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Estimation of landslide volume by machine 
learning and remote sensing techniques in Him-
alayan regions

Abstract Topographical and geological conditions are typically 
regarded as the primary causes of landslides. However, accurately 
estimating landslide volumes on rock slopes using empirical equa-
tions remains challenging. In contrast, data science approaches, 
such as machine learning, leverage advanced data integration and 
processing capabilities, significantly enhancing the accuracy and 
reliability of landslide volume estimations. As such, an resemble 
method, XGBoost, was chosen in our study to estimate the potential 
landslide volume in Gyirong, China. A factor combination was pro-
posed in this study. They are related to geomorphic (area of slope 
units (S) and mean elevation of slope units (El)) and geological 
(faults density (Fd) and geological index (GI)) conditions. The per-
formance of the developed model was compared with three other 
machine learning models, including gradient boosting (GBDT), 
adaptive boosting (AdaBoost) and random forest (RF) based on 
the mean absolute percentage error (MAPE) and determination 
of coefficient (R-squared). The results demonstrate that XGBoost 
achieves the highest prediction accuracy, with an R-squared value 
of 0.986, and a mean absolute percentage error (MAPE) reduces to 
8.19%. Additionally, the prediction outcomes of the machine learn-
ing model, using the proposed factor combination, were compared 
with several empirical models. Once again, XGBoost model exhib-
its the lowest error relative to measured values, highlighting the 
superiority of machine learning in landslide volume prediction 
and validating the effectiveness of the selected factors. Overall, the 
accurate estimation of landslide volume in remote areas can benefit 
the disaster management and decrease losses of human lives and 
properties.

Keywords Landslide volume estimation · Rock slopes · Machine 
learning model · Satellite images · Lithology

Introduction
Landslides can cause severe damage to infrastructure and loss of 
human lives due to the movement of vast quantities of rock down 
slopes under the influence of gravity (Lacasse et al. 2009; Zhao 
et al. 2024). Furthermore, the accumulation of crushed rock on 
slopes serves as a potential source of material for future debris 
flows (Blahut et al. 2010; Qiu et al. 2024), leading to secondary dam-
age to infrastructure and further degradation of the ecological 
environment. (Petrakov et al. 2007; Jomelli et al. 2015; Perov et al. 
2017). It was reported from the Center for Research on Epidemiol-
ogy of Disasters (CRED) that, all over the world, almost 17% of 
fatalities caused by natural disasters was caused by landslide. The 
mountainous areas are taking 36% of the earth land and over 10% 
of population that are still living in these areas (Gerrard 1990). 

It is still a challenge to provide an early warning for landslides 
to protect properties and lives and mitigate the loss (Singhroy 
2009). This is because landslide warning normally requires a bet-
ter understanding of the rock types and orientation of bed rocks 
(Guzzetti et al. 2009; Gaziev 2013). Furthermore, climate change in 
the past several decades (IPCC, 2013) leads to an increasing num-
bers of extreme weather event (O’Gorman 2015; Qiu et al. 2022), 
which also increased the occurrence frequency of landslide events 
(Kirschbaum and Adler 2013).

Accurate susceptibility maps of landslide can be helpful to pro-
vide timely warning for local people and therefore reduce casualties 
(Stanley and Kirschbaum 2017; Chen and Li 2020). The prediction 
of landslide volume is a crucial component and an essential sup-
plement to landslide risk assessment (Lacasse et al. 2009). How-
ever, accurately determining landslide volume is challenging, as it 
is closely related to the internal structure and geomorphic condi-
tions of rock slopes (Guzzetti et al. 2009). Empirical relationships 
between landslide areas (AL) and landslide volumes (VL) have been 
established by Imaizumi and Sidle (2007), Imaizumi et al. (2008), 
and Guzzetti et al. (2009) based on a large number of historical 
landslides across the world. Qiu et al. (2017) and Zhang et al. (2020) 
further optimised the proposed equations and improved prediction 
accuracy related to loess slides using the combination method of 
empirical model and remote sensing techniques. However, limi-
tations persist in using newly improved formulas to predict rock 
landslide volume, as the failure mechanisms of rock slopes differ 
significantly from those of soil slopes (Piteau and Peckover 1978). 
Due to the limitations from the traditional empirical method, in 
recent years, few studies focus on the improvement of the predic-
tion of landslide volume for rock slopes.

To address the limitations of empirical methods and enhance 
the accuracy of landslide volume prediction for rock slopes in 
mountainous regions, this study introduces machine learning 
as an innovative research approach. Through support vector 
machine (SVM) (Tien Bui et al. 2016), logistic regression (LR) 
(Budimir et al. 2015; Zhou et al. 2018), AdaBoost (Adaptive Boost-
ing) (Kadavi et al. 2018), and random forest (RF) (Youssef et al. 
2016; Arabameri et al. 2020) method, machine learning has been 
widely applied to landslide susceptibility analysis (Marjanović 
et al. 2011; Di et al., 2020) and risk assessment (Pourghasemi 
et al. 2018; Novellino et al. 2021). The application of machine 
learning models has demonstrated their superiority over empiri-
cal methods in hazard analysis (Rahmati et al. 2017). However, 
despite the advancements in machine learning, there has been 
limited progress in improving the prediction accuracy of land-
slide volume when considering geomorphic and geological 
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factors. Therefore, in this paper, geomorphic and geological fea-
tures extracted from 47 landslides in Gyirong were considered 
through the following steps.

(1) Generated slope units of identified landslides through 
DEM (resolution of 12.5 m and download on ASF Data Search 
(https:// search. asf. alaska. edu/#/)) using ArcGIS.

