1	Dynamic dual-layer network resilience
2	assessment as a system architecting tool
3 4	Giota Paparistodimou ¹
5	BAE Systems
6	Research and Technology, 1471 South Street, Scotstoun, Glasgow, G14 0XN
7 8	giota.paparistodimou@baesystems.com
9	Philip Knight
10	University of Strathclyde
11	16 Richmond Street, Glasgow G1 1XQ
12	p.a.knight@strath.ac.uk
13	
14	Malcolm Robb
15	BAE Systems
16 17	Research and Technology, 1471 South Street, Scotstoun, Glasgow, G14 0XN
17 18	Malcolm.Robb@baesystems.com
19	Gail Hughes
20	BAE Systems
21	Research and Technology, 1471 South Street, Scotstoun, Glasgow, G14 0XN
22	gail.hughes@baesystems.com
23	
24	
25 26	ABSTRACT
27	Modern complex systems should be resiliently designed to enable recovery in a variety of expected or
28	unexpected environments. Resilience is defined as the ability to withstand and recover from disruptive
29	events. The objective of developing resilient systems drives the need of analysis tools to guide the system
30	architecture process. There is a need for the creation of resilience tools that are time-based and are
31	applicable for the system architecture process. The larger literature offers a variety of methods and
32	quantitative metrics for assessing resilience. Still, there is a lack of system architecting tools that focus on

33 assessing the resilience of system architecture options considering the dual nature of the system's physical

¹ <u>giota.paparistodimou@baesystems.com</u> Corresponding author information can be added as a footnote.

34	and functional aspects while taking into account the design of redundancy into the system's recoverability
35	behavior. To bridge this gap, this paper proposes a dynamic network-based resilience assessment method
36	that models systems as a dual layer functional and physical network. The method, which has been
37	developed into a computational tool, generates a measure of resilience that serves as a quantitative
38	evaluation indicator during system architecting. As a case study, the method is applied to eight power and
39	propulsion system architecture options. The findings demonstrate that, even before a system architecture
40	has matured, the tool supports informed decision-making, for example in terms of measuring the
41	effectiveness of redundancy introduced to improve resilience, as well as early detection of system
42	vulnerabilities.
43 44 45	SECTION 1: INTRODUCTION
46	Factors driving the need to design resilient systems include the growth in the
47	scale and complexity of systems, the unpredictable nature of future threats and the
48	drive for automated systems. As systems grow in complexity and sophistication, they
49	become more unpredictable due to emerging behavior caused by interactions between
50	interwoven parts [1], making resilience design and analysis an important and
51	challenging task. The type and extent of future disruptions and their impact on the
52	physical and functional aspects of systems becomes more difficult to forecast and
53	analyze due to increasing unpredictability of the future threats and the essential
54	complexity of the modern systems. The focus on designing autonomous systems
55	necessitates the designing of resilient systems, as autonomous systems must be
56	architecturally intrinsically resilient to withstand or recover from any anticipated or
57	unforeseen disruption (relying less on humans to actuate a recovery from disruption).

58	These factors make the resilience concept central during the system architecture
59	process, illustrating the importance of carefully analyzing their effects and a system's
60	post-disruption recovery behavior driven by the complex architecture of the system. As
61	redundancy is a common means of improving robustness and resilience, the appropriate
62	level of redundancy and the appropriate type of redundancy that enable improved
63	recoverability behavior post disruption become pertinent to the concept of resilience
64	during the system architecture process. This underlines the significance of considering
65	resilience of the system analytically and dynamically during the system architecture
66	process to determine the most appropriate system architectural option and mitigate
67	architectural vulnerabilities and to improve resilience inherently.
68	Much emphasis has been on developing resilient systems capable of maintaining
69	or replenishing capabilities to address the challenges of predicting and preventing future
70	disruptive events[2]. Resilience characterizes the ability to withstand disruptive events
71	and to recover, and the wider literature offers various metrics and quantitative
72	approaches to assess and develop resilient systems [3,4]. Methods and tools to support
73	the assessment of alternative system architectures, particularly in early design, could be
74	valuable in assisting informed decision making. Even though resilience of complex
75	systems is a well-studied topic, assessment methods applicable to the early-stage design
76	of systems that consider the dual physical and functional nature of systems and
77	combined a recoverability analysis driven by the design of redundancy were not
78	identified in the literature. This paper proposes a dynamic network-based method to
79	cover this gap.

80	The proposed method evaluates the resilience of alternative system architecture
81	options. A resilient system is defined as one where performance does not fall below a
82	minimum criterion and that recovers to satisfactory performance within an acceptable
83	restoration time post-disruption. The method described herein models a system
84	architecture option as a dual layer functional and spatial network. The functional
85	network represents the functional flows (for example energy, fluid, or information) of
86	the components and the physical network catalogues their physical location in the
87	system's spatial dimensions. In the functional network, components are classified as
88	operational (live at the instant prior to disruption) or standby/redundant (off prior to
89	disruption but ready to start up post-disruption). The model allows all components to
90	have a user-defined time to start up, which is utilized when standby components are
91	starting up after a disruption. The method can systematically simulate different
92	combinations of physical disruptions. After a disruption, the recovery process is
93	initialized and actuated step-by-step according to a user-defined recovery strategy that
94	automatically starts up standby components based on the component-specific start up
95	times. The resilience is measured using two criteria: whether satisfactory performance is
96	reached within an acceptable recovery time, and whether a minimum post-disruption
97	performance level is always met.
98	The case study presented demonstrates the method's application to eight ship
99	system options (Section 4). For each system architecture option, the method generates

100 a resilience metric that allows for comparison and evaluation. It also provides

system options (Section 4). For each system architecture option, the method generates

101 information about the design of a recovery strategy. The method identifies the

102 disruption events that result in zero resilience and, by evaluating such events, design

103 improvements can be made.

104	The findings of the case study demonstrate the importance of carefully assessing
105	the effectiveness of various types and levels of redundancy for recoverability, as well as
106	identifying physical and functional system vulnerabilities at an early stage. The method
107	is useful because it can provide quick insights during the system architecture process
108	before the architecture matures and can assist in decision making when critical
109	decisions must be made. Stakeholders can use the method to evaluate various system
110	options and choose the preferred type of redundancy; physical and functional system
111	architecture; and system recovery strategies.
112	The article is organized as follows: Section 2 offers a background literature
113	review; Section 3 presents the proposed dynamic dual-layer network resilience
114	assessment method; Section 4 presents the case study; Section 5 presents and discusses
115	the results and explains their significance; and Section 6 outlines limitations, future
116	research and conclusions.
117 118 119	SECTION 2: BACKGROUND LITERATURE
120	Definitions of resilience
121	
122	various definitions of resilience are found in the wider literature. Resilience is
123	defined as "how a system rebounds from disrupting or traumatic events and returns to

- 124 previous or normal activities"[5]. Similarly, resilience is explained as a "capability of a
- 125 system to maintain its function and structure in the face of internal and external change

126	and to degrade gracefully when it must" [6], and is a measure of "a system's ability to
127	absorb continuous and unpredictable change and still maintain its vital functions" [7]. In
128	addition, resilience is described as the "ability of a system to withstand a major
129	disruption within acceptable degradation parameters and to recover with a suitable
130	time and reasonable costs and risks" [8]. Resilience focusses on the "inherent ability of
131	systems to absorb the effects of a disruption to their performance, referring to
132	preparedness activities, and more recent definitions also account for the recovery of
133	their performance" [4]. In quantitative terms, resilience is defined as the "ratio of
134	recovery at time t to loss suffered by the system at some previous point in time t_d " [3] or
135	as the chance that the initial system performance loss after a disruption is less than the
136	maximum acceptable performance loss, and the time to complete recovery is less than
137	the maximum acceptable disruption time [9].
138	These definitions highlight key aspects of resilience, such as it being a time-based
139	dynamic property of systems[10,11], exhibiting manageable degradation after
140	disruption[5], and relating to major (and potentially unpredictable) disruptions[12]. The
141	notion of resilience, in terms of preserving and restoring important system functions
142	following disruptions, is highlighted. Overall recovery/rebound, absorption,
143	improvement, graceful degradation/extensibility, minimal deterioration, sustained
144	adaptability, and survival are aspects of resilience that are mentioned in the literature.
145	[5,13]
146	Generally, resilience is based on a "system level delivery function or figure-of-

147 merit" [3] enabling the system performance to be calculated prior, during and post

148	disruption. In addition, resilience measures frequently evaluate the performance of a
149	system before and after a disruption [4]. In the resilience literature there are a wide
150	range of performance objective variables that are aimed to be either minimized,
151	preserved or maximized; however typically resilience metrics use performance variables
152	that maximize or restore the system function to normal operations or acceptable level
153	post disruption[13].
154 155	Wider literature on resilience methods Literature reviews on resilience metrics and methods for engineering systems
156	[4,14–17] provide a comprehensive background to better appreciate the methods
157	available in the field.
158	In the literature [4] quantitative resilience assessment approaches are
159	categorized into: general measures (deterministic, probabilistic, dynamic, static) and
160	structural-based models (optimization, simulation and fuzzy logic models).
161	Deterministic resilience methods do not consider uncertainty as part of the
162	resilience metric, while probabilistic capture the stochasticity associated with the
163	system behavior[4]. For example, a deterministic resilience method that is time-
164	dependent such as [3] measures resilience as the ratio of recovery to loss, by measuring
165	the performance at time steps key for resilience (stable original state, disrupted state,
166	stable recovered state). Resilience time-based method such as [23] that introduced a
167	quantitative approach evaluating critical functionality over time, demonstrating how
168	resilience and robustness can be achieved by trading off design parameters.

169	Probabilistic approaches can be used to calculate resilience, for example the
170	probability of full recovery within an acceptable time in terms of the scale of the initial
171	performance loss [18]. More examples of probabilistic approaches are of [19,20] that
172	that proposed a Bayesian networks method for modelling and predicting the resilience
173	of engineering system under various disruptions.

174 Structural-based optimization approaches focus on analyzing the system 175 topology. [21] developed a method to optimize the network recovery by identifying 176 optimal recovery modes and sequences. An example of a simulation-based approach is 177 of [22] that uses topology generation simulation to analyze resilience by assessing the 178 network ability to provide the required service level under large-scale and significant 179 failures.

In general, the limitation of the non-structural driven methods is that they assess resilience by assessing the performance of the system irrespective of the structure of the system and system-specific features. Performance-based resilience models are "based on the set of physics equations that govern the dynamics of the system"[16]. In contrast, structural-based approaches assess the structure driven resilience, and examined how the resilience behavior is driven by the changes in the structure of the system.[16].

187 The method proposed in this research article adds to the stream of structural-188 graph/network-based methods for resilience assessment while also investigating the 189 effects of redundancy on recovery and assessing resilience; thus, the following 190 paragraphs review areas relevant to this work contribution.

191 192	Graph/network theory and multilayer networks approaches for resilience
193	Research has explored graph-theoretic approaches for enhancing resilience in
194	complex engineered systems. Graph/network theory approaches are structurally driven
195	methodologies that analyze how the system's topology impacts resilience.
196	[23]proposed a graph spectral method to calculate system resilience and
197	identify vulnerable components. [24]compared different graph-theoretic metrics for
198	resilient System of Systems design, identifying density, modularity, and vulnerability
199	among others as metrics that might be employed as early-stage design tools. [25]
200	proposed a complex network framework for assessment of systems of systems
201	robustness based on single and multi-layer networks using algebraic connectivity,
202	inverse average path length, and largest connected component size as measures of
203	robustness. These studies highlight the graph/network metrics ability to support early
204	concept stage studies due to their efficiency to assess alternatives. However, these
205	graph/network-based methods do not consider the network recovery driven on the
206	redundancy designed in the network.
207	[26] presented a graph learning-based generative design method for resilient
208	interdependent network systems, combining a performance estimator and candidate
209	design generator to efficiently create robust designs. These studies reinforce the ability
210	of graph/network theory in evaluating and improving system resilience, particularly in
211	early design stages, without requiring detailed performance simulations [24,26].
212	Multilayer network models are increasingly used to analyze resilience in complex
213	engineering systems. These models can represent interdependencies between different

214	aspects of the system aiding assessment of system resilience. Various methods have
215	been employed, with percolation theory being the most common approach[27]. Multi-
216	layer methods have been identified in the literature such as for communication systems
217	[28,29], for infrastructure systems[30–32] and for cyber physical systems and power
218	grids [33–35]. However, these methods are not tailored for use for resilience
219	assessment purposes in the early stages of design and do not consider the alternative
220	design of redundancy on the recovery.
221	Network-based vulnerability analysis methods for early design stages in the field

of naval engineering have also been proposed [36,37]. In particular,[36] proposed a multilayer network method using bipartite networks and their duals to model the physical and logical systems on a ship. This method has the advantage of detecting vulnerabilities that would otherwise go undetected if the functional and physical networks were examined independently. However, these method analysis does not dynamically consider post-disruption behavior of the system and does not analyze the effects of redundancy.

After a disruption, the behavior of a system performance fluctuates over time as the system reconfigures. It is acknowledged that "addition of dynamics to the network could prove useful in identifying other types of weakness in a design that can further inform naval decision makers" [37]. The need for dynamic analysis points to the need to examine the resilience of the systems by methods that captures the time-based behavior of the system.

235	In the wider network science literature, the concept of time-varying or temporal
236	networks is suggested[38,39]. A temporal network can be simulated using a series of
237	static network snapshots [39]. The network literature offers measures on assessing the
238	robustness of temporal networks [40], aiding the efforts of analysis of the time-varying
239	networks. This research paper utilizes concepts from multilayer time-varying network
240	modelling to develop a methodology and a design tool that is appropriate for the early
241	design stage, filling a gap in the literature that currently does not assess resilience in
242	respect to the redundancy design for recoverability during the early system design
243	stage.
244	
245 246	Designing redundancy for resilience Redundancy plays a crucial role in enhancing system resilience across various
247	domains. In safety systems, redundancy is identified as a key source of resilient
248	properties [41]. [42] explained that in systems engineering "redundancy discussions
249	tend to centre around which components to make redundant, how much redundancy
250	there should be, and what form the redundancy should take".
251	[43,44]proposed methods to address failure interactions in both binary and
252	multistate systems, introducing a Modified Analytic Hierarchy Process and semi-Markov
253	process models, respectively. [45] developed a method to determine feasible
254	alternative SoS configurations that restore performance after a system failure, and also
255	to anticipate gradual system degradation and transition to alternative configurations
256	before failure occurs. In the network science, for self-healing systems modeled as

257	complex networks, adding redundant edges improves resilience to failures, though with
258	diminishing returns [46].

