A is not circular or not coherent. Then there
exists a state x in A such that Lasso(A, x) is not saturated (cf. [9, Fact 17]). Let
A′ be the automaton obtained from A by changing the initial state to x. Then
Lasso(A′) = Lasso(Alg ◦ Rch ◦ Rev(A′)) is not saturated, and hence it cannot
be both circular and coherent. But Alg ◦Rch ◦Rev(A′) and Alg ◦Rch ◦Rev(A)
differ only in the recognising set (recall [10, Chap.8] that Rev turns the initial
state into a set of final states), so Alg ◦ Rch ◦Rev(A) is also not circular or not
coherent.

Now, let (W fin,W inf) be a finite lasso semigroup, and let n = |W fin|. Co-
herence amounts to checking n2 equations. For circularity we need to check the
equation (sk)ω = sω for all s ∈ W fin and all k > 0. For fixed s ∈ W fin, the

26 A. Chernev et al.

sequence s1, s2, s3, . . . has at most n many distinct elements. Hence it suffices
to check that these at most n elements are all equal to sω. Hence circularity
requires checking for each s ∈ W fin at most n equations plus at most n lookups,
giving a total of at most n(n+ n) checks. Assuming lasso semigroup operations
can be evaluated in constant time, we obtain an overall complexity of O(n2).

If A is finite, then (Alg ◦Rch ◦Rev)(A) = (W fin,W inf) is finite. We provide a
double-exponential upper bound on |W fin| in terms of m = max(|X |, |Y |) where
X,Y are the state sets of A. To see this, let (Rch ◦Rev)(A) = (X ′, Y ′, . . .). The
reverse-determinise construction gives an exponential number of states in the
worst case, and the resulting automaton might be reachable. Hence |X ′|, |Y ′| ≤

2m. Now let (Alg ◦ Rch ◦ Rev)(A) = (W fin,W inf). Using that kk ≤ 2k
2

and

2(2
m)2 = 22

2m

, we get that n = |W fin| ≤ 23·2
2m

. Hence checking circularity and
coherence of A via Alg ◦ Rch ◦ Rev(A) has an upper bound in terms of m of

O((23·2
2m

)2) = O(26·2
2m

).

	Dual Adjunction Between Omega-Automata and Wilke Algebra Quotients