(2) Extracted values of generated units in relation to geomor-
phic, geological and ecological conditions.

(3) Further decided the controlling factors of landslide vol-
ume based on the correlation analysis between each factor and 
identified landslide volume using Person’s coefficient (r) and 
p-value.

(4) An ensemble model, XGBoost, was used to predict land-
slide volume.

(5) The boosting-related and bagging-related algorithms, 
AdaBoost, GBDT and RF, were introduced to evaluate the per-
formance of XGBoost based on MAPE (Mean Absolute Percent-
age Error) and R-squared values (Coefficient of Determination).

(6) The prediction results of machine learning model were 
compared with the outcomes of selected existing empirical 
equations.

Overall, the developed machine learning model in this paper 
can be used to predict landslide volume by considering geologi-
cal and geomorphic factors.

Characteristics of engineering geology in this area

Geological and geomorphic conditions in Gyirong
Gyirong was selected as the study area (Fig. 1), which is located in 
the southwestern region of Tibet. This area comprises six towns and 
spans a total area of approximately 9300  km2. The northern part of 
Gyirong falls within a semi-arid plateau climate zone characterised 
by seasonal winds, resulting in an annual average temperature of 2 
°C. The arid climate limits precipitation to 300–600 mm per year 
and contributes to the widespread presence of weathered rocks 
with low compressive and shear strength. As illustrated in Fig. 1, 
a total of 82 landslides were documented in the past 5 years. How-
ever, the precise volume of some landslides could not be accurately 
determined due to vegetation growth, water erosion and sediment 
migration. Consequently, 47 landslides were selected for analysis in 
this study. Notably, over 70% of the identified landslides occurred 
in the southern part of Gyirong, primarily due to abundant rainfall 
and fault activity, which have played a significant role in trigger-
ing landslides. However, the most critical factor influencing slope 
stability is the geological structure and lithology, as these deter-
mine the integrity of the internal slope structure and the location 
of potential sliding surface.

In terms of the characteristics of geological structure in this 
area, the collision and squeezing between Indian plate and Eurasian 
plate (Fig. 2) give birth to the Himalayas and also form a series of 

Fig. 1  Location of study area and its geological settings  (D3C1y: limestone, dolomite, quartz sandstone, and shale;  T3x: shale, slate, metasand-
stone, and quartz sandstone; CPG: clastic rock, tillite, slate, and conglomerate;  T1–3t: bioclastic rock, shale, and sandy limestone; Cj: diamicite 
and quartz sandstone;  K2zz: calcareous shale, siliceous shale, shale, and sandstone;  T3d: quartz sandstone and fine-grained conglomerate; 
Nŋγ: granite, plagioclase, and potash feldspar;  N2Qp1: glutenite, sandstone, clay rock, and conglomerate;  D2C1b: quartz sandstone, limestone, 
dolomite, and shale;  K1j: siliceous shale; OJ: limestone and siltstone;  os1J-h: carbonatite, calcareous siltstone, and shale;  S1z: sandstone and 
shale; Q: sediment, gravel, and rock fragment;  J3w: shale, quartz sandstone; AnZN: schist, gneiss, granulite, and migmatite;  J1–2n: limestone, 
arenaceous shale, and sandstone; ZϵR: quartz schist, slate, and phyllite; Ps: quartz sandstone, sandstone, siltstone;  J2–3 m: shale, sandstone, 
silty shale, siltstone)

https://search.asf.alaska.edu/
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large-scale faults (Fig. 1). These faults zones not only impact the 
trend and flow of rives but also control the development and distri-
bution of natural hazards. As a result, landslide frequently occurred 
in this area (Fig. 3). The studies of landslide in this area can ben-
efit the recognition and mitigation of landslide in the Himalayan 
regions.

In order to better clarify the geological conditions in this area, 
the rocks can be classified into four groups (Table 1) based on the 
material composition, geological structure, surface weathering 
degree and mechanical properties of exposed rocks and stratum.

The formation of landslides is influenced by geomorphologi-
cal and geological structures, stratigraphic lithology and various 

external driving forces. In general, geographic and geomorphic 
conditions determine the stress distribution on free surfaces, mak-
ing steep slopes and highly weathered slopes more susceptible to 
landslides. Additionally, lithology plays a crucial role in slope stabil-
ity. Variations in rock lithology influence the degree of weathering 
resistance, leading to differences in the formation of weathered 
residual slope deposits. Furthermore, factors such as fold mor-
phology, bedrock orientation and joint development significantly 
impact slope stability. Given these considerations, the correlations 
between rock structure development and landslide occurrence in 
this area are analysed in the “Correlation between lithology and 
happening of landslide” section.

Fig. 2  Geological location of study area in the Himalayas. The GPS data is from Wang and Shen. (2020), the Plate boundaries/Plate interface 
and historical earthquakes are from USGS (https:// www. usgs. gov/ media/ files/ plate- bound aries- kmz- file, https:// earth quake. usgs. gov/ earth 
quakes/ map)

Fig. 3  Identified landslide in Gyirong during field investigation

https://www.usgs.gov/media/files/plate-boundaries-kmz-file
https://earthquake.usgs.gov/earthquakes/map
https://earthquake.usgs.gov/earthquakes/map
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Correlation between lithology and occurrence of landslide

The correlation between the distribution characteristics of lithol-
ogy and landslide occurrence was further discussed in this section 
with the consideration of all the 82 identified landslides in Gyirong. 
Table 2 illustrates the litho-stratigraphic classes in this study area, 
in which.