259	Overall, these studies demonstrate that, redundancy implementation requires
260	careful consideration of specific contexts and potential trade-offs. In engineering system
261	design, traditionally engineers and designers focus in introducing redundancy as a
262	qualitative heuristic to improve resilience [24]. Conversely, introducing more than
263	required redundancy to improve resilience has diminishing returns as the overuse of
264	redundancy leads to higher design, production and, operating costs, higher
265	development time, higher complexity in the systems, addition use of use of resources
266	from the environment, or more waste or emission levels[24,47]. This emphasizes the
267	need for early design tools that allow for quantitative analysis and assessment of the
268	effects of redundancy designed into system architecture options on recovery and early
269	assessment of resilience.
270 271	Research novelties and main contribution
272	The main novelties of the article are following:
273	1. The methodological concept of simulating a dual physical and functional
274	layer time varying network model is distinct in the field of engineering system design
275	resilience research. The tool simulates the dual layer physical and functional network
276	model states prior, during disruption and in time steps immediately after disruption

when standby redundancy kicks to enable recovery enabling resilience investigation.

278	2. The methodology offers an analytical early-stage design tool to assess the
279	role of redundant components in managing resilience in physical and functional system
280	descriptions which is a new approach in the literature. This aids in the transition away
281	from the qualitative design heuristic approach and toward systematic redundancy
282	analysis on resilience at an early design stage. Furthermore, it contributes to the
283	combined design decision-making of the physical and functional aspects of the system,
284	which may occur separately in different engineering teams and have a negative impact
285	on resilience that will only be discovered later in the system's development life.
286	The article's main contribution is the development of a dual layer time-varying
287	network model-based methodology as a design tool tailored for the engineering design
288	field to support engineers and decision makers at early design stages. Deciding the
289	physical, functional, and redundancy aspects of a system architecture are critical system
290	engineering questions that must be answered early on and have significant influence on
291	the successful development and operation of a resilient system through its life.
292	SECTION 3: DYNAMIC DUAL-LAYER NETWORK RESILIENCE ASSESSMENT METHOD
293 294	In this Section, the proposed method is presented. The stages of the method are the
295	following: definition of inputs, systems modelling, performance metric calculation,
296	disruption scenarios simulations, recovery strategy activation, and resilience
297	assessment. The proposed system architecting tool is a computational implementation
298	of the method written in MATLAB.
299 300 301	

302 303	Input definition
304	The user defines the system architecture option under assessment, the disruption
305	scenarios, recovery strategy, and the resilience assessment criteria. Inputs 1-10 are
306	further explained below.
307	
308	Input 1
309 310	Describes the system option's entire functional connectivity between its components as
311	a network. The components are the nodes of the network and the functional flows are
312	the edges. All the components of the system (live and standby) and all the functional
313	flows (live and standby) are modelled. Nodes in the functional network represent
314	components such as generators, pumps, and switches. Edges between nodes are
315	directed, respecting the direction of flow between components.
316	
317	Input 2
318	Defines the system spatial dimensions. Nodes of the physical network represent a point
319	in the spatial unit; for example, one node will represent: x=1, y=5. Edges in the physical
320	network represent physical adjacency. This creates a two-dimensional lattice network
321	that represents the system's simplified spatial dimensions. Each point in this lattice
322	network is assumed to be a spatial unit.
323	
324	

Journal	of	Mechanical	Design
---------	----	------------	--------

327 Defines the location of components in each spatial unit in the lattice network (see Input

- 328 2). In this way, each component of the functional network (see Input 1) is assigned a
- 329 location in the physical lattice network.
- 330

331 Input 4

332 Defines which components of the whole functional network are considered as

333 operational/live and which are standby (redundant) components at the initial state,

- 334 prior to disruption. This is the key input for defining the type and level redundancy. This
- allows the user to define different styles of redundancy (principle, selective, partial,
- 336 standby and stand in) depending on the specifics of the system under consideration.

337

- 338 Input 5
- 339 Defines source (supply) and demand (sink) components of the system. Source nodes
- 340 must have an outward flow (e.g., electricity, water, air, information), whereas demand
- 341 nodes must have inward flow (e.g., electricity source component, sea water, chilled
- 342 water, compressed air). Also, it is possible for a demand to have an outward flow if it is
- 343 an intermediate component (e.g., a power unit that links to a downstream function).
- 344 Thus, a component can have a dual role. For example, a sea water pump is a demand for
- 345 electrical flow, and a source for the water.

346

347

349	Input 6
350	Defines the maximum number of components (k) to be incapacitated (removed) during
351	each disruption simulation scenario. In each attack, removal is limited to components
352	within a spatial unit or adjacent spatial units.
353	
354 355	Input 7 Defines the start-up times for components to become functionally available post-
356	disruption. Thus, if a component is marked as standby, it may take some time before it
357	is operational. However, a standby component that is disrupted cannot start up.
358	
359 360	<i>Input 8</i> Defines the minimum performance criterion that the system is required to achieve
361	immediately post-disruption.
362	
363 364	<i>Input 9</i> Defines the satisfactory performance criterion for a system to be deemed to have
365	recovered.
366 367 368	Input 10
369	The time (t _r) by which the system needs to have recovered to acceptable performance
370	after a disruption.
371	
372	
373	

374 System modelling

375

376 The method employs a dual layer network approach based on two networks: a 377 functional network (Input 1) and a physical network (Input 2) and creates relationships 378 between the two networks by relating the components of the functional network to the 379 physical network (Input 3: locating components of functional network on the physical 380 lattice network). The physical and functional networks are linked by means of an 381 undirected bipartite graph where an edge represents the relationship "this component 382 resides in this space" (or vice versa). Using the bipartite relationship, a physical topology 383 of equipment location is developed by recording the equipment that is located in each 384 spatial unit. The operational function network with the initial status prior to disruption is 385 generated by taking Input 1 (the entire functional network) and removing connections 386 emanating from or heading to standby components defined at Input 4. In this way, the 387 operational function network includes only components that are operational prior to 388 disruption. In other words, the operational functional network is a snapshot of the 389 entire functional network, restricted to active components. Different operational 390 functional networks can be used as the starting point for the analysis. 391 The system network representation changes over time. The initial state is the 392 operational functional network prior to disruption; next the disrupted functional 393 network excludes components negatively affected by a disruption; subsequently the 394 method uses a network that includes standby redundancy components while still 395 excluding anything that suffers disruption.

396	Figure 1 illustrates an example of dual layer functional and physical network prior to
397	disruption depicting the source components (S) and demand component (D). The white
398	colour indicates the components are alive/operational prior to disruption, and grey
399	colour indicates redundant components in standby condition. The definitions of Inputs 1
400	to 5 define the system's operational state.
401	
402 403	Performance measure
404 405	The ability of the operational network to behave as expected at a particular time is
406	measured by a performance metric previously presented in the literature [47,48].
407	Performance is measured by examining the number of ways in which sources can
408	connect to demand (sink nodes). Inputs for the performance metric are the entire
409	functional network (Input 1), source and demand components (Input 5), and a list of
410	operational and standby components (Input 4). The metric is designed to answer the
411	question "can the system maintain or restore supply to the different flow demands?"
412	and is evaluated at each time-step: before, during and post-disruption.
413	This metric calculates the ratio of the level of directed connectivity between sources and
414	demands corresponding to the required performance at the initial state. After a
415	disruption it can be updated dynamically to take account of reconfigurations of the
416	system.
417	The performance metric operates with binary variables that take the value 1 if a flow
418	reaches a demand component from a supply, and 0 otherwise. This is determined by

419	checking the existence of paths that are necessary for performance between
420	operational sources from the set $S = \{s_1, s_2,, s_n\}$ to the demands
421	$O = \{o_1, o_2, \dots, o_m\}$. A binary vector t is introduced whose i_{th} component equals 1 if
422	and only if there exists a path from an operational source to demand o_i .
423	When a system reconfigures, due to the designed redundancy, then there may be a
424	number of different sets of demands that correspond to full performance (for example,
425	if there are two power packs then it may be only necessary for one of these to be
426	operational). So, to measure performance the quantity:
427	$R_{C}(G) = \frac{1}{M} \sum_{i=1}^{M} t_{k_{i}} (1)$
428	
429	is calculated for each acceptable set of demands $\mathcal{C} = \{o_{k_1}, o_{k_2},, o_{k_M}\}$ and the
430	performance is the maximum value of R_c over all possible sets C, that is:
431	
432	$Perf = \max_{C} R_{C}$ (2)
433	
434	The quantity <i>Perf</i> takes values in the range 0 to 1 and full performance is only achieved
435	if <i>Perf</i> = 1, which means that at least one combination of connections that permits each
436	of the required flows has been established. The measure can be calculated at every time
437	step of the process.
438	This measure, $R_C(G)$, is time and graph/network dependent meaning that it depends on
439	the choice of sources and demands.
440	

441 **Disruption scenarios**

442 443 To assess the resilience of a system option, the simulation of various types of disruption 444 is recommended. The method uses the physical network to pinpoint a disruption and 445 the functional network's resilience is evaluated using the bipartite dual layer networks. 446 To simulate the disruption, information from the definition of the physical network is 447 required as per Inputs 2 and 3. 448 The physical network is used to determine which nearby components are affected if the 449 disruption spreads beyond a single component. Note that a disruption of a 450 component/node is simulated by incapacitating the node and any edges linked to that 451 node (by setting rows and columns of the adjacency matrix of the operational network 452 to zero). 453 A disruption is modelled through the network layers by identifying any possible 454 combination of a given maximum number of components (as defined in Input 6: number 455 of disrupted components) located either in the same or in adjacent spatial unit. For 456 example, if the user defines Input 6 as k=3, the tool will evaluate all single component 457 disruptions, any combination of two component disruptions, and any combination of 458 three component disruptions. 459 The components in the physical network targeted for disruption are then removed in 460 the functional network, and assessment of the performance of the network is calculated 461 at each time step post-disruption by measuring resilience. Performance can change as 462 the recovery strategy is enforced. The approach is deterministic and exhaustive as it

463 identifies all possible combinations of physical disruptions but, by limiting combinations

- 464 to those components which are co-located, stops the number of combinations growing
- 465 too fast and allows for efficient computation.
- 466 The size of the system under evaluation should be used to determine the number of
- 467 components (*k*) that need to be combined.
- 468 The Figure 2 depicts an example of disruption (snapshot) that is simulated in the
- 469 physical network (*k*=2), and the results of the disruption are reflected in the functional
- 470 network layer. The dark pattern shaded components and dotted connections indicate
- 471 the two disrupted components, white are the components and black connections still
- 472 working, and grey components and connections are redundant component at standby
- 473 mode.
- 474

475 **Recovery strategy**

- 476
- 477 The recovery strategy entails reconfiguring the system to operate with alternative
- 478 redundancy standby components and connections after a disruptive event occurs. This
- 479 recovery strategy is defined based on the user-defined Input 4 (operational and standby
- 480 components) and Input 7 (standby components start up times). The recovery is
- 481 dependent on which components were on standby at the time a disruption happened,
- 482 and their start up time. The user can alter the recovery strategy for specific system
- 483 options by changing the relevant inputs.
- 484 The recovery strategy assumes that, unless destroyed by the disruption, all standby
- 485 redundancy components are to be immediately given instruction to start up by a

486	switching mechanism. The recovery strategy's goal is to recover the system to the user-
487	defined satisfactory performance (Input 9), within the time frame specified as per the
488	objective restoration time (t_r) defined in Input 10.
489	At each time step, recovery consists of adding edges to the disrupted network from the
490	original functional network (Input 1). At one end of the edge is an undamaged standby
491	component that has reached its start-up time, at the other is another piece of
492	undamaged equipment (which could be another standby component). A functional flow
493	is considered as recovered if the components feeding and demanding of the flow are
494	available (Figure 3). That means components of the functional flow path between
495	source and demand were either not affected by disruption or have become available
496	due to standby redundant components coming online.
497	Figure 3 exemplifies a two-step recovery process where at the time step immediately
498	post-disruption one component becomes available, and at the next time step a second
499	component becomes available enabling the recovery of the network.
500	
501 502	Resilience measure
502 503	Given the metrics introduced in this article, it is natural to define a resilient system if it
504	meets the following two criteria:
505	• Performance must remain above a minimum value (Input 8) immediately post-
506	disruption and throughout the recovery process.
507	• Performance recovers to reach a satisfactory level (Input 9) within an acceptable
508	time.

509	To test, a series of simulations, which represent a variety of disruptions and recoveries,
510	are run on a system option (<i>Opt</i>) and the performance measure is checked at constant
511	time intervals throughout the process. The method records the performance
512	immediately post-disruption and compares against the user-defined minimum value
513	(Input 8). The satisfactory performance criterion (Input 9) is satisfied when all the
514	required demand nodes are connected to sufficient available source nodes before the
515	objective restoration time (Input 10) is reached. Thus, a resilient system option is
516	expected to recover the satisfactory performance within the acceptable restoration
517	time and does not fall under a minimum performance post-disruption.
518	The resilience metric can be calculated as the potency of an attack increases. Potency is
519	measured in terms of the number of components that are damaged in a disruption,
520	making sure the topology of the system is respected, according to the spatial network
521	(Input 2). By removing all physically possible (same or adjacent spatial unit)
522	combinations of a fixed number of components (k), the resilience (as a function of
523	potency) is measured by calculating the fraction of scenarios that result in full recovery
524	(either by successful employment of standby components or by the design withstanding
525	an attack without compromising performance).
526	That is, the resilience of the system option (<i>Opt</i>) is given by equation 3.

527

528
$$Res(Opt, k) = \frac{\#recoveries}{\#events}$$
(3)

530	Where k is the number of components damaged in a disruption (operational or
531	standby), #events count all possible combinations of damaging k components and
532	#recoveries count the number of combinations where the system meets the two
533	resilience criteria. The user defines k based on the potency of disruption that requires
534	the system to be analysed. The resilience can be averaged over varying intensities of
535	attack to give a mean resilience \overline{Res} given by equation 4. The resilience is average, given
536	that the potency of attacks considered for assessment purposes is equal importance for
537	compliance.