Approximately 77.44% of lithology class in this area belongs 
to Mesozoic era, in which 31.26% is Cretaceous  (K2zz and  K1j) in 
the north part of this area, mainly tending direction of East–West 
(EW). The rocks of Cretaceous are mainly shale and sandstone 
interbedded with limestone. Shale has the characteristics of fra-
gility and erodibility. Therefore, the combined influence of strong 
eolian activity on the plateau surface and active fault movements 
has led to the settlement and accumulation of extensive deposits 
of crushed rock on the slopes. These accumulated rock fragments 
serve as a potential material source for slope debris flows, which 
can be triggered by water flow. However, there was no landslide 
observed in this region. This might be due to the formation of 
low mountains and hills with moderate slop, and moderate slope 
decreases the flow kinetic energy and prevents mass movement. 

Another reason behind this might be the existence of shale with 
limestone interlayer that benefits the stability of slopes and avoids 
the development of sliding surface. This is because the particles of 
limestone are closely packed and therefore result in high compac-
tion strength.

Furthermore, 14 landslides are identified in the period of Juras-
sic. The Jurassic era is mainly distributed in central part of this 
study area (see  J1–2N,  J2–3 m,  J3w in Fig. 1). Specifically, 6 landslides 
are distributed in the bedding slopes with the lithology of shale, 
sandstone, silty shale and siltstone interbedded with mudstone 
 (J1–2N). Mudstone is classified as a weak rock. Consequently, rain-
fall, combined with the compressive effects of fault activity, can 
contribute to the formation of sliding surfaces, finally triggering 
slope failures. During the Late Jurassic period, 8 landslides are iden-
tified in this area, which is predominantly covered by mudstone and 
siltstone  (J2–3 m). Due to the loose structure of mudstone and the 
widespread presence of bedding slopes, this geological formation 
exhibits extreme instability.

In addition to the period of Cretaceous and Jurassic, 55% of 
landslides are observed in the period of Middle Triassic to Late 
Triassic. The area is distributed in the south part with the lithology 

Table 1  Categories of engineering geology groups in Gyirong

Categories of engineering geology for rocks and soil Geological code Geomorphic unit Characteristics 
of engineering 
geology

Uniaxial 
compres-
sive 
strength

Soil and rocks Rocks Lithology Rock types

Granite, porphy-
ritic granite, 
siliceous rock 
and monzonitic 
granite

Solid rocks T3Xk
�
1

6
,�2
6

Mountains Compact struc-
ture and no 
weak interca-
lated layers; 
Slightly weath-
ered and joints 
developed

 > 60 Mpa

Limestone and 
sandstone

Soft rocks Oij,  O2, Ssh,  C2, 
 D1l,  D2–3dg, 
 C1,  P1,  T3x,  T3, 
 J3m, K

Mountains High shear 
strength, 
moderate 
weathered and 
primary joints 
developed

 > 30 Mpa

Phyllite, gneiss, 
quartz schist, 
slate, shale and 
marlstone

Weak rocks Anc1,  T3g,  J3l,  J1r Mountains Low shear 
strength, poor 
resistance to 
weathering; 
soften by water 
and collapse 
after losing 
water

 < 5 Mpa

Soil Alluvial deposit, 
sandy pebble 
soil, gravelly 
soil, fragmen-
tary breccia and 
stone soil

Multiple-layer soil Q Valleyside slopes Quaternary loose 
deposits, poor 
mechanical 
properties

\
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of schist, gneiss, granulite and migmatite  (AnZN). Unlike the failure 
mechanism of weak intercalated layers, schist and gneiss, though 
classified as metamorphic rocks, exhibit a lamellar structure with 
characteristics of low compressive and shear strength along the 
direction of the lamellar planes, making them more susceptible to 
deformation and failure.

Similarly, 7 landslides occurred in the period of Sinian, the 
lithology group is decided as quartz schist, slate, phyllite inter-
bedded with limestone and metasandstone (Z ∈ R). The primary 
vertical joint within the quartz schist and phyllite promoted the 
development of weak structural surface and finally can induce land-
slide. Moreover, 5 landslides are identified in the period of Late 

Table 2  Areal distribution of the litho-stratigraphic classes

Note: ‘Area’ in this table indicates the total area of each lithology class, and ‘Percentage’ demonstrates the ratio of area of each lithology class 
and the total area of this study region. The era of identified rocks ranges from Neoproterozoic to Cenozoic, which also indicates the complex 
geological activities and appropriate hazard-inducing environment

Era Period Lithology class Area/km2 Percentage/% Number 
of land-
slide

Cenozoic Quaternary Sediment, gravel, rock fragment 221.88 2.53 0

Cenozoic Tertiary Granite, plagioclase, potash feldspar 827.68 9.43 1

Cenozoic Pliocene to Pleistocene Glutenite, sandstone, clay rock, conglomerate 96.53 1.10 0

Mesozoic Early Cretaceous to Late Cretaceous Calcareous shale, siliceous shale, shale, sand-
stone interbedded with limestone

982.96 11.20 0

Mesozoic Early Cretaceous Siliceous shale interbedded with limestone and 
sandstone

1141.91 13.01 0

Mesozoic Late Jurassic Shale intercalated with quartz sandstone and 
interbedded with shale, siltstone

547.96 6.24 0

Mesozoic Late Jurassic Mudstone, siltstone interbedded with sand-
stone

898.82 10.24 8

Mesozoic Early Jurassic to
Middle Jurassic

Limestone, arenaceous shale, sandstone inter-
bedded with mudstone

667.99 7.61 6

Mesozoic Triassic Clastic rock, tillite, slate, conglomerate 116.57 1.33 0

Mesozoic Late Triassic Shale, slate, metasandstone, quartz sandstone 
interbedded with marlstone, siliceous rock