539
$$\overline{Res} = \frac{1}{k_{max}} \sum_{k=1}^{k_{max}} Res(Opt, k) \quad (4)$$

Figure 4 shows an example representing the process illustrating the example network
states prior, during and post-disruption. The minimum performance and satisfactory
performance criteria are assessed for each state post-disruption.

551 SECTION 4: CASE STUDY

553	This section presents a case study to demonstrate the applicability and utility of the
554	proposed method for assessing the resilience of alternative ship system options. The
555	options were derived from a generic naval ship power and propulsion system design,
556	and do not represent real technical systems. The intention is to demonstrate the ability
557	of the method to evaluate alternative options and identify vulnerabilities in the design.
558	The case study additionally demonstrates the method's use in a Design of Experiments
559	(DOE) setting with the aim of systematically evaluating the impacts of various design
560	variables on resilience.
561	
562	Generic ship system
563 564	In the generic system presented in Figure 5, power is generated by four main sources
565	(two diesel generators and two gas turbines) that supply to two High Voltage (HV)
566	Switchboards, which then power the two propulsion motors (via converters). The HV
567	Switchboards are also linked to two transformers, which feed two 440 Voltage
568	Switchboards (LV Switchboards), which then supply to twelve electrical distributor
569	centres (EDCs) that in turn feed twelve consumers. There are two Steering Gear Power
570	Packs; one is redundant. Each Steering Gear Power Pack is fed by both LV Switchboard 1
571	and LV Switchboard 2. An emergency generator and an emergency switchboard are
572	included, which power the odd numbered EDCs and the two steering gear power packs.
573	The HV Switchboards are linked by two HV Interconnectors and the LV Switchboards are

574	linked by two LV Interconnectors. There are two main operational sources (one diesel
575	generator and one gas turbine) each connected to a discrete HV Switchboard prior to
576	disruption. The generic design does not include standby batteries. The general set up
577	operational condition status prior to disruption was set as follows: LV Switchboard
578	interconnectors are on standby, only one HV Switchboard interconnector is connected
579	(second HV Switchboard interconnector on standby), emergency generator and
580	emergency switchboard are on standby, only one steering gear in operation (second
581	steering gear on standby), and both propulsion motors are live. The odd number
582	consumers are live (Consumers 1,3,5,7,9,11) with the even consumers (Consumers
583	2,4,6,8,10,12) on standby. Therefore, several components are operational (white colour
584	in Figure 5) at the initial state and other are on standby (grey colour in Figure 5)
585	indicating a level of redundancy. In this system, stand in redundancy is designed for the
586	main sources (the system architecture design has four main sources but only one or two
587	are available at normal operational state). The ship is spatially arranged into 12-zones
588	(Zone A to Zone L) and 6-decks (Deck 1 to Deck 6). The location of each component is
589	based on its zone and deck placement as illustrated in Figure 6.
590	

591 Generation of alternative system options

592

In the case study, the generic power and propulsion system option is varied based on
three design variables (Table 2). The variation of the design variables results in different
system options that have different levels of redundancy.

596	The design variables present engineering decisions that define system architecture of an
597	option and are systematically changed to generate the eight options. For each design
598	variable there are two engineering choices as presented in Table 2. They were chosen
599	because they provide insights into three topics that are often of interest during the
600	early-stage ship design:
601	• Variable 1 is concerned with the effect of adding batteries to the LV
602	Switchboard.
603	Variable 2 selects the intermediate level redundancy style between LV
604	Switchboard, EDCs and consumers. There are two configurations for this:
605	Alternative Supply (AS) and Double Supply (DS). An example of AS can be seen in
606	Figure 7 (Option 2) where LV Switchboard 1 supplies the odd-numbered EDCs
607	and LV Switchboard 2 supplies the even-numbered EDCs. An example of DS can
608	be seen in Figure 8 (Option 3) where LV Switchboard 1 supplies all 12 EDCs and
609	LV Switchboard 2 also supplies all 12 EDCs. The DS configuration designs
610	redundancy at EDC level and AS designs redundancy at consumer level.
611	Variable 3 allows for tests to determine how many main sources of electrical
612	equipment (given a choice of 3 sources or 4) are advantageous for resilience.
613	A full factorial 2 ³ DOE approach (two-level, full factorial design for three factors) is
614	adopted to generate the different system options described in Table 3. The DOE
615	approach used in the case study intends to demonstrate the tool and is suggested to
616	support the generation of a limited number of alternatives based on an original system

617	architecture, with a focus on specific redundancy styles that are being considered by the
618	designers/user of the tool.

619	To design experiments to evaluate the resilience of the options, assumptions were
620	made: the first related to the disruptive events, and the second to the physical size of
621	the ship. The first assumption is that all options have the same operational status prior
622	to disruption. This means that the number of operational sources prior to disruption is
623	the same-only two are live in the operational network prior to disruption for all the
624	eight options, and the disruptive event approaches are applied identically to all options.
625	The second assumption is that the spatial dimensions of the ship, as defined by the
626	number of zones and decks, are identical for all design options. In addition, the physical
627	location of the equipment remains consistent across the options, as does the definition
628	of resilience assessment criteria. This allows for comparisons based on the ship- systems
629	option design variables described in Table 2.
630	The inputs tables and functional schematics for each option (Options 1 to 8) are shown
631	in Table 4 to Table 11; they are read directly into the proposed tool for carrying out the
632	resilience assessment.

633

634 Disruptions and performance criteria

A disruption is expected to affect the operation, and standby redundant components are expected to start up based on their start up times. Experiments simulated the systematic removal of components based on their physical location. All possible combinations of up to 4 components (k <= 4), located in the same zone or adjacent zones

639	on the same deck, were removed sequentially, simulating different possible disruptions
640	for a particular disruption approach, each of the options was assessed based on the two
641	performance criteria outlined in the previous part of the methodology (Resilience
642	measure paragraph):
643	• Performance must remain above a minimum performance criterion (Input 8)
644	immediately post disruption and throughout the recovery process.
645	• Performance recovers to reach the satisfactory performance criterion (Input 9)
646	within an acceptable time.
647	Both criteria have to be met in order for the design to be considered resilient. The
648	performance criteria definition is presented in Table 12.
649 650 651	SECTION 5: RESULTS AND DISCUSSION Table 13 presents the resilience results for each option as calculated from the proposed
652	tool. The resilience results range between 0 resilience (fragile system) to 1 that is 100%
653	resilience (super-resilient system).
654	Additionally, Table 14 offers a summary of the pair component disruption that will result
655	at zero resilience for each Option. Please note the numbers in the brackets are the
656	identifiers of the components, and the name of the component corresponding to each
657	identifier can be found in Table 4 to Table 11.
658	The discussion is divided into two parts. The first section presents specific disruption
659	scenarios that were identified as having zero resilience, which means that either
660	satisfactory performance was not able to be achieved post-disruption or system
661	performance fell below the minimum performance, or both. These findings identified

	Journal of Mechanical Design
662	specific design vulnerabilities in the options, allowing for the consideration of mitigation
663	design strategies and reflection on the aspects of the design driving the vulnerabilities.
664	The second section of the discussion presents the overall resilience assessment results.
665	The design options are ranked based on the calculated resilience metric, and a
666	discussion of the most and least resilient options is included. Additionally, the mean
667	effect and interaction plots are presented, discussing the effects of the three design
668	variables on resilience.
669	
670 671	Vulnerabilities identification The system architectures alternatives are assessed against system requirements that set
672	the minimum performance post disruption and the maximum recovery duration. These
673	system requirements are equally important in respect to resilience for the naval ship
674	case study.
675	A number of design vulnerabilities (when the resilience metric is calculated as zero)
676	were identified in the case study, as described in the following. The following discussion
677	is based on the results presented in the Table 14 (List of two combined components
678	disruption resulting at zero resilience).
679	
680 681	<i>Combined LV switchboard 2 & EDC3 disruption</i> For Option 1 there is a combination of two component failures, namely the LV
682	Switchboard 2 and EDC 3, which resulted in zero resilience. By referring to Figure 6 for
683	Option 1, it can be seen that LV Switchboard 2 (Component 12) and EDC 3 (Component

684 15) were positioned in same zone E, making them vulnerable to being disrupted

685	together. EDC 4 received power through LV Switchboard 2, and because LV Switchboard
686	2 is also disrupted, EDC 4 cannot receive power. This is because the Emergency
687	Switchboard only feeds EDCs 1, 3, 5, 7, 9, and 11, leaving EDC 4 without power. As EDC
688	4 cannot receive power, Consumers 3 & 4 cannot receive power and Option 1 therefore
689	fails the "satisfactory performance criterion" outlined in Table 12. Mitigation strategies
690	include the incorporation of additional alternative power supplies for EDC 4 either from
691	Emergency Switchboard or from LV Switchboard 1.
692	
693	Combined EDC disruption
694 695	The results identified that combinations of two or more EDCs disruptions were a
696	vulnerability of design for all the options, principally because they were co-located in
697	the same zone and deck, which makes them susceptible to simultaneous disruption.
698	Here, an additional redundancy either at the EDC level or at the consumer level was
699	located in the same zone. Redundancy included at the EDC level is counteracted by the
700	fact that the redundant component was co-located at the same area as its operational
701	twin, making it susceptible to disruption at the same time. However, it is acknowledged
702	that redundancy is not only designed for resilience but also for maintenance and
703	availability, explaining possible reasons for installing the redundant components in
704	adjacent locations.
705	Mitigation strategies include re-locating components in different zones, decks or sides
706	of the compartment for example either port or starboard to minimize the possibility of

707	being disrupted at the same time. Another mitigation strategy is to provide structural
708	reinforcement to protect EDCs from disruption.

710 711	Combined EDC & Consumer disruption
712	The results show that for design options 3, 4, 7 and 8, which have no redundancy at the
713	consumer level (redundancy is at the EDC level), there were twelve two-component
714	disruption scenarios that included an odd EDC (e.g., EDC1) and even consumer (e.g.
715	Consumer 2) being removed at the same time that led to zero resilience. This indicates
716	that the additional redundancy at the EDC level from LV Switchboard level failed to
717	compensate for the lack of redundancy at consumer level. Possible mitigation strategies
718	include the separation of EDCs from consumers minimizing the possibility that they
719	could be disrupted together, or to include additional redundancy at the consumer level.
720 721 722	Combined Diesel Generator 3 & HV Switchboard 1 disruption
	This disruption combination indicated that for options with three main sources (Option
723	2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main
723 724	2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero
723 724 725	2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero resilience. The disruption scenario mitigation approach is to ensure that HV Switchboard
723724725726	2, 4, 6, and 8), a combination indicated that for options with three main sources (Option 2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero resilience. The disruption scenario mitigation approach is to ensure that HV Switchboard 1 and Diesel Generator 3 are located in different zones, or to ensure that additional
 723 724 725 726 727 	2, 4, 6, and 8), a combination indicated that for options with three main sources (Option 2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero resilience. The disruption scenario mitigation approach is to ensure that HV Switchboard 1 and Diesel Generator 3 are located in different zones, or to ensure that additional redundant main sources are included in the system.
 723 724 725 726 727 728 	 2, 4, 6, and 8), a combination indicated that for options with three main sources (Option 2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero resilience. The disruption scenario mitigation approach is to ensure that HV Switchboard 1 and Diesel Generator 3 are located in different zones, or to ensure that additional redundant main sources are included in the system. These examples demonstrate the method's ability to detect design vulnerabilities early
 723 724 725 726 727 728 729 	 2, 4, 6, and 8), a combination indicated that for options with three main sources (Option 2, 4, 6, and 8), a combined disruption involving HV Switchboard 1 fed by the two main sources (Diesel Generators 1 & 2), and removal of Diesel Generator 3 led to zero resilience. The disruption scenario mitigation approach is to ensure that HV Switchboard 1 and Diesel Generator 3 are located in different zones, or to ensure that additional redundant main sources are included in the system. These examples demonstrate the method's ability to detect design vulnerabilities early in the design process. Without the aid of a quantitative analysis at early-stage ship

731	drawbacks of redundancy when making early design decisions for ship systems. When
732	these design vulnerabilities are discovered later in the development process, using
733	detailed design tools, it may necessitate costly and time-consuming mitigation
734	approaches and implementation of design changes to increase resilience.
735	
736 737	Resilience assessment The tool generates a resilience measure that allows for an evaluation of all eight options
738	considered in the case study. Figure 17 depicts the mean resilience results from those
739	shown in Table 13 in a sorted (Pareto) histogram chart containing columns sorted in
740	descending order. The orange line represents the cumulative total percentage. Option 5
741	was identified as the design option with the highest resilience, a logical result agreeing
742	with experts' subjective expectations as it incorporated the four main sources and
743	additional batteries, and also redundancy at the consumer level. Option 1 was identified
744	as the second-best resilience design option. This option had the four main sources, no
745	batteries and redundancy at the consumer level. The method's identification of this
746	particular option as second was not expected by the subject matter's experts and is
747	worthy of more detailed investigation. Option 4, with three main sources, no batteries,
748	and no redundancy at the consumer level had the worst resilience results. The second
749	worst result was Option 2, which included three main sources, no batteries and
750	redundancy at the consumer level. Again, this result was a logical result agreeing with
751	the subject matter's experts' expectations.