486.98 5.55 1

Mesozoic Late Triassic Quartz sandstone interbedded with fine-grained 
conglomerate and limestone

750.73 8.56 5

Proterozoic Middle Triassic to
Late Triassic

Schist, gneiss, granulite, migmatite 1045.4 11.91 45

Mesozoic Early Triassic to Late Triassic Bioclastic rock, shale, sandy limestone interbed-
ded with limestone, marlstone, siltstone

157.28 1.79 2

Late Paleozoic Middle Permian to
Late Permian

Quartz sandstone interbedded with shale; sand-
stone, siltstone interbedded with limestone

215.25 2.45 3

Late Paleozoic Early Carboniferous to Early Permian Diamictite interbedded with conglomerate, 
shale, slate;

Quartz sandstone

54.14 0.62 0

Late Paleozoic Early Carboniferous Limestone, dolomite, shale;
Quartz sandstone, shale

24.32 0.28 0

Late Paleozoic Middle Devonian to
Late Devonian,
Early Carboniferous

Quartz sandstone;
Limestone, dolomite, shale

108.30 1.23 2

Early Paleozoic Early Silurian Sandstone, shale interbedded with marlstone 96.10 1.10 0

Early Paleozoic Early Ordovician to
Late Ordovician

Limestone interbedded with calcareous 
siltstone

94.32 1.07 2

Early Paleozoic Early Ordovician to
Late Ordovician,
Late Ordovician

Carbonatite, calcareous siltstone, arenaceous 
shale

54.48 0.62 0

Paleozoic Cambrian and Sinian Quartz schist interbedded with phyllite 185.21 2.11 7
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Triassic with the lithology of quartz sandstone interbedded with 
fine-grained conglomerate and limestone  (T3d). A well-developed 
vertical joint structure in quartz sandstone creates natural channels 
for water flow. As a result, the long-term effects of down-cutting 
and erosion weaken the structural integrity of the rock, ultimately 
leading to landslides. As for the other identified landslides in period 
of Middle Permian to Late Permian, Middle Devonian and Early 
Ordovician to Late Ordovician, the existence of weak intercalated 
layer is the main cause. Rainfall softens the weak layers and there-
fore decreases the sliding resistance of sliding surface, inducing 
landslide.

Overall, this study area is situated in the central region of the 
Himalayas and features a diverse landscape, including plateaus, 
depressions and alpine valleys extending from north to south. The 
compressional forces between the Indian Plate and the Eurasian 
Plate have resulted in complex geomorphic and geological condi-
tions, which contribute to the occurrence of landslides. To predict 
potential landslide volumes, geological and geomorphic factors are 
analysed in the following sections, with a particular focus on the 
influence of lithology and rock orientation on landslide volume.

Methodology
In this paper, an ensemble machine learning algorithm, XGBoost, 
was applied to achieve the prediction of the potential accumulated 
volume of one landslide in Gyirong. After that, several methods, RF, 
GBDT and AdaBoost, were introduced to evaluate the performance 
of XGBoost in estimating the possible magnitude of landslide based 
on MAPE (Mean Absolute Percentage Error) and R-squared. The 
workflow in this paper is presented in Fig. 4.

The details of workflow comprise the following steps:
(1) Landslide identification.

The occurred landslides in the past five years were identified 
based on historical satellite images and field investigations, and the 
accumulated volume of one landslide was also decided.

(2) Generation of slope units.
There are five methods used for evaluation of slope stability 

(Guzzettie et al., 1999), including grid cell, terrain cell, unique-
condition unit, slope unit and topographic unit. The selection of 
evaluation unit is the foundation of regional evaluation of slope 
stability, which also decides the accuracy of prediction result of 
landslide magnitude. Indeed, grid unit (Apip et al. 2010; Muntohar 
and Liao 2009; Liao et al. 2011) and slope unit (Giles and Frank-
lin 1998; Xie et al. 2004) are two most widely used methods for 
landslide analysis, while grid cell units cannot provide accurate 
location of the potential landslide and reflect topographic features 
of slope failure when compared with slope units. Additionally, slope 
units can reflect the complete surface geometry of slopes which 
are prone to landslide and avoid difficulty in deciding landslide 
area due to vegetation coverage (Sun et al., 2020). Therefore, slope 
unit method is usually used for the prediction and evaluation of 
landslide (Alvioli et al. 2014).

As shown in Fig. 5, the slope units in this paper were extracted 
based on the ‘Hydrology’ tool in GIS. After that, the extracted units 
were imported into Google Earth for further revision to ensure the 
homogeneity of slop gradient and aspect within one slope unit. The 
part of final results of slope unit extraction were presented in Fig. 5.

(3) Controlling factors selection and correlation analysis.
A total of seven factors in relation to geomorphic, geological 

and ecological conditions were selected to predict the volume of 
potential landslide based on the identified 47 historical landslides 
in the past 5 years, including area of slope unit, mean curvature of 
slope unit, mean elevation of slope units, geological index, mean 

Fig. 4  Schematic flowchart of this study
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fault intensity of slope unit and mean NDVI (MODIS data (https:// 
modis. gsfc. nasa. gov/)) (see Table 3).

a)Geomorphic and ecological factors.
There were four factors selected in geomorphic group to indi-

cate the potential volume of landslide, including area of slope unit 
(S), mean slope gradient of slope unit (Sl), mean curvature of slope 
unit (Slc) and mean elevation of slope units (El).

The correlation between landslide area and volume had been 
indicated in Simonett (1967) and Hovious et al. (1997) even though 
landslide area in these papers represented total area of the failure 

and sediment. While in order to reflect the whole processes of initi-
ation, propagation and accumulation of landslide (Martinello et al. 
2021), the whole area of slope units was preferred in this paper to 
estimate the potential volume of landslide. Another topographic 
factor, mean slope gradient of slope unit (Sl), was used to reflect 
the surface fluctuation and roughness of slopes (Tanyaş et al. 2017) 
as well as mean curvature of slop units (Slc) (Tanyaş et al. 2019) 
since steep slope could cause serious gravity erosion and increase 
soil erosion intensity due to the high flow kinetic energy, which 
might decide the weak structural surface of slopes. Moreover, mean 
elevation of slope units (El) can reflect the degree of weathering 
for rocks since the higher altitude may result in greater weathering 
effects and generate more loose materials.

Normalised density vegetation index (NDVI), belonging to the 
ecological group, was used to represent the vegetation coverage in 
this area. The slope failure can be interpreted as the decreasing of 
effective stress within soil and the increasing of excess pore water 
pressure, while the roots could to some extent mitigate the failure 
process through anchoring and reinforcement effects. Vegetation 
roots can work as effective anchor to enhance the soil cohesion, 
and therefore increase shear strength of the composite soil and 
the safety factor can be increased by at least 8% (Ali et al., 2012). 
Therefore, the depth of vegetation roots can impact the locations 
of potential sliding surface and further result in the variation of 
landslide magnitude.

b) Geological factors.
Geological index (GI) in Table 4 was used to quantify the erodi-

bility of the exposed rocks based on (D’ Agostino and Marchi 2001). 
A slope with higher erodibility rocks could result in a larger volume 
of potential landslide when compared with slope with lower erod-
ibility rocks.

For basins entirely or almost entirely consisting of this lithology, 
a cautionary value of 0.5 is advised.

As for the impacts of faults movement on internal structure of 
rock slopes, fault density (Fd) in this paper was firstly proposed to 
reflect the structure stability of slopes and help to estimate poten-
tial landslide volume. As indicated in Fig. 1, there are two main 
faults crossing this area except the other several secondary faults, 
named Todan-Neira fault (F1) and Chimazun-Duoqingcuo fault 
(F2). The F1 separates the North Himalayan structural belt and the 
Higher Himalayan tectonic belt, presenting lithology of Sinian and 
Cambrian in the north part and Presinian in the south part. The 

Fig. 5  Division of slope units

Table 3  Selected factors which may impact the magnitude of landslide

Categories Factors Unit

Geomorphic factors Area of slope unit (S) km2

Mean slope gradient of slope unit (Sl) °

Mean curvature of slope unit (Slc) \

Mean elevation of slope units (El) m

Geological factors Geological index (GI) \

Fault density (Fd) \

Ecological factors Normalised Density Vegetation Index (NDVI) \

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
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main section of F1 leans to the north at a changing angle, rang-
ing from 10 to 65°. As a result, the active fault movement caused 
crushed rocks and fold belts due to intense and long-term com-
pression. While the invasion of granite, gneiss and white mica were 
observed in the south side because of the same geological activity. 
Additionally, the F2 fault stretches from north-west (NW) direction 
to near east–west (EW) direction gradually. Similarly, the main sec-
tion leans to the north at an angle between 30 and 50°, controlling 
lithology variation of marine sediment.

(4) Data normalisation and collinearity analysis.
In order to avoid overfitting when developing machine learning 

model, stability of input data is essential to decrease the possibil-
ity of local optimisation and minimise the impacts of noise data 
on final results. Therefore, collinearity analysis is essential for the 
selected seven factors before model training. The independent and 
dependent variables in Table 5 were rescaled into the range between 
0.01 and 0.99 based on the following equation (Lee et al. 2021):

where xnor represents the normalised value and x is the original 
value. U and L represent the upper and lower normalisation bounds, 
respectively. After the completion of data normalisation, correlation 
analysis between each controlling factor and volume was conducted 
to investigate the impact of these indicators on landslide volume 
based on Pearson’s coefficient (r) and p-value using SPSS statistics 
software.

Pearson’s coefficient was used to describe the linear relation-
ship between input data and landslide volume so as to exclude the 
factors that may exhibit a weak correlation with landslide volume. 
This is because the effect of introducing noise may outweigh their 
contributions to model development when these factors are incor-
porated into model training. As for the employment of p-value (p < 
0.05) in this study, this index excels in investigating the signifi-
cance between dependent and independent variables. In detail, a 
low p-value (p > 0.05) indicates that the correlation is statistically 
significant. However, a high p-value implies insufficient evidence 
to reject the null hypothesis of no correlation, which suggests that 
the observed correlation might be random correlations. Therefore, 
the coupled usage of r and p-value can ensure that the observed 

(1)xnor =
x −min (x)