752	The resilience results in Figure 18 show that the resilience behavior of system options
753	changes when a higher number of components (k=1, 2, 3, 4) is removed, and that all the
754	options had similar resilience behavior with the removal of a single component (k=1).
755	However, the ranking of resilience does appear to stabilize once 2 components have
756	been disrupted, although Options 6&7 switch places between 2 and 3 component
757	disruptions.
758	In addition, Mean Effects plots (Figure 19) and Interactions plots (Figure 20) are
759	generated based on using DOE (Taguchi Analysis) using Minitab software.
760	An interesting result (Figure 19) that the mean effects plot showed was that including
761	redundancy at the consumer level (AS) was more beneficial than redundancy at the EDC
762	level (DS). This result is one that is worthy of further investigation in order to evaluate
763	the benefits and drawbacks of each style of redundancy. The DOE results, indicating that
764	options with batteries (B) and options with 4 main sources (FM) instead of three main
765	sources (TM) were of increased resilience, were expected - verifying the validity of the
766	results that the proposed tool is generating.
767	The interaction plots (Figure 20) showed that options without batteries (NB) but with
768	four main sources (FM) had higher resilience scores than options with batteries (B) but
769	with three main sources (TM). Additionally, the interaction plots indicated that options
770	with redundancy at the EDC level (DS) and four main sources were more resilient than
771	options with redundancy at the consumer level (AS) and three main sources. Therefore,
772	the number of main sources was the most influential design variable. An interesting
773	result is that an option with batteries (B) and redundancy at the EDC level (DS) has a

L al of Machanical Dasi

	Journal of Mechanical Design
774	similar level of resilience as an option without batteries (NB) and redundancy at the
775	consumer level (AS).
776	
777 778	SECTION 6: REFLECTIONS The methodology of this article shares key concepts with two previous works in
779	the literature. The first is of the original work of [3], which introduced the concept of
780	analyzing resilience as a function of time based on states (prior, during, and post
781	disruption) and calculating a resilience metric based on a figure of merit. The other work
782	to which this methodology relates is from naval ship engineering, where a static
783	multilayer network method is proposed to analyze the vulnerability of ship distributed
784	systems [36]. A comparison with these works is provided in Table 15 highlighting the
785	novelties and the additional insights the proposed method offers.
786	Redundancy is a well-known engineering system design principle that increases
787	system resilience. Determining the components and connections to design redundancy,
788	as well as the amount and type of redundancy, are critical engineering design decisions
789	made early in the development process. These decisions have an immediate impact on
790	system architecture, development costs and time, system reliability, availability, and
791	system performance. The tool enables comparisons of a number of alternative system
792	architectures with different levels and styles of redundancy, highlighting the point of no
793	return when increasing redundancy. Furthermore, the proposed method indicates
794	potential inefficiencies in the design of redundancy that would be difficult to detect with
795	a functional level analysis alone without the use of an early-stage design tool. The

796	aspect of designing redundancy for resilience is not covered by the other methods in the
797	literature [3,36]. This is beside the fact that such questions are common in early-stage
798	design and are sometimes overlooked because different engineering disciplines deal
799	with physical and functional designs separately, making decisions that ignore the impact
800	on resilience. These design flaws are in some cases discovered after detail analysis,
801	making them more expensive to correct. The design tool is suggested in an assessment
802	and verification context. A prominent system architecture is developed by the
803	designers, or mandated by the customer, or reused from previous projects. A system
804	architecture iteration process occurs in which the level of redundancy, pattern,
805	technology, and system vulnerabilities are examined. In this context, the tool provides
806	quantitative evaluation indicators to assess a finite number of system architecture
807	options, which may include different technologies, levels, and types of redundancy,
808	during the early development stages when key decisions are made. The results are
809	generated in a time-efficient modelling and analytical fashion, allowing for the rapid
810	consideration and evaluation of resilience. The computational time efficiency of the tool
811	is driven in the context of the constraints that are imposed to it during its development
812	only realistically possible physical disruptions are simulated, system architecture
813	descriptions are not suggested to be very large or high fidelity, and a limited number of
814	alternative architectures are expected to be evaluated.
815	This provides input for quick decision-making before fixing the decisions for the system
816	architectures. The generated results are also evidence of requirement compliance,
817	allowing assurance that design decisions are aligned with objective requirements during
-----	--
818	system architecture process.
819	The results of the proposed method offer a starting point for a multi-parameter trade-
820	off analysis. Different options of redundancy have different effects on performance,
821	cost, construction-time, reliability, operability, ease of manufacture, and original
822	equipment manufacturer delivery times. For example, the user can further the analysis
823	by calculating the cost of the various system options and weighing them against the
824	quantitative improvement that specific type of redundancy has had on resilience.
825	The findings of the case study are bound to these eight specific design options with the
826	specific functional and physical architectures and are not intended for any
827	generalization, but the proposed dual-network resilience assessment tool has a wider
828	applicability. The method is intended as a system architecting tool where high-level
829	system architecture is to be decided. The method is not intended to replace the use of
830	detailed design tools, which are expected to be used later in the process to perform in-
831	depth analysis.
832	

833 SECTION 7: CONCLUSIONS AND FUTURE WORK

The paper describes a dynamic dual-layer network resilience assessment tool for the system architecture process. It was demonstrated in a case study by applying the tool to eight different system options and analysing the resulting resilience. The case study identifies component disruption combinations that result in zero resilience, enabling system architecture improvements in the system architecture. Furthermore, the

839	resilience assessment classifies options from the most to the least resilient option, as
840	well as evaluating the effects of different design variables that represent different types
841	of redundancy on resilience.
842	The method is able to consider different system options easily and efficiently (in
843	computational effort and time), allowing design changes or updates to be made quickly,
844	and to identify design vulnerabilities enabling mitigation. The significance of this relates
845	to the criticality of system architecture decisions, as decisions made have unintended
846	design consequences have significant cost and project delay implications when
847	identified and require rectification during the later stages of the design. The method
848	provides resilience measurements with which to compare different systems options and
849	demonstrate compliance with resilience requirements prior to the development of the
850	detailed design. Furthermore, assessing the specific instances that lead to a calculated
851	resilience of zero aids in identifying physical and functional vulnerabilities, and leads to
852	system design improvements. This information is particularly useful during system
853	architecting as this is when decisions on the functional redundancy and physical solution
854	are typically taken. The method's advantages include the ability to accept low-
855	information-fidelity inputs, integrate functional and physical analysis, model functional
856	architectures composed of various flows, and dynamically simulate a disruption and
857	recovery process. The method's drawback is that, because all measurements are binary,
858	it is not feasible to calculate specific physical performance characteristics of the
859	system's components.

860	A limitation of the tool is that it does not include a detailed physical representation of
861	the system geometry. Another limitation of the tool is that it does not consider the
862	propagation of cascading functional failures; this could be investigated in the future.
863	Future research will aim to advance the tool to enable the component's transverse
864	location to be defined. In addition, future research will concentrate on the automatic
865	generation of alternative system options based on the optimisation of competing design
866	variables such as time to recovery, redundancy level, cost of redundancy, and maximum
867	achievable post-disruption performance. Future research avenues include assessing
868	resilience in the face of a second sequential disruption and investigating system
869	recovery if some of the standby redundant components do not start up as expected.
870 871 872 873 874 875	ACKNOWLEDGMENT The authors would like to thank subject matter experts John Maconochie and David
876	McLean for their inputs on verifying the results of the case study. The views expressed in
877	this article are that of the authors and do not represent the opinions of the BAE
878	Systems.
879	
880	FUNDING
881	This work was supported by BAE Systems Surface Ships Ltd.
007	

883 884	NOMENCLA	TURE
	AS	Alternate Supply
	В	Battery
	DOE	Design Of Experiment
	DS	Double Supply
	EDC	Electrical Distribution Centre
	FM	Four Main sources
	HV	High Voltage
	LV	Low Voltage
	NB	No Battery
	SWB	Switchboard
	ТМ	Three Main sources

886 **REFERENCES**

- 887
- INCOSE, 2023, *INCOSE Systems Engineering Handbook*, Wiley. [Online]. Available:
 https://www.wiley.com/en-
- 890 us/INCOSE+Systems+Engineering+Handbook%2C+5th+Edition-p-9781119814313.
 891 [Accessed: 08-Jan-2025].
- 892
 [2]
 Department of Defense, 2011, "FACT SHEET: Resilience of Space Capabilities."

 893
 [Online].
 Available:
- 894http://www.defense.gov/Portals/1/features/2011/0111_nsss/docs/DoDFactShee895t-Resilience.pdf.
- 896 [3] Henry, D., and Emmanuel Ramirez-Marquez, J., 2012, "Generic Metrics and
 897 Quantitative Approaches for System Resilience as a Function of Time," Reliab Eng
 898 Syst Saf, 99, pp. 114–122. https://doi.org/10.1016/j.ress.2011.09.002.
- Hosseini, S., Barker, K., and Ramirez-Marquez, J. E., 2015, "A Review of Definitions
 and Measures of System Resilience," Reliab Eng Syst Saf, 145, pp. 47–61.
 https://doi.org/10.1016/j.ress.2015.08.006.
- 902[5]Woods, D. D., 2015, "Four Concepts for Resilience and the Implications for the903Future of Resilience Engineering," Reliab Eng Syst Saf, 141, pp. 5–9.904https://doi.org/10.1016/j.ress.2015.03.018.
- 905
 [6]
 Allenby, B., and Fink, J., 2005, "Toward Inherently Secure and Resilient Societies,"
 906
 Science
 (1979),
 309(5737),
 pp.
 1034–1036.
 907
 https://doi.org/10.1126/science.1111534.
- 908[7]Pregenzer, A. L., 2011, "Systems Resilience: A New Analytical Framework for909Nuclear Nonproliferation," Albuquerque,NM:Sandia National Laboratories, 8, pp.9101–21. https://doi.org/10.2172/1034890.
- 911[8]Haimes, Y. Y., 2009, "On the Definition of Resilience in Systems," Risk Analysis,912**29**(4), pp. 498–501. https://doi.org/10.1111/j.1539-6924.2009.01216.x.
- 913 [9] Chang, S. E., and Shinozuka, M., 2004, "Measuring Improvements in the Disaster
 914 Resilience of Communities," Earthquake Spectra, **20**(3), pp. 739–755.
 915 https://doi.org/10.1193/1.1775796.
- 916[10]Mirchandani, C., 2020, "Resilience Modeling in Complex Systems," Procedia917Comput Sci, **168**, pp. 232–240. https://doi.org/10.1016/j.procs.2020.02.262.
- 918[11]Pumpuni-Lenss, G., Blackburn, T., and Garstenauer, A., 2017, "Resilience in919Complex Systems: An Agent-Based Approach," Systems Engineering, **20**(2), pp.920158–172. https://doi.org/10.1002/SYS.21387.
- 921 [12] Weick, K. E., and Sutcliffe, K. M., 2011, "Managing the Unexpected: Resilient
 922 Performance in an Age of Uncertainty (Google EBook)," p. 224. [Online]. Available:
 923 https://books.google.com/books/about/Managing_the_Unexpected.html?id=GU
 924 55MJOp1OcC. [Accessed: 07-Jan-2025].
- Wied, M., Oehmen, J., and Welo, T., 2020, "Conceptualizing Resilience in Engineering Systems: An Analysis of the Literature," Systems Engineering, 23(1), pp. 3–13. https://doi.org/10.1002/sys.21491.

- 928
 [14]
 Cheng, Y., Elsayed, E. A., and Huang, Z., 2022, "Systems Resilience Assessments: A

 929
 Review, Framework and Metrics," Int J Prod Res, 60(2), pp. 595–622.

 930
 https://doi.org/10.1080/00207543.2021.1971789.
- [15] Naghshbandi, S. N., Varga, L., Purvis, A., McWilliam, R., Minisci, E., Vasile, M.,
 Troffaes, M., Sedighi, T., Guo, W., Manley, E., and Jones, D. H., 2020, "A Review of
 Methods to Study Resilience of Complex Engineering and Engineered Systems,"
 IEEE Access, 8, pp. 87775–87799. https://doi.org/10.1109/ACCESS.2020.2992239.
- [16] Cassottana, B., Roomi, M. M., Mashima, D., and Sansavini, G., 2023, "Resilience
 Analysis of Cyber-Physical Systems: A Review of Models and Methods," Risk
 Analysis, 43(11), pp. 2359–2379. https://doi.org/10.1111/risa.14089.
- 938 [17] Yodo, N., and Wang, P., 2016, "Engineering Resilience Quantification and System
 939 Design Implications: A Literature Survey," Journal of Mechanical Design, 138(11).
 940 https://doi.org/10.1115/1.4034223/384079.
- 941[18]Chang, S. E., and Shinozuka, M., 2004, "Measuring Improvements in the Disaster942Resilience of Communities," https://doi.org/10.1193/1.1775796, **20**(3), pp. 739–943755. https://doi.org/10.1193/1.1775796.
- 944 [19] Yodo, N., Wang, P., and Zhou, Z., 2017, "Predictive Resilience Analysis of Complex
 945 Systems Using Dynamic Bayesian Networks," IEEE Trans Reliab, 66(3), pp. 761–770.
 946 https://doi.org/10.1109/TR.2017.2722471.
- 947 [20] Yodo, N., and Wang, P., 2016, "Resilience Modeling and Quantification for
 948 Engineered Systems Using Bayesian Networks," Journal of Mechanical Design,
 949 138(3). https://doi.org/10.1115/1.4032399/384110.
- [21] Vugrin, E. D., Turnquist, M. A., and Brown, N. J. K., 2014, "Optimal Recovery
 Sequencing for Enhanced Resilience and Service Restoration in Transportation
 Networks," International Journal of Critical Infrastructures, 10(3–4), pp. 218–246.
 https://doi.org/10.1504/IJCIS.2014.066356.
- Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller,
 M., and Smith, P., 2010, "Resilience and Survivability in Communication Networks:
 Strategies, Principles, and Survey of Disciplines," Computer Networks, 54(8), pp.
 1245–1265. https://doi.org/10.1016/j.comnet.2010.03.005.
- Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y., and Hoyle, C., 2015, "Resiliency
 Analysis for Complex Engineered System Design," AI EDAM, 29(1), pp. 93–108.
 https://doi.org/10.1017/S0890060414000663.
- 961 [24] Chatterjee, A., Helbig, C., Malak, R., and Layton, A., 2023, "A Comparison of Graph962 Theoretic Approaches for Resilient System of Systems Design," J Comput Inf Sci
 963 Eng, 23(3). https://doi.org/10.1115/1.4062231/1160385.
- 964 [25] Markina-Khusid, A., Jacobs, R. B., Antul, L., Cho, L., and Tran, H. T., 2022, "A
 965 Complex Network Framework for Validated Assessments of Systems of Systems
 966 Robustness," IEEE Syst J, 16(1), pp. 1092–1102.
 967 https://doi.org/10.1109/JSYST.2021.3064817.
- 968 [26] Wu, J., and Wang, P., 2023, "Generative Design for Resilience of Interdependent
 969 Network Systems," Journal of Mechanical Design, 145(3).
 970 https://doi.org/10.1115/1.4056078/1148484.

- 971 [27] Mahabadi, Z., Varga, L., and Dolan, T., 2023, "A Survey of Multilayer Networks
 972 Modelled to Assess Robustness in Infrastructure Systems," Proceedings of the
 973 Institution of Civil Engineers: Smart Infrastructure and Construction, **176**(3), pp.
 974 117–125.
- 975
 https://doi.org/10.1680/JSMIC.22.00015/ASSET/IMAGES/SMALL/JSMIC176-0117

 976
 F3.GIF.
- 977 [28] Alashaikh, A., Tipper, D., and Gomes, T., 2018, "Exploring the Logical Layer to
 978 Support Differentiated Resilience Classes in Multilayer Networks," Annales des
 979 Telecommunications/Annals of Telecommunications, 73(1–2), pp. 63–79.
 980 https://doi.org/10.1007/S12243-017-0616-1/TABLES/9.
- 981[29]Kuikka, V., and Rantanen, H., 2023, "Resilience of Multi-Layer Communication982Networks," Sensors, 23(1). https://doi.org/10.3390/s23010086.
- 983[30]Huynh, P. K., Rahman, M. M., Yadav, O. P., Le, T. Q., and Le, C., 2024, "Assessing984Robustness and Vulnerability in Interdependent Network Infrastructure: A985Multilayer Network Approach," Proceedings Annual Reliability and986Maintainability987Symposium.

987 https://doi.org/10.1109/RAMS51492.2024.10457643.

- [31] Li, Q., Dong, S., and Mostafavi, A., 2019, "Modeling of Inter-Organizational Coordination Dynamics in Resilience Planning of Infrastructure Systems: A Multilayer Network Simulation Framework," PLoS One, 14(11), p. e0224522.
 https://doi.org/10.1371/journal.pone.0224522.
- [32] Ulak, M. B., Konila Sriram, L. M., Kocatepe, A., Ozguven, E. E., and Arghandeh, R.,
 2022, "Resilience Characterization for Multilayer Infrastructure Networks," IEEE
 Intelligent Transportation Systems Magazine, 14(4), pp. 121–132.
 https://doi.org/10.1109/MITS.2021.3049368.
- 996 [33] Alonso, M., Turanzas, J., Amaris, H., and Ledo, A. T., 2021, "Cyber-Physical
 997 Vulnerability Assessment in Smart Grids Based on Multilayer Complex Networks,"
 998 Sensors, 21(17), p. 5826. https://doi.org/10.3390/s21175826.
- 999 [34] Dagnas, R., Barbeau, M., Garcia-alfaro, J., Yaich, R., and Garcia-Alfaro, J., 2024,
 1000 "Resilience Assessment of Multi-Layered Cyber-Physical Systems," *IFIP Networking*1001 2024-IOCRCI. [Online]. Available: https://hal.science/hal-04559568. [Accessed: 051002 Jan-2025].
- 1003 [35] Kazim, M., Pirim, H., Shi, S., and Wu, D., 2024, "Multilayer Analysis of Energy
 1004 Networks," Sustainable Energy, Grids and Networks, **39**, p. 101407.
 1005 https://doi.org/10.1016/j.segan.2024.101407.
- 1006 [36] Brownlow, L. C., Goodrum, C. J., Sypniewski, M. J., Coller, J. A., and Singer, D. J.,
 1007 2021, "A Multilayer Network Approach to Vulnerability Assessment for Early-Stage
 1008 Naval Ship Design Programs," Ocean Engineering, 225, p. 108731.
 1009 https://doi.org/10.1016/j.oceaneng.2021.108731.
- 1010 [37] Goodrum, C. J., Shields, C. P. F., and Singer, D. J., 2018, "Understanding Cascading
 1011 Failures through a Vulnerability Analysis of Interdependent Ship-Centric
 1012 Distributed Systems Using Networks," Ocean Engineering, 150(November 2017),
 1013 pp. 36–47. https://doi.org/10.1016/j.oceaneng.2017.12.039.

- 1014[38]Holme, P., and Saramäki, J., 2012, "Temporal Networks," Phys Rep, **519**(3), pp. 97–1015125. https://doi.org/10.1016/J.PHYSREP.2012.03.001.
- 1016[39]Salama, M., Ezzeldin, M., El-Dakhakhni, W., and Tait, M., 2022, "Temporal1017Networks: A Review and Opportunities for Infrastructure Simulation," Sustain1018ResilientInfrastruct,7(1),1019https://doi.org/10.1080/23789689.2019.1708175.
- 1020[40]Scellato, S., Leontiadis, I., Mascolo, C., Basu, P., and Zafer, M., 2013, "Evaluating1021Temporal Robustness of Mobile Networks," IEEE Trans Mob Comput, **12**(1), pp.1022105–117. https://doi.org/10.1109/TMC.2011.248.
- 1023[41]Bastan, O., Fiedler, P., Benesl, T., and Arm, J., 2019, "Redundancy as an Important1024Source of Resilience in the Safety II Concept," IFAC-PapersOnLine, **52**(27), pp. 382–1025387. https://doi.org/10.1016/J.IFACOL.2019.12.690.
- [42] Chen, C. C., and Crilly, N., 2014, "Modularity, Redundancy and Degeneracy: CrossDomain Perspectives on Key Design Principles," *8th Annual IEEE International Systems Conference, SysCon 2014 Proceedings*, IEEE, pp. 546–553.
 https://doi.org/10.1109/SysCon.2014.6819309.
- [43] Wang, J., and Li, M., 2015, "Redundancy Allocation for Reliability Design of
 Engineering Systems with Failure Interactions," Journal of Mechanical Design,
 1032
 137(3). https://doi.org/10.1115/1.4029320/376160.
- 1033[44]Wang, J., and Li, M., 2015, "Redundancy Allocation Optimization for Multistate1034Systems with Failure Interactions Using Semi-Markov Process," Journal of1035Mechanical Design, **137**(10). https://doi.org/10.1115/1.4031297.
- 1036[45]Uday, P., and Marais, K., 2013, "Exploiting Stand-in Redundancy to Improve1037Resilience in a System-of-Systems (SoS)," Procedia Comput Sci, 16, pp. 532–541.1038https://doi.org/10.1016/J.PROCS.2013.01.056.
- 1039[46]Rodrigues Mendes Ribeiro, R., Bessani, M., De Souza Sant Anna Fogliatto, M., and1040Dias Maciel, C., 2019, "Resilience Assessment of Self-Healing Systems with1041Redundancy," IEEE Latin America Transactions, **17**(9), pp. 1546–1551.1042https://doi.org/10.1109/TLA.2019.8931189.
- [47] Paparistodimou, G., Duffy, A., Whitfield, R. I., Knight, P., and Robb, M., 2020, "A
 Network Science-Based Assessment Methodology for Robust Modular System
 Architectures during Early Conceptual Design," Journal of Engineering Design,
 31(4), pp. 179–218. https://doi.org/10.1080/09544828.2019.1686469.
- 1047 [48] Paparistodimou, G., Duffy, A., Whitfield, R. I., Knight, P., and Robb, M., 2020, "A
 1048 Network Tool to Analyse and Improve Robustness of System Architectures," Design
 1049 Science, 6, p. e8. https://doi.org/10.1017/dsj.2020.6.
- 1050 1051
- 1051
- 1052
- 1054
- 1055
- 1056

1057 1058 1059		Figure Captions List
1007	Fig. 1	Methodology conceptualization prior to disruption: initial network
	Fig. 2	Methodology conceptualization at the moment of disruption: disrupted
		network
	Fig. 3	Methodology conceptualization post-disruption: recovery network
	Fig. 4	Overview of methodology concept: dynamically simulating dual-layer
		network states (prior, during, and post disruption)
	Fig. 5	Functional schematic option 1 (white boxes indicate operational and grey
		standby components at initial conditions)
	Fig. 6	Physical schematic for options 1 and 3 (white boxes indicate operational
		and grey standby components at initial conditions)
	Fig. 7	Functional schematic option 2 (white boxes indicate operational and grey
		standby components at initial conditions)
	Fig. 8	Functional schematic option 3 (white boxes indicate operational and grey
		standby components at initial conditions)
	Fig. 9	Functional schematic option 4 (white boxes indicate operational and grey
		standby components at initial conditions)
	Fig. 10	Functional schematic option 5 (white boxes indicate operational and grey
		standby components at initial conditions)

Fig. 11	Functional schematic option 6 (white boxes indicate operational and grey
	standby components at initial conditions)
Fig. 12	Functional schematic option 7 (white boxes indicate operational and grey
	standby components at initial conditions)
Fig. 13	Functional schematic option 8 (white boxes indicate operational and grey
	standby components at initial conditions)
Fig. 14	Physical schematic for options 2 and 4 (white boxes indicate operational
	and grey standby components at initial conditions)
Fig. 15	Physical schematic for options 5 and 7 (white boxes indicate operational
	and grey standby components at initial conditions)
Fig. 16	Physical schematic for options 6 and 8 (white boxes indicate operational
	and grey standby components at initial conditions)
Fig.17	Mean resilience results for the system options of the case study
Fig. 18	Resilience results for k = 1, 2, 3, 4 components disruption
Fig.19	Mean effects plot for the design variables against resilience
Fig.20	Interaction plot for the design variables against resilience

1062 1063	Table Caption List						
	Table 1	User defined inputs of the methodology					
	Table 2	Three design variables (factors) with two-levels (options) as input for					
		system options generation					
	Table 3	Eight system options generated-based DOE 2 ³ design					
	Table 4	Input definition summary for Option 1 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 5	Input definition summary for Option 2 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 6	Input definition summary for Option 3 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 7	Input definition summary for Option 4 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 8	Input definition summary for Option 5 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 9	Input definition summary for Option 6 (grey cells filled with 1 indicate					
		connectivity between components)					
	Table 10	Input definition summary for Option 7 (grey cells filled with 1 indicate					
		connectivity between components)					

Table 11	Input definition summary for Option 8 (grey cells filled with 1 indicate
	connectivity between components)
Table 12	Case study performance criteria for resilience metric calculation
Table 13	Average resilience calculation results for k=1,2,3,4 combined component
	disruption
Table 14	Resilience calculation results for a k=2 combined components disruption
	(showing the ID of the components for each Option in the columns)
	resulting at zero resilience
Table 15	Methodological aspects incorporated in the proposed method compared
	to two relatable methods existing in the literature

1066 Table 1: User defined inputs of the methodology

1067

Method	Input	Input	Input
Stage input	Number	Name	Explanation
System	Input 1	Entire functional	Functional flows/connectivity between
modelling		network	components.
	Input 2	Entire physical	Grid network.
		network	
	Input 3	Component	Physical location of each component.
		location physical	
		network	
Resilience	Input 4	Operational and	Assignment of components as operational or
measure		standby	standby (redundant).
		functional	
		components	
Performance	Input 5	Source and	Assignment of source and demand components
measure		demand definition	in the functional network
Disruption	Input 6	Scale of	Define number of components to be
approach		disruption	incapacitated.
Recovery	Input 7	Component start	Assigning the time that a component needs to
strategy		up times	start up if on standby.
Resilience	Input 8	Minimum	System performance required immediately post-
assessment		performance	disruption.
		criterion	
	Input 9	Satisfactory	System performance to be deemed recovered.
		performance	
		criterion	
	Input 10	Objective	Time (tr) by which the system must have
		restoration	recovered to satisfactory performance after a
		component time	disruption.
		criterion(tr)	

Figure 1: Methodology conceptualization prior to disruption: initial network

1076

1077

1078

1079

1080

1081 Figure 2: Methodology conceptualization at the moment of disruption: disrupted

1082 network

Figure 3: Methodology conceptualization post-disruption: recovery network 1086

1091 Figure 4: Overview of methodology concept: dynamically simulating dual-layer network states (prior, during, and post disruption)

Table 2: Three design variables (factors) with two-levels (options) as input for system options generation

Factors	Description	1 (Level)	-1 (Level)
Variable 1	Batteries option	NB (no batteries)	B (batteries)
Variable 2	Type of redundancy: EDC level or Consumer level	AS (alternative supply/ redundancy at Consumers)	DS (double supply/ redundancy at EDCs)
Variable 3	Number of main sources	FM (four main sources)	TM (three main sources)

	Batteries option	LV_SWB-EDC- Consumer	Number of main sources
Option 1	1 NB	1 AS	1 FM
Option 2	1 NB	1 AS	-1 TM
Option 3	1 NB	-1 DS	1 FM
Option 4	1 NB	-1 DS	-1 TM
Option 5	-1B	1 AS	1 FM
Option 6	-1B	1 AS	-1 TM
Option 7	-1B	-1 DS	1 FM
Option 8	-1B	-1 DS	-1 TM

Figure 5: Functional schematic option 1 (white boxes indicate operational and grey standby components at initial conditions)

									\int	٦		
	Zone L	Zone K	Zone J	Zone I	Zone H	Zone G	Zone F	Zone E	Zone D	Zone C	Zone B	Zone A
Deck 01												
Deck 1			5 6									
Deck 2		24 46	23 45	44 43 22 21	42 41 20 19	17 39	18 40	38 37 16 15	36 35 14 13			
Deck 3												/
Deck 4					7 11			8 12 28				
Deck 5					9			10				
Deck 6	33 34				31 29			2 32 30				

Figure 6: Physical schematic for option 1 and 3 (white boxes indicate operational and grey standby components at initial conditions)

Figure 7: Functional schematic option 2 (white boxes indicate operational and grey standby components at initial conditions)

Figure 8: Functional schematic option 3 (white boxes indicate operational and grey standby components at initial conditions)

Figure 9: Functional schematic option 4 (white boxes indicate operational and grey standby components at initial conditions)

Figure 11: Functional schematic option 6 (white boxes indicate operational and grey standby components at initial conditions)

Figure 12: Functional schematic option 7 (white boxes indicate operational and grey standby components at initial conditions)

Figure 13: Functional schematic option 8 (white boxes indicate operational and grey standby components at initial conditions)

Figure 14: Physical schematic for options 2 and 4 (white boxes indicate operational and grey standby components at initial conditions)

Figure 15: Physical schematic for options 5 and 7 (white boxes indicate operational and grey standby components at initial conditions)