max (x) −min (x)
(U − L) + L

Table 4  Lithology classes and geological index

Lithology class GI 
value

Quaternary deposits 5

Schists and phyllites 4

Marls, marly limestone, siltstones, etc 3

Volcaniclastic rocks 2

Dolomite and limestone rocks 1

Massive igneous and metamorphic rocks 0

Intensely fractured and weathered rocks for all litholo-
gies

3–5

Table 5  Collected data of the controlling factors

No S/km2 Fd GI El/m V/104m3

1 0.3411 0.1276 3.5 4770 3.9

2 0.3096 0.1140 3.5 4712 3.1

3 0.0832 0.0866 3.5 3998 0.8

4 0.4031 0.1535 3.5 4212 5.6

5 0.1483 0.0328 3.5 5028 1.5

6 0.2125 0.0831 4.5 4624 2

7 0.3681 0.1808 4.5 4768 5.3

8 0.0927 0.0988 3.5 5162 0.8

9 0.3844 0.1664 3.5 5014 5

10 0.0842 0.0968 3.5 4740 0.5

11 0.2383 0.1125 0.5 4028 2.1

12 0.7459 0.1299 4.5 4130 7.5

13 0.0738 0.0923 0.5 3629 0.5

14 0.1242 0.0887 0.5 3653 0.66

15 0.4956 0.0834 0.5 3718 3.6

16 0.2328 0.0611 0.5 3578 2.24

17 0.1407 0.0404 0.5 2993 1.344

18 0.0612 0.0382 0 2876 0.225

19 0.2189 0.0409 0.5 3100 2.052

20 0.0410 0.0387 0.5 3341 0.1

21 0.0850 0.0307 0.5 2539 0.5

22 0.0558 0.0304 0.5 2619 0.25

23 0.1010 0.0287 4.5 2526 0.535

24 0.1100 0.0194 0.5 2292 0.3

25 0.0453 0.0179 0.5 2219 0.1

26 0.2499 0.0196 0.5 3004 2.5

27 0.1636 0.0174 0.5 2282 1.5

28 0.0923 0.0154 0.5 2077 0.6

29 0.5954 0.0155 0.5 2175 0.75

30 0.0708 0.0154 0.5 2121 0.66

31 0.0849 0.0157 0.5 2131 0.5

32 0.1554 0.0157 0.5 2259 1.1

33 0.0813 0.0281 0.5 3057 0.5

34 0.3756 0.0295 0.5 3223 5

35 0.0412 0.0368 0.5 3319 0.15

36 0.0248 0.0369 0.5 3184 0.34

37 0.0433 0.0389 0.5 3130 0.25
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correlation between variable is both strongly correlated and sta-
tistically significant.

(5) Model training, validation and testing.
The normalised data in step (4) was randomly separated into 

training set and testing set by a ratio of 7:3. The XGBoost model 
was developed based on the training set, and then testing set was 
applied to test the prediction accuracy of this model. Due to lack-
ing independent testing dataset, the original data was inherently 
resampled to evaluate the performance of model, which was also 
a widely used method when developing machine learning model. 
Additionally, the tuning parameters of XGBoost were optimised 
through GridSearch by using K-fold cross-validation (Novellino 
et al. 2021). The initial data was usually assigned to K partitions 
with equal size. Then, one of the partitions was selected randomly 
to be labeled as testing set and the other K−1 partitions were used 
for model training. Each of the partitions was labeled once to serve 
as testing set. As a result, the average result was exported as the final 
output after K times cross-validation. Finally, the optimal param-
eters were used to develop the best training model to generate pre-
diction results. The overall regression mechanism of XGBoost was 
presented in the Appendix.

(6) Model assessment and validation.
The generation of prediction results using XGBoost method 

relies on the stability of the input data and also the hyper-param-
eters, such as ‘learning_rate’, ‘max_depth’, ‘min_child_weight’ and 
‘n_estimators’, MAPE and R-squared were selected to evaluate the 
performance of this model. Meanwhile, the other three regression 
methods, RF, GBDT and AdaBoost, were introduced to conduct 
comparative analysis.

MAPE and R-squared are two widely used approaches to detect 
the errors between prediction and true values and evaluate the per-
formance of model, in which MAPE can be calculated as:

where ŷi represents the prediction value and yi is the true value. n 
indicates the number of prediction results. MAPE ranges from 0 to 

(2)MAPE =
100%

n

n∑

i=1

|||||

ŷi − yi
yi

|||||

positive infinity and a better model is indicated if MAPE is closer to 
0. Apart from the MAPE which reflects both the error between pre-
diction and true values, R-squared was used to evaluate the training 
model. It can be demonstrated as:

where ŷi and yi represent the prediction and true values, respec-
tively. yi  is the mean value of all the true values. Therefore, 
R-squared reflects the error between the developed model and 
baseline model, which means that a better model is developed 
when R-squared is close 1 and even equal to 1. Finally, the predic-
tion results of training model in step (5) were compared with other 
empirical equations and regression models.

Result analysis

Results of correlation analysis
As indicated in Fig. 6, the seven scatter diagrams demonstrate the 
correlations between the selected factors and landslide volume. 
Area of slope units (S) shows strong correlation with landslide 
volume (V) based on Person’s coefficient (r) and Determination 
Coefficient (R2). It means that the slope units with large area are 
more likely to result in large-scale landslide. Apart from the area 
of slope units, fault density (Fd), mean elevation of slope units (El) 
and geological index (GI) also present strong correlation with land-
slide volume (V) because r values of the three factors were all larger 
than 0.5. The p-values of all four factors are smaller than 0.01, which 
demonstrates the significance between these factors and landslide 
volume. However, the other three factors, mean NDVI, mean slope 
gradient of slope units (Sl) and mean curvature of slope units (Slc), 
show weak correlation with landslide volume since the r values of 
them were all smaller than 0.4. Therefore, NDVI, Sl and Slc were 
excluded from prediction of landslide volume. The four factors, S, 
Fd, El and GI, were finally decided for model training.

Establishment of dataset

As illustrated in the above section that S, Fd, El and GI were decided 
as input data for model traning and part of the collected data is 
presented in following Table 5.

Furthermore, the distribution frequency of landslides is pre-
sented in Fig. 7 based on the collected data, which demonstrated the 
landslide-inducing environment in this area. The same percentage 
of number of landslides was identified with the S ranging from 
0.0355 to 0.0525 and 0.0695 to 0.0865  km2, reaching 17%, while the 
high faults density failed to increase the occurrence frequency of 
landslide according to Fig. 7b. Instead, 26% of occurred landslide 
concentrated around to the Fd of 0.037. This is because these land-
slides were mostly located in the south part of this area with abun-
dant rainfall which triggered the happening of landslide. Unlike 
the distribution characteristics of S and Fd, El showed a relatively 
even distribution that the mean elevation of 57% slope units was 
observed from 2040 to 3240 m. Nevertheless, typical concentrated 
distribution was found in Fig. 7d, which indicated the relatively 

(3)R2 = 1 −

n∑

i=1

�
ŷi − yi

�2

n∑

i=1

�
yi − yi

�2

Table 5  (continued)

No S/km2 Fd GI El/m V/104m3

38 0.0430 0.0397 0.5 2784 0.12

39 0.0665 0.0398 0.5 2690 0.32

40 0.0514 0.0375 0.5 2056 0.19

41 0.0403 0.0372 0.5 1943 0.17

42 0.0346 0.0362 0.5 1721 0.12

43 0.0315 0.0357 0.5 1848 0.1

44 0.0728 0.0334 0.5 2655 0.4

45 0.0225 0.0368 0.5 3214 0.34

46 0.3486 0.0389 0.5 2282 3.8

47 0.0406 0.0361 0.5 1888 0.21
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high erodibility of the rocks in this area because of the effect of 
water erosion and faults movement.

Prediction results of machine learning

The four models, XGBoost, GBDT, AdaBoost and RF, were devel-
oped using Python within the PyCharm editing environment, 
based on the selected four controlling factors. The optimisation 
of XGBoost’s hyperparameters was performed through a grid 
search with five-fold cross-validation, enabling the determination 
of optimal values for learning_rate, max_depth and n_estima-
tors. Meanwhile, the same method was used to decide the optimal 
parameters of the other three models. The evaluation results are 

presented in Fig. 8. XGBoost achieves the smallest MAPE, 8.19%, 
and highest R-squared, 0.986, followed by GBDT which achieves 
MAPE of 16.87% and R-squared of 0.931. Moreover, RF ranks the 
third place when evaluating the performance of landslide volume 
prediction. The MAPE is found to be 24.38% and the R-squared is 
0.907. There is no significant difference observed in R-squared for 
the three models, which means that the three models all perform 
well in model training. But the MAPE values of GBDT and RF indi-
cate the poor generalisation ability of the two models when com-
pared with XGBoost. Finally, AdaBoost achieves the highest MAPE 
and lowest R-squared, 27.6% and 0.764, respectively. Therefore, the 
XGBoost method proves its superiority in accuracy improvement, 
avoiding overfitting and enhancement of the generalisation ability 

(

(c) Correlation between El and V

(a) Correlation between S and V (b) Correlation between Fd and V

(d) Correlation between GI and V

Fig. 6  Collinearity analysis between each controlling factor and landslide volume. (‘S’ represents area of slope units, ‘Fd’ represents the mean 
fault density of slope units, ‘El’ represents mean elevation of slope units, ‘GI’ is the geological index, ‘NDVI’ is normalised density vegetation 
index, ‘Sl’ is mean slope gradient of slope units, ‘Slc’ represents the mean curvature of slope units)
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when compared with other boosting-related and bagging-related 
algorithms.

Further investigations are considered here to reflect the con-
tributions of these factors in improving prediction accuracy and 
model development. As indicated in MAPE of Fig. 9, significant 
decline of MAPE can be achieved after the integration of fault den-
sity (Fd), lowering to 13.86%. Another remarkable reduction, 5.67%, 
is observed after the involvement of mean elevation of slope units 
(El) and geological index (GI), finally achieving a MAPE of 8.19%. 
As for the change of R-squared, distinct rise of 0.155 is observed 
when integrating both area of slope units (S) and fault density (Fd) 
into model training. Then, slight increase is achieved after the mean 
elevation of slope units (El) and geological index (GI) are involved 
into XGBoost, ultimately reaching 0.986. Moreover, in order to 
present the superiority of machine learning method in predicting 

landslide volume of rock slopes and selection of indicators in this 
paper, several empirical methods and regression model are intro-
duced in next section to conduct comparison analysis between 
these methods.

Prediction comparisons with other empirical and regression 
methods

Numerous studies have examined the relationship between land-
slide area (AL) and landslide volume (VL) using historical landslide 
data, leading to the development of various semi-empirical equa-
tions for estimating potential landslide volume. In this section, sev-
eral empirical equations (Table 6) are introduced to further assess 
the model’s performance in this study, considering the selected fac-
tors in relation to geomorphic and geological conditions.

(e) Correlation between NDVI and V (f) Correlation between Sl and V

(g) Correlation between Slc and V

Fig. 6  (continued)
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The comparison results between these methods are showed 
in Fig. 10. A slight overestimation is observed in the fitting curve 
of the predicted landslide volume compared to the measured 
landslide volume. However, among the methods evaluated, the 
machine learning approach demonstrates the best performance, 
as its regression results exhibit the lowest error relative to the 
measured landslide volume. In the case of a given rock slope, 
landslides can be triggered by factors such as earthquakes, rain-
fall and snowmelt (Guzzetti et al. 2009). The potential landslide 
volume is primarily influenced by geomorphic and geological 
conditions, which determine rock detachment and fracturing. 
While the affected area provides an indication of the surface 
extent of landslides, incorporating additional geological factors 
can further enhance prediction accuracy.