									\int	٦		
	Zone L	Zone K	Zone J	Zone I	Zone H	Zone G	Zone F	Zone E	Zone D	Zone C	Zone B	Zone A
Deck 01			/	1								
Deck 1			4 5									
Deck 2		25 47	24 46	45 44 23 22	43 42 21 20	18 40	19 41	39 38 17 16	37 36 15 14			/
Deck 3												/
Deck 4					8 6 12			9 7 13				
Deck 5					10			11				
Deck 6	34 35				3			2 1				

Figure 16: Physical schematic for options 6 and 8 (white boxes indicate operational and grey standby components at initial conditions)

Table 4: Input Definition Summary for Option 1 (grey cells filled with 1 indicate connectivity between components)

Table 5: Input Definition Summary for Option 2 (g	rey cells filled with 1 indicate connectivity
between components)	

	Option 2	Diesel Generator 1	Diesel Generator 2	Diesel Generator 3	Emergency Generator 1	Emergency Switchboard 1	HVSwitchboard 1	HVSWITCHDOALD Z	Transformer2	LV Switchboard 1	LV Switchboard 2	EDC 1	EDC 2	EDC 3	EDC 5	EDC 6	EDC 7	EDC 8	EDC 9	EDC 10	EDC 11	EUC 12 HV Interconnector1	HV Interconnector2	LV Interconnector1	LV Interconnector2	Motor Convertor 1	Motor Convertor 2	Motor 1	Motor 2	SteeringGearPowerPack1	Constituer 1	Consumer 2	Consumer 3	Consumer 4	Consumer 5	Consumer 6	Consumer 8	Consumer 9	Consumer 10	Consumer 11	Consumer 12	Countra(C)		Demand (D) Onerational (O)/	Standby(S)	Time to start up (sec)	Zone	Park	Deck
1	Diesel Generator 1	0	0	0	0	0	1	0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 (0	0	0	0) () (0	0	0	S			0	60	Ε	e	5
2	Diesel Generator 2	0	0	0	0	0	1	0 0			0	0	0 0) (0 0	0	0	0	0	0 0) (0 0		0	0	0	0	0	0	0 0) (0 0	0	0	0	0) (0	0	0	S			S	60	Е	e	5
3	Diesel Generator 3	0	0	0	0	0	0	1 (0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0) (0	0	0	S			0	120	Н	e	5
4	Emergency Generator 1	0	0	0	0	1	0 (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 (0	0	0	0	0 0) (0	0	0	S	;		S	30	J	1	1
5	Emergency Switchboard 1	0	0	0	0	0	0	0 0	0	0	0	1	0 1	. (1	0	1	0	1	0 1	(0 0	0	0	0	0	0	0	0	1 1	0	0 (0	0	0	0	0 0) (0	0	0				S	0	J	1	1
6	HV Switchboard 1	0	0	0	0	0	0 (0 1	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (1	0	0	0	1	0	0	0	0 0) (0 (0	0	0	0	0 0) (0	0	0				0	0	Н	4	4
7	HV Switchboard 2	0	0	0	0	0	0 (0 0	1	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	1	0	0	0	1	0	0	0 0) (0 0	0	0	0	0	0 0) (0	0	0				0	0	Ε	4	4
8	Transformer 1	0	0	0	0	0	0	0 0		1	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0		0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0) (0	0	0				0	10	Н	5	5
9	Transformer2	0	0	0	0	0	0	0 0	0	0	1	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 (0	0	0	0	0 0) (0	0	0				0	10	Ε	5	5
10	LV Switchboard 1	0	0	0	0	0	0	0 0	0 0	0	0	1	0 1	. (1	0	1	0	1	0	. (0 0	0	1	0	0	0	0	0	1 1	0	0 (0	0	0	0	0 0) (0	0	0				0	0	Н	4	4
11	LV Switchboard 2	0	0	0	0	0	0	0 0	0 0	0	0	0	1 (1	L O	1	0	1	0	1 (1	1 0	0	0	1	0	0	0	0	1 1	LO	0 0	0	0	0	0	0 0) (0	0	0				0	0	E	4	4
12	EDC 1	0	0	0	0	0	0	0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0	1	1	0	0	0	0	0 0) (0	0	0				0	10	D	2	2
13	EDC 2	0	0	0	0	0	0 (0 0	0 0	0	0	0	0 () () ()	0	0	0	0	0 () (0 0	0	0	0	0	0	0	0	0 0	1	l 1	0	0	0	0) ()) (0	0	0			_	0	10	D	2	2
14	EDC 3	0	0	0	0	0	0	0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 (1	1	0	0	0 0) (0	0	0				0	10	E	2	2
15	EDC 4	0	0	0	0	0	0 (0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 (1	1	0	0	0 0) (0	0	0		_		0	10	E	2	2
16	EDC 5	0	0	0	0	0	0 (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	1	1	0 0) (0	0	0			_	0	10	G	2	2
17	EDC 6	0	0	0	0	0	0	0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	1	1) ()) (0 0	0	0		_		0	10	F	- 2	2
18	EDC 7	0	0	0	0	0	0 1	0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 () (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	1	. 0	0	0	0		_	_	0	10	н	2	2
19	EDC 8	0	0	0	0	0	0	0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	1	. 0	0	0	0			_	0	10	н	2	2
20	EDC 9	0	0	0	0	0	0	0 0	0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	1	1	0	0	-		_	0	10	-	- 2	2
21	EDC 10	0	0	0	0	0	0 (0 0	0 0	0	0	0	0 () (0 0	0	0	0	0	0 () (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) 1	1	0	0		_	_	0	10			2
22	EDC 11	0	0	0	0	0	0	0 0	0 0	0	0	0	0 0		0 0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 0) (0 0	1	1		_	_	0	10	J	- 2	2
23	EDC 12	0	0	0	0	0	0		0 0	0	0	0	0 0		0 0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 0) (0 0	1	1			_	0	10	K	- 2	2
24	HV Interconnector1	0	0	0	0	0	0	1 (0 0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0	0	0	-	_	_	0	30	н	- 4	+
25	HV Interconnector2	0	0	0	0	0	1	0 0	0 0	0	0	0	0 0		0 0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0) (0 0	0	0	-	_	_	S	30	E	- 4	1
26	LV Interconnector1	0	0	0	0	0	0 0		0 0	0	1	0	0 0		0 0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 0		0 0	0	0	-	_		S	30	H	- 4	+
27	LV Interconnector2	0	0	0	0	0	0 1		0 0	1	0	0	0 0) 0	0	0	0	0	0 0) ()	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0			0	0	0	-	_		S	30	Ł	- 4	+
28	Motor Convertor 1	0	0	0	0	0	0 1	0 0	0 0	0	0	0	0 0) ()	0	0	0	0	0 (0 0	0	0	0	0	0	1	0	0 0) (0 0	0	0	0	0) ()) (0 0	0	0	-	_	_	0	180	н	- 6	5
29	Niotor Convertor 2	0	0	0	0	0	0		0	0	0	0	0 0) 0	0	0	0	0				0	0	0	0	0	0	T			0	0	0	0	0			0	0	0	-		-	0	180	E	e	2
30	Motor 1	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-		-	0	10	н		2
31	Motor 2	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-		-	0	10	E		2 C
32	Steering Gear Power Pack 1	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-		+	0	10	L.		2
24	Consumer 1	0	0	0	0	0	0 1			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	+	3	10			2
25	Consumer 1	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-		-	с с	0	D		2
26	Consumer 2	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0			0	0	0	-	+	-	0	0	5		2
27	Consumer S	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	+	0 c	0	C	-	-
20	Consumer 5	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	-	2	0	C		-
20	Consumer 5	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0		1		0	0	0	0	0	0	0				0	0	0	0				0	0	\vdash		<u>_</u>	-	0	G E	+	2
40	Consumer 7	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	<u>-</u> +	3	0	r v	-	2
40	Consumer 8	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-		<u>+</u>	s	0	Ч		2
41	Consumer 9	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	÷	-	0	- 1	+	2
42	Consumer 10	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+	<u>_</u>	5	0	-		2
45	Consumer 10	0	0	0	0	0	0			0	0	0	0 0			0	0	0	0				0	0	0	0	0	0	0				0	0	0	0				0	0	-	+		3	0	-	-	-
44	Consumer 12	0		10	0	0	0			0	0	0	0 0			10	0	0	0					0	0	0	0	0	0				0	0	0					0	0		+	-	0	0	J		-
45	consumer 12	0	10	10			011	υμι				U	UIL	11	2 T U	10			0	υII	7 I U					U	0	0	0	υĮt	110	10	U	10	0			110	10	10	U		11	0	3	U	- N	14	۷

Table 6: Input Definition Summary for Option	3 (grey cells filled with 1 indicate connectivity
between components)	

	Option 3	Diesel Generator 1	Diesel Generator 2	Gas Turbine 1	Gas Turbine 2	Emergency Generator 1	Emergency Switchboard 1 HVSwitchboard1	HVSwitchboard2	Transformer 1	Transformer2	LV Switchboard 1	LV Switchboard 2 FDC 1	EDC 2	EDC 3	EDC 4	EDC 5	EDC 6	EDC 7	EDC 9	EDC 10	EDC 11	EDC 12	HV Interconnector1 HV Interconnector2	LV Interconnector1	LV Interconnector2	Motor Convertor 1	Motor Convertor 2	Motor 1	Motor 2 SteerinpGearPowerPack1	SteeringGearPowerPack2	Consumer 1	Consumer 2	Consumer 3	Consumer 4	Consumer 5	Consumer 7	Consumer 8	Consumer 9	Consumer 10	Consumer 11	Consumer 12	Source(S)	Demand (D)	Operational (O)/	Standovisi Time to start up (sec)	76	20116	Deck
1	Diesel Generator 1	0	0	0	0	0	0 1	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	S	<u> </u>	0	60	<u> </u>	<u> </u>	6
2	Diesel Generator 2	0	0	0	0	0	0 0	1	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	S	<u> </u>	S	60	E	1	6
3	Gas Turbine 1	0	0	0	0	0	0 1	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	S	-	S	120) H	1	6
4	Gas Turbine 2	0	0	0	0	0		1	0	0	0			0	0	0	0	0 0		0	0	0	0 0	0	0	0	0	0			0	0	0	0	0 0	0 0	0	0	0	0	0	S		0	120) E	-	6
5	Emergency Generator 1	0	0	0	0	0	1 0	0	0	0	0			0	0	0	0	0		0	0	0	0 0	0	0	0	0	0			0	0	0	0			0	0	0	0	0	S		S	30		+	1
7	Emergency Switchboard 1	0	0	0	0	0		0	1	0	0			1	0	1	0			0	1	0	1 0		0	1	0	0				0	0	0			0	0	0	0	0		-	3	0	+	-	1
/ 。	HV Switchboard 1	0	0	0	0	0		0	1	1	0			0	0	0	0	0 0		0	0	0			0	1	1	0				0	0	0			0	0	0	0	0		-			- H		4
0	Transformer 1	0	0	0	0	0		0	0	1	1			0	0	0	0	0 0		0	0	0			0	0		0				0	0	0			0	0	0	0	0		-		10		-	4
9	Transformer 1	0	0	0	0	0		0	0	0		1 0		0	0	0	0	0 0		0	0	0			0	0	0	0			0	0	0	0			0	0	0	0	0		-		10		-	5
10	IV Switchboard 1	0	0	0	0	0		0	0	0	0	1	1	1	1	1	1	1 .	1 1	1	1	1		1	0	0	0	0		1	0	0	0	0			0	0	0	0	0		-	0	10	E	+	2
12	LV Switchboard 2	0	0	0	0	0		0	0	0	0		1	1	1	1	1	1 .	1 1	1	1	1			1	0	0	0		1	0	0	0	0			0	0	0	0	0		-		0		+	4
13	FDC 1	0	0	0	0	0		0	0	0	0			0	0	0	0	0 0		0	0	0			0	0	0	0			1	0	0	0			0	0	0	0	0		-		10		, –	2
14	EDC 2	0	0	0	0	0	0 0	0	0	0	0	0 0		0	0	0	0	0 0		0	0	0	0 0	0	0	0	0	0			0	1	0	0	0 0	0 0	0	0	0	0	0		-	0	10) r	<u>,</u>	2
15	EDC 3	0	0	0	0	0	0 0	0	0	0	0	0 0		0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	1	0	0 0	0 0	0	0	0	0	0		+	0	10) F	: 1	2
16	EDC 4	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	1	0 0	0 0	0	0	0	0	0		-	0	10) E		2
17	EDC 5	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	1 (0 0	0	0	0	0	0		-	0	10) (;	2
18	EDC 6	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 1	0	0	0	0	0	0			0	10) F	:	2
19	EDC 7	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	1	0	0	0	0	0			0	10) F	1	2
20	EDC 8	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0) ()	1	0	0	0	0			0	10) F	1	2
21	EDC 9	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	1	0	0	0			0	10)		2
22	EDC 10	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	1	0	0			0	10	j I		2
23	EDC 11	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	1	0			0	10	J		2
24	EDC 12	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	1			0	10) K	(2
25	HV Interconnector1	0	0	0	0	0	0 0	1	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0			0	30	I F	1	4
26	HV Interconnector2	0	0	0	0	0	0 1	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0			S	30) E		4
27	LV Interconnector1	0	0	0	0	0	0 0	0	0	0	0	1 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0			S	30	I P	1	4
28	LV Interconnector2	0	0	0	0	0	0 0	0	0	0	1	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0			S	30	I E		4
29	Motor Convertor 1	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	1	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0			0	180	ЭH	1	6
30	Motor Convertor 2	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	1 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0		1	0	180) E		6
31	Motor 1	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 () ()	0	0	0	0	0		D	0	10	J H	1	6
32	Motor 2	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	0	10) E	_	6
33	Steering Gear Power Pack 1	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	0	10	<u> </u>	-	6
34	Steering Gear Power Pack 2	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	S	10		-	6
35	Consumer 1	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	0	0		-	2
36	Consumer 2	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	S	0		-	2
37	Consumer 3	0	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0 0		0	0	0	0 0	0	0	0	0	0		0 0	0	0	0	0	0 0	0 0	0	0	0	0	0		D	0	0		-	2
38	Consumer 4	0	U	0	0	0		0	U	0	0			0	0	0	0	0 0		0	U	0			0	0	0	0				0	0	0			0	0	0	U	0			1	+0	+	-	2
39	Consumer 5	0	0	0	0	0		0	0	0	0			0	0	0	0	0 0		0	0	0			0	0	0	0				0	0	0			0	0	0	0	0			-0				2
40	Consumer 8	0	0	0	0	0		0	0	0	0			0	0	0	0	0 0			0	0			0	0	0	0				0	0	0			0	0	0	0	0	\vdash		1	+0	+	+	2
41	Consumer 8	0	0	0	0	0		0	0	0	0			0	0	0	0	0 4		0	0	0			0	0	0	0				0	0	0			0	0	0	0	0			10		+ -	+	<u>∠</u> 2
42	Consumer 9	0	0	0	0	0		0	0	0	0			0	0	0	0	0 4		0	0	0			0	0	0	0				0	0	0			0	0	0	0	0				-0	$+ \frac{1}{2}$	+	2
43	Consumer 10	0	0	0	0	0		0	0	0	0			0	0	0	0	0 4			0	0			0	0	0	0				0	0	0			0	0	0	0	0			1	+0	+	+	2
44	Consumer 11	0	0	0	0	0		0	0	0	0			0	0	0	0	0 0				0			0	0	0	0				0	0	0			0	0	0	0	0		t D	10	0	+	\pm	2
46	Consumer 12	0	0	0	0	0		0	0	0	0			0	0	0	0	0 0		0	0	0		0	0	0	0	0			0	0	0	0			0	0	0	0	0		5	6	0	+	1	2