Discussion and limitations
The machine learning model has been demonstrated to outper-
form existing empirical formulas in predicting landslide volume 
for rock slopes. This improvement is attributed to the integration 
of a greater number of controlling factors into the model, without 
relying on simplifying assumptions in the analytical process. As 
indicated in the above analysis, the landslide area is widely used as 
indicator to estimate the landslide magnitude, but the lithology and 
orientation of rocks cannot be ignored if accurate landslide volume 
is expected because the understanding of the lithology and orienta-
tion of rocks can benefit the determination of the possible thick-
ness of slide mass. Additionally, geological activities, such as fault 
movements, further weaken the internal structure of rock slopes, 
indirectly influencing the volume of the slide mass. More critically, 

(a) Distribution frequency of S

(c) Distribution frequency of El 

(b) Distribution frequency of Fd 

(d) Distribution of frequency of GI 

Fig. 7  Frequency count of selected factors
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this study area is located in the Middle Himalayas, a region charac-
terised by frequent geotectonic activity, which further exacerbates 
slope instability. As a consequence, landslide frequently occurred 
with magnitude mainly smaller than  104  m3. Therefore, the limita-
tion of landslide volume prediction in this paper may appear that 
this developed model can achieve high accuracy in predicting the 
landslide magnitude ranging from  103 to  104  m3, while the volume 
prediction of medium  (105–106) and large size  (106–107) landslide 
needs further investigations. Moreover, although an optimal com-
bination of factors was proposed in this study to enhance volume 
prediction, other factors not included in the model, such as rainfall 
and seismic intensity, can also influence landslide magnitude in 
individual events. Despite certain limitations of the machine learn-
ing approach, the developed model significantly improves predic-
tion accuracy and facilitates timely warnings for local communities. 

Furthermore, this research highlights the effectiveness of machine 
learning as an initial estimation tool for assessing potential land-
slide volume in rock slopes.

Conclusion
In conclusion, this study evaluates the effectiveness of machine 
learning in predicting landslide volume based on the proposed 
combination of controlling factors for rock slopes in Gyirong, 
China. The prediction is carried out through the following key 
steps: (1) identifying historical landslides from the past five years 
using remote sensing imagery and field investigations, (2) selecting 
controlling factors and constructing a dataset, (3) performing col-
linearity analysis to assess the correlations between each factor and 
landslide volume, (4) developing the model using normalised data, 
followed by testing and validation to evaluate its performance, and 
(5) comparing the machine learning model with empirical equa-
tions to assess its predictive accuracy.

A total of 82 landslides were identified in this area, of which 47 
were used for landslide volume prediction. The remaining landslides 
were excluded due to the inability to estimate their volume, as plant 
growth and long-term water erosion have obscured their original 
features. Based on the landslide identification results, seven factors 
related to geomorphic, geological and ecological conditions were 
selected for landslide volume estimation. However, collinearity analy-
sis using Pearson’s coefficient (r) and p-value reveals that only four 

Fig. 8  Performance of different ML models in predicting landslide 
volume

Fig. 9  Factors contributions in improvement of volume prediction

Table 6  Empirical methods in the past studies

No Equation Source

1 V
L
= 0.074 × A

1.45

L
Guzzetti et al. (2009)

2 V
L
= 0.19 × A

1.19

L
Imaizumi et al. (2008)

3 V
L
= 0.39 × A

1.31

L
Imaizumi and Sidle (2007)
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of these factors exhibit a strong correlation with landslide volume, 
including area of slope units (S), mean elevation of slope units (El), 
faults density (Fd) and geological index (GI). After that, the extracted 
data is divided into a training set and a testing set to develop the 
XGBoost, GBDT, AdaBoost and RF models. The testing set is then used 
to evaluate the models’ predictive performance based on Mean Abso-
lute Percentage Error (MAPE) and R-squared  (R2) values. The results 
demonstrate that XGBoost achieves the highest R2 value (0.986) and 
the lowest MAPE (8.19%), indicating its superior performance. Fur-
thermore, several empirical equations are introduced to assess the 
effectiveness of the XGBoost model, and the results confirm that it 
achieves the lowest prediction error. Lastly, the distribution charac-
teristics of landslides and litho-stratigraphic classes are analysed to 
examine the influence of lithology and rock further enhance predic-
tion accuracy.
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Appendix
The regression mechanism of XGBoost was described as:

(4)ŷi
(t)

=

t∑

k=1

fx
(
xi
)
= ŷi

(t−1)
+ ft

(
xi
)

where ŷi
(t) represents the prediction result of sample i after tth itera-

tion, and ŷi
(t−1) is the addition of the prediction result for all the 

(t-1) decision trees. ft
(
xi
)
 represents the function of the tth tree. In 

order to obtain the overall model, the function of each iteration 
should be developed firstly and then the overall model can be pro-
duced through the addition of all the functions. Therefore, first of 
all, the loss function can be demonstrated by:

where n is the quantity of samples. ŷi and yi represent prediction 
value and true value respectively. The prediction accuracy of model 
is decided based on the deviation value and variance value, in which 
the former is represented by the loss function. Meanwhile, the vari-
ance value should be as small as possible to ensure the prediction 
accuracy. Therefore, the regularisation term is added to the loss 
function in order to avoid overfitting and improve prediction 
accuracy:

where Obj represents the target function, 
t∑

i=1

Ω
�
fi
�
 is the regularisa-

tion term. Substituting Eq. (2) into Eq. (4):

where 
t−1∑

i=1

Ω
�
fi
�
 can be regarded as a constant since all of the (t-1) 

trees have been decided. The only unknown term in this equation 
is Ω

(
ft
)
 . Finally, Taylor’s expansion is introduced to Eq. (7):

where Obj(t) represents the overall model.
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Fig. 10  Comparison of volume estimation of landslide for rock 
slopes by different methods
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