Table 7: Input Definition Summary for Option 4	(grey cells filled with 1 indicate connectivity
between components)	

Table 8: Input Definition Summary for Option	5 (grey cells filled with 1 indicate connectivity
between components)	

	Option 5	Diesel Generator 1	Diesel Generator 2	Gas Turbine 1	Gas Turbine 2	Emergency Generator 1	Emergency Switchboard 1	Battery 1	Battery 2	HVSwitchboard1	HVSWITCHDOALG2	Transformer2	LV Switchboard 1	LV Switchboard 2	EDC1	EDC 3	EDC 4	EDC 5	EDC 6	EDC 7	EDC 8	EDC9	EDC 10	EDC 11	HV Interconnector 1	HV Interconnector2	LV Interconnector1	LV Interconnector2	Motor Convertor 1	Motor Convertor 2	Motor 2	SteeringGearPowerPack1	SteeringGearPowerPack2	Consumer 1	Consumer 2	Consumer 4	Consumer 5	Consumer 6	Consumer 7	Consumer 8	Consumer 9	Consumer 10	Consumer 11	Consumer 12	Source(S)	Demand (D)	Operational (O)/	Time to start up (sec)	Znna	2016	Deck
1	Diesel Generator 1	0	0	0	0	0	0	0	0	1) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	S		0	60	Н	1	6
2	Diesel Generator 2	0	0		0	0	0	0	0	0	1 (0 0	0	0		0 0	0		0	0	0	0	0 0	0 0	0 0		0		0	0 (0 0	0	0	0	0 0			0		0	0 (0	0	0	S		S	60	E		6
3	Gas Turbine 1	0	0	0	0	0	0	0	0	1) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0	S		S	120) H	1	6
4	Gas Turbine 2	0	0		0	0	0	0	0	0	1 (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0		0		0	0 0	0	0	0	0	0 0			0	0	0	0 0	0	0	0	S		0	120) E	1	6
5	Emergency Generator 1	0	0	0	0	0	1	0	0	0 0) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	S		S	30	(J	1	1
6	Emergency Switchboard 1	0	0	0	0	0	0	0	0	0 () (0 0	0	0	1	0 1	0	1	0	1	0	1	0 1	10	0 0	0	0	0	0	0 (0 0	1	1	0	0 0	0	0	0	0	0	0 (0	0	0			S	0	J	1	1
7	Battery 1	0	0	0	0	0	0	0	0	0 0) (0 0	1	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	S		S	0	H	1	4
8	Battery 2	0	0		0	0	0	0	0	0 () (0 0	0	1	0	DO	0		0	0	0	0	0 0) (0	0	0	0	0	0 (0	0	0	0	0 0			0		0	0 (0	0	0	S		S	0	E	£	4
9	HV Switchboard 1	0	0	0	0	0	0	0	0	0 (1	L 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (1	0	0	0	1	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0			0	0	H	1	4
10	HV Switchboard 2	0	0	0	0	0	0	0	0	0 0) (1	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	1	0	0	0	1	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0			0	0	E	1	4
11	Transformer 1	0	0	0	0	0	0	0	0	0 0) (0 0	1	0	0	0 0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0			0	10	/ H	1	5
12	Transformer2	0	0	0	0	0	0	0	0	0 () (0 0	0	1	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0			0	10	/ E	:	5
13	LV Switchboard 1	0	0	0	0	0	0	1	0	0 () (0 0	0	0	1	0 1	0	1	0	1	0	1	0 1	10	0	0	1	0	0	0 (0 0	1	1	0	0 0	0	0	0	0	0	0 (0	0	0		\vdash	0	0	H	1	4
14	LV Switchboard 2	0	0	0	0	0	0	0	1	0 () (0 0	0	0	0	1 0	1	0	1	0	1	0	1 (1	0	0	0	1	0	0 (0 0	1	1	0	0 0	0	0	0	0	0	0 0	0	0	0		\vdash	0	0	E	:	4
15	EDC 1	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0 0	0	0	1	1 0	0	0	0	0	0	0 0	0	0	0			0	10	D)	2
16	EDC 2	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	0 0	0	0	1	1 0	0	0	0	0	0	0 0	0	0	0		\vdash	0	10	D)	2
17	EDC 3	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	0 0	0	0	0	0 1	. 1	0	0	0	0	0 0	0	0	0		\vdash	0	10	E		2
18	EDC 4	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0 (0 0	0	0	0	0	0	0	0 () (0 0	0	0	0	0	0 0	0 0	0	0	0	0 1	1	0	0	0	0	0 (0	0	0		\vdash	0	10	E	-	2
19	EDC 5	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0 0	1	1	0	0	0 0	0	0	0		\vdash	0	10	G	<u>i</u>	2
20	EDC 6	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	1	1	0	0	0 0	0	0	0		\vdash	0	10	F	-	2
21	EDC 7	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0 0		0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	1	1	0 0	0	0	0		\vdash	0	10	H	<u> </u>	2
22	EDC 8	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0 0		0	0	0	0	0	0			0	0	0	0	0	0 0	0	0	0	0		0	0	0	1	1	0	0	0	0			0	10	H	-	2
23	EDC 9	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0 0		0	0	0	0	0	0			0 0	0	0	0	0	0 0	0 0	0	0	0		0	0	0	0	0	1 :	1	0	0		\vdash	0	10	+	+	2
24	EDC 10	0	0	0	0	0	0	0	0	0 0		1 0	0	0	0 0		0	0	0	0	0	0			0	0	0	0	0	0 0		0	0	0			0	0	0	0	1.	1				\vdash	0	10	-	-	2
25	EDC 11	0	0	0	0	0	0	0	0	0 0			0	0	0 1		0	0	0	0	0	0				0	0	0	0	0 0		0	0	0			0	0	0	0	0 0		1	1			0	10	+	+	2
26	EDC 12	0	0		0	0	0	0	0				0	0			0	0	0	0	0	0		10	0	0	0		0	0 1		0	0	0				0	0	0	0 0		1	1			0	10	K		2
2/	HV Interconnector1	0	0	0	0	0	0	0	0	1			0	0			0	0	0	0	0	0				0	0	0	0	0 0		0	0	0			0	0	0	0	0 0			0			0	30	H		4
20	HV Interconnector2	0	0	0	0	0	0	0	0				0	1	0		0	0	0	0	0	0				0	0	0	0	0		0	0	0			0	0	0	0	0 0		0	0		\vdash	5	20	÷		4
29	LV Interconnector1	0	0	0	0	0	0	0	0	0 0			1	-	0 0		0	0	0	0	0	0				0	0	0	0	0 1		0	0	0			0	0	0	0	0 0	0	0	0	\vdash	\vdash	5 c	30	+	+	4
30	Motor Convertor 1	0	0	0	0	0	0	0	0	0 0			-	0	0 0		0	0	0	0	0	0				0	0	0	0	0		0	0	0			0	0	0	0	0 0		0	0	\vdash	\vdash	3	190		<u> </u>	4 6
22	Motor Convertor 2	0	0	0	0	0	0	0	0				0	0			0	0	0	0	0	0			0	0	0	0		0	1	0	0	0			0	0	0	0	0		0	0			0	190	2 E	-	6
33	Motor 1	0	0	0	0	0	0	ŏ	0	0 0			10	0	0		0	0	0	0	0	0			0	0	0	ŏ	0	0		0	0	0		0	l o	0	ŏ	0	0 0	0	0	0	\vdash	D	0	10	L R	1	6
34	Motor 2	0	0	0	0	0	0	0	0	0 0			0	0	0		0	0	0	0	0	0			0	0	0	0	0	0 0		0	0	0		0	0	0	0	0	0 0	0	0	0		D	ō	10	Ē		6
35	SteeringGearPowerPack1	0	0	0	0	0	0	0	0	0 0) 0	0	0	0		0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 1	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	\vdash	D	0	10	it ī	+	6
36	SteeringGearPowerPack2	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0 0	0 0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0		D	S	10		-	6
37	Consumer 1	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0		D	0	0	D	5	2
38	Consumer 2	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0		0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0		D	S	0	C	5	2
39	Consumer 3	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0 0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0		D	0	0	E		2
40	Consumer 4	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0		D	S	0	E		2
41	Consumer 5	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () (0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0		D	0	0	G	3	2
42	Consumer 6	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () (0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0		D	S	0	F	:	2
43	Consumer 7	0	0		0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () (0		0		0	0	0 0	0	0	0	0 0			0	0	0	0 0	0	0	0		D	0	0	H	1	2
44	Consumer 8	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () (0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0		D	S	0	H	1	2
45	Consumer 9	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0 0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0		D	0	0	1		2
46	Consumer 10	0	0	0	0	0	0	0	0	0 0) () ()	0	0	0	0 0	0	0	0	0	0	0	0 () (0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0		D	S	0	1		2
47	Consumer 11	0	0	0	0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () (0 0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0	0	0 (0	0	0		D	0	0	J	j i	2
48	Consumer 12	0	0	0	0	0	0	0	0	0 0) () ()	0	0	0	0 0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0		D	S	0	K	:	2

Table 9: Input Definition Summary for Option	6 (grey cells filled with 1 indicate connectivity
between components)	

	Option 6	Diesel Generator 1	Diesel Generator 2	Emergency Generator 1	Emergency Switchboard 1	Battery 1	HV Switchboard1/forward	HV Switchboard 2/aft Transformer 1	Transformer2	LV Switchboard 2	EDC 1 EDC 2	EDC 3	EDC 4	EDC 6	EDC 7	EDC 9	EDC 10	EDC 11 EDC 12	HV Interconnector1 HV Interconnector2	LV Interconnector1	LV Interconnector2	Motor Convertor 1 Motor Convertor 2	Motor 1	Motor 2	SteeringGearPowerPack1 SteeringGearPowerPack2	Consumer 1	Consumer 2 Consumer 3	Consumer 4	Consumer 5	Consumer 6 Consumer 7	Consumer 8	Consumer 9	Consumer 10	Consumer 11 Consumer 12	Source(S)	Demand (D)	Operational (U)/ Standbv(S)	Time to start up (sec)	Zone	Deck
1	Diesel Generator 1	0	0 0	0 0	0	0 0	1	0 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		0	60	E	6
2	Diesel Generator 2	0	0 0	0 0	0	0 0	1	0 0	0 0	0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		S	60	E	6
3	Diesel Generator 3	0	0 0	0 0	0	0 0	0	1 0	0 0	0 0	0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		0	120	н	6
4	Emergency Generator 1	0	0 0	0 0	1	0 0	0	0 0	0 () ()	0 0	0	0 (0 0	0 (0 0	0	0 0	0 0	0	0 (0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		S	30	J	1
5	Emergency Switchboard 1	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 (1 0	1	0	1 0	1 (1	0	1 0	0 0	0	0 (0 0	0 (0	1 1	0	0 0	0	0	0 0	0	0	0	0 0			S	0	J	1
6	Battery 1	0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 (0 0	0 (0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		S	0	н	4
7	Battery 2	0	0 0	0 0	0	0 0	0 0	0 0	0 (1	0 0	0	0 (0 0	0 (0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	S		S	0	E	4
8	HV Switchboard 1	0	0 0	0 0	0	0 0	0 0	0 1	0 () ()	0 0	0	0 (0 0	0 0	0 0	0	0 0	1 0	0	0	1 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	0	н	4
9	HV Switchboard 2	0	0 0	0 0	0	0 0	0 0	0 0	1	0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 1	0	0 (1	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	0	E	4
10	Transformer 1	0	0 0	0 0	0	0 0	0 0	0 0	0	0	0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	10	н	5
11	Transformer2	0	0 0	0 0	0	0 0	0 0	0 0	0 0	1	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	10	E	5
12	LV Switchboard 1	0	0 0	0 0	0	1	0	0 0	0 0	0 0	1 0	1	0	1 0	1	1	0	1 0	0 0	1	0 0	0 0	0 0	0	1 1	. 0	0 0	0	0	0 0	0	0	0	0 0			0	0	н	4
13	LV Switchboard 2	0	0 0	0 0	0	0 1	0	0 0	0 0	0 0	01	0	1 0	1	0	0	1	0 1	0 0	0	1 0	0 0	0 0	0	1 1	0	0 0	0	0	0 0	0	0	0	0 0			0	0	E	4
14	EDC1	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	1	10	0	0	0 0	0	0	0	0 0			0	10	D	2
15	EDC 2	0	0 0	0 0	0	0 0		0 0	0 0		0 0	0	0 0	0 0	0 0		0	0 0	0 0	0	0 0		0	0	0 0	1		0	0		0	0	0	0 0			0	10	0	2
10	EDC 3	0	0 0		0	0 0			0 0		0 0	0	0 0				0	0 0	0 0	0	0 0			0	0 0	0		1	0		0	0	0	0 0			0	10	C	2
10	EDC 5	0	0 0		0	0 0			0		0 0	0					0	0 0	0 0	0	0 0			0	0 0	0		1	1	1 0	0	0	0				0	10	G	2
10	EDC 6	0	0 0		0	0 0			0 0		0 0	0	0 0		0 0		0	0 0	0 0	0	0 0			0	0 0	0		0	1	1 0	0	0	0		-		0	10	E	2
20	EDC 7	0	0 0		0	0 0					0 0	0	0 0		0 0		0	0 0	0 0	0	0 0		0	0	0 0	0	0 0	0	0	1	1	0	0	0 0			0	10	H	2
21	EDC 8	0			0	0 0			0 0		0 0	0	0 0		0 0		0		0 0	0	0 0			0	0 0	0		0	0	1	1	0	0	0 0			0	10	н	2
22	EDC 9	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0		0	0 0	0 0	0	0 0		0	0	0 0	0	0 0	0	0		0	1	1	0 0			0	10	i.	2
23	EDC 10	0	0 0	0	0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0		0	0 0	0 0	0	0 0		1 0	0	0 0	0	0 0	0	0	0 0	0	1	1	0 0			0	10	÷	2
24	EDC 11	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0		0 (0	0 0	0	0 0	0	0	0 0	0	0	0	1 1			0	10	i	2
25	EDC 12	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	1 1			0	10	ĸ	2
26	HV Interconnector1	0	0 0	0 0	0	0 0	0	1 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	30	н	4
27	HV Interconnector2	0	0 0	0 0	0	0 0	1	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			S	30	E	4
28	LV Interconnector1	0	0 0	0 0	0	0 0	0 0	0 0	0 0	1	0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			S	30	н	4
29	LV Interconnector2	0		0 0	0	0 0	0	0 0	0 :	0	0 0	0	0 (0 0	0 0	0 0	0		0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			S	30	E	4
30	Motor Convertor 1	0	0 0	0 0	0	0 0	0	0 0	0 0	0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	1	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	180	н	6
31	Motor Convertor 2	0	0 0	0 0	0	0 0	0 (0 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 (1	0 0	0	0 0	0	0	0 0	0	0	0	0 0			0	180	Е	6
32	Motor 1	0		0 0	0		0 0	0 0	0 0	0	0 0	0	0 (0 0	0 0	0 0	0		0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0		0	0	0 0		D	0	10	н	6
33	Motor 2	0	0 0	0 0	0	0 0	0 (0 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	10	E	6
34	Steering Gear Power Pack 1	0	0 0	0 0	0	0 0	0 (0 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	10	L	6
35	Steering Gear Power Pack 2	0	0 0	0 0	0	0 0	0	0 0	0 0	0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	S	10	L	6
36	Consumer 1	0	0 0	0 0	0	0 0	0	0 0	0 0) ()	0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	0	D	2
37	Consumer 2	0	0 0	0 0	0	0 0	0 (0 0	0 (0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	S	0	D	2
38	Consumer 3	0	0 0	0 0	0	0 0	0	0 0	0 (0 (0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 (0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	0	E	2
39	Consumer 4	0	0 0	0 0	0	0 0	0 0	0 0	0 (0 0	0 0	0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	S	0	E	2
40	Consumer 5	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	0	G	2
41	Consumer 6	0	0 0	0 0	0	0 0	0	0 0	0 (0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 (0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	S	0	F	2
42	Consumer 7	0	0 0	0 0	0	0 0	0	0 0	0 (0 0	0 0	0	0 0	0 0	0 (0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	0	0	H	2
43	Consumer 8	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0		D	S	0	H	2
44	Consumer 9	0	0 0	0 0	U	0 0	0	0 0	0 0	10	0 0	0	0 0	U U	0 0	10	U	UU	0 0	U	0 0		0	0	0 0	U	0 0	0	0	0 0	0	U	0	0 0		D	0	0	+	2
45	Consumer 10	0	0 0	0 0	0	0 0			0 0		0 0	0	0 0		0 0	10	0	0 0	0 0	0	0 0			0	0 0	0		0	0		0	U	0				5	0	+	2
40	Consumer 11	0	0 0		0	0 0					0 0	0	0 0		0 (0	0 0	0 0	0	0 (0	0 0	0		0	0			0	0				-	0	J	2
	LUISUIP IZ			- 1	1.11			1.1	1.1			A 10 10 10											1.1			1.1		1.11						24 1 12						

Table 10: Input Definition Summary for Option 7 (grey cells filled with 1 indicate connectivity	/
between components)	

	Option 7	Diesel Generator 1	Diesel Generator 2	Gas Turbine 1	Gas Turbine 2	Emergency Generator 1 Emergency Switchboard 1	Battery 1	Battery 2	HV Switchboard1/forward HV Switchboard 2/aft	Transformer 1	Transformer2	LV Switchboard 1 LV Switchboard 2	EDC 1	EDC 2	EDC 3	EDC 5	EDC 6	EDC 7	EDC 9	EDC 10	EDC 11	EDC 12	HV Interconnector1 HV Interconnector2	LV Interconnector1	LV Interconnector2	Motor Convertor 1	Motor Convertor 2	Motor 2	SteeringGearPowerPack 1	SteeringGearPowerPack 2	Consumer 1	Consumer 3	Consumer 4	Consumer 5	Consumer 5 Consumer 7	Consumer 8	Consumer 9	Consumer 10	Consumer 11	Consumer 12	Source(S)	Demand (D)	Operational (O)/ Standbv(S)	Time to start up (sec)	Zone	Deck
1	Diesel Generator 1	0	0	0	0	0 0	0	0	1 0	0	0	0 0	0	0 (0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		0	60	н	6
2	Diesel Generator 2	0	0	0	0	0 0	0	0	0 1	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		S	60	Е	6
3	Gas Turbine 1	0	0	0	0	0 0	0	0	1 0	0	0	0 0	0	0 (0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		S	120	н	6
4	Gas Turbine 2	0	0	0	0	0 0	0	0	0 1	0	0	0 0	0	0 (0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		0	120	E	6
5	Emergency Generator 1	0	0	0	0	0 1	0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 (0 0	0	0	0		0	0	0	0 0	0	0	0 0	0 0	0	0	0		0	0	0	0	0	S		S	30	J	1
6	Emergency Switchboard 1	0	0	0	0	0 0	0	0	0 0	0	0	0 0	1	0 1	1 0	1	0	1	1	0	1	0	0 0	0	0	0	0 0	0	1	1 0	0 0	0	0	0	0 0	0	0	0	0	0			S	0	J	1
7	Battery 1	0	0	0	0	0 0	0	0	0 0	0	0	1 0	0	0 (0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 (0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		S	0	н	4
8	Battery 2	0	0	0	0	0 0	0	0	0 0	0	0	0 1	0	0 (0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	S		S	0	E	4
9	HV Switchboard 1	0	0	0	0	0 0	0	0	0 0	1	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	1 0	0	0	1	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0			0	0	н	4
10	HV Switchboard 2	0	0	0	0	0 0	0	0	0 0	0	1	0 0	0	0 (0 0	0	0	0 (0 0	0	0	0	0 1	0	0	0	1 (0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0			0	0	E	4
11	Transformer 1	0	0	0	0	0 0	0	0	0 0	0	0	1 0	0	0 (0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0			0	10	н	5
12	Transformer2	0	0	0	0	0 0	0	0	0 0	0	0	0 1	0	0 0) ()	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0			0	10	E	5
13	LV Switchboard 1	0	0	0	0	0 0	1	0	0 0	0	0	0 0	1	1 1	1 1	1	1	1 :	1 1	1	1	1	0 0	1	0	0	0 0	0	1	1 (0 0	0	0	0	0 0	0	0	0	0	0			0	0	н	4
14	LV Switchboard 2	0	0	0	0	0 0	0	1	0 0	0	0	0 0	1	1 1	1 1	1	1	1 :	1 1	1	1	1	0 0	0	1	0	0 0	0	1	1 (0 0	0	0	0	0 0	0	0	0	0	0			0	0	E	4
15	EDC 1	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 1	0	0	0	0	0 0	0	0	0	0	0			0	10	D	2
16	EDC 2	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	1	0	0	0	0 0	0	0	0	0	0			0	10	D	2
17	EDC 3	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	1	0	0	0 0	0	0	0	0	0			0	10	E	2
18	EDC 4	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	1	0	0 0	0	0	0	0	0			0	10	E	2
19	EDC 5	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	1	• •	0	0	0	0	0			0	10	G	2
20	EDC 6	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	10	0	0	0	0	0			0	10	F	2
21	EDC /	0	0	0	0	0 0	0	0		0	0		0	0 0		0	0	0 0		0	0	0		0	0	0	0 0	0	0	0 0		0	0	0		-	0	0	0	0			0	10	H	2
22	EDC 8	0	0	0	0	0 0	0	0		0	0		0	0 0		0	0	0 0		0	0	0		0	0	0	0 0	0	0	0 0		0	0	0		1	0	0	0	0			0	10	H	2
23	EDC 9	0	0	0	0	0 0	0	0		0	0		0	0 0		0	0	0 0		0	0	0		0	0	0	0 0	0	0	0 0		0	0	0		0	1	1	0	0			0	10	H	2
24	EDC 10	0	0	0	0		0	0		0	0		0	0 0		0	0			0	0	0		0	0	0		0	0	0 0		0	0	0		0	0	-	1	0			0	10	+÷	2
25	EDC 11	0	0	0	0		0	0		0	0		0	0 0		0	0			0	0	0		0	0	0	0 0	0	0	0 0		0	0	0		0	0	0		4			0	10	1	2
20	EDC 12	0	0	0	0		0	0		0	0		0	0 0		0	0			0	0	0		0	0	0		0	0	0 0		0	0	0		0	0	0	0	-			0	20		2
27	HV Interconnector1	0	0	0	0		0	0	1 0	0	0		0	0 0		0	0			0	0	0		0	0	0		0	0	0 0		0	0	0		0	0	0	0	0			c	20	-	4
20	IV Interconnector2	0	0	0	0		0	0		0	0	0 1	0	0 0		0	0			0	0	0		0	0	0		0	0	0 0		0	0	0		0	0	0	0	0			5	20		4
20	IV Interconnector?	0	0	0	0		0	0		0	0	1 0	0	0 0		0	0	0 0		0	0	0		0	0	0	0 0	0	0	0 0		0	0	0		0	0	0	0	0			s	30	F	4
30	Motor Convertor 1	0	0	0	0		0	0		0	0		0	0 0		0	0	0 0		0	0	0		0	0	0	0 1	0	0	0 0		0	0	0		0	0	0	0	0			0	180	H	6
32	Motor Convertor 2	0	0	0	0	0 0	0	0	0 0	0	0		0	0 0		0	0	0 0		0	0	0	0 0	0	0	0	0 0	1	0	0 0	1 0	0	0	0		0	0	0	0	0			0	180	E	6
33	Motor 1	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	1 0	0	0	0 0		0	0	0	0 0	0	0	0	0 0	0	0	0 0	1 0	0	0	0		0	0	0	0	0		D	0	10	н	6
34	Motor 2	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0		0	0	0 0		0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	10	E	6
35	Steering Gear Power Pack 1	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0		0	0	0	0 0	0	0	0 0	0 0	0	0	0		0	0	0	0	0		D	0	10	L	6
36	Steering Gear Power Pack 2	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	S	10	L.	6
37	Consumer 1	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	D	2
38	Consumer 2	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	S	0	D	2
39	Consumer 3	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	E	2
40	Consumer 4	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	S	0	E	2
41	Consumer 5	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	G	2
42	Consumer 6	0	0		0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0		0	0 0	0 0	0	0	0		0	0	0	0 0	0	0	0 0	0 0	0	0	0		0	0	0	0	0		D	S	0	F	2
43	Consumer 7	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	Н	2
44	Consumer 8	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	S	0	н	2
45	Consumer 9	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	1	2
46	Consumer 10	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	S	0	1	2
47	Consumer 11	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0	0		D	0	0	J	2
48	Consumer 12	0	0		0	0 0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0		0	0	0		0	0	0	0 0	0	0	0 0	0 0	0	0	0		0	0	0	0	0		D	S	0	K	2

Table 11: Input Definition Summary for Option 8 (grey cells filled with 1 indicate connectivity between components)

Performance	e Total demand Demand components definition					
criteria	components					
Satisfactory	Total Eight:	1. (Consumer 1 OR Consumer 2) AND				
performance	Six consumers,	2. (Consumer 3 OR Consumer 4) AND				
criterion	one steering	3. (Consumer 5 OR Consumer 6) AND				
	gear and one	4. (Consumer 7 OR Consumer 8) AND				
	motor -	5. (Consumer 9 OR Consumer 10) AND				
	available within	6. (Consumer 11 OR Consumer12) AND				
	the restoration	7. (Steering Gear 1 OR Steering Gear 2) AND				
	time (tr).	8. (Motor 1 OR Motor2)				
Minimum performance	Total Six: Four	 (Consumer 1 OR Consumer 2 OR Consumer 3 OR Consumer 4) AND 				
criterion	consumers. one	2. (Consumer 5 OR Consumer 6) AND				
	steering gear,	3. (Consumer 7 OR Consumer 8 OR Consumer 9 OR Consumer				
	and one motor	10) AND				
	– available	4. (Consumer 11 OR Consumer12) AND				
	immediately	5. (Steering Gear 1 OR Steering Gear 2) AND				
	post-disruption.	6. (Motor 1 OR Motor 2)				

Table 12: Case study performance criteria for resilience metric calculation

System Option	Resilience calculations						
	1	2	3	4	Mean		
	component	components	components	components			
	disruption	disruption	disruption	disruption			
Option 1	0.978	0.942	0.845	0.752	0.879		
Option 2	0.978	0.913	0.746	0.558	0.799		
Option 3	0.978	0.913	0.781	0.690	0.841		
Option 4	0.978	0.865	0.643	0.479	0.741		
Option 5	0.979	0.948	0.867	0.792	0.896		
Option 6	0.979	0.929	0.800	0.653	0.840		
Option 7	0.979	0.922	0.813	0.740	0.863		
Option 8	0.979	0.910	0.768	0.649	0.826		

Table 13: Average resilience calculation results for k=1,2,3,4 combined component	nt
disruption	

	Option							
	1	2	3	4	5	6	7	8
1	[12 15]	[3 6]	[13 14]	[3 6]	[14 17]	[3 8]	[15 16]	[3 8]
2	[13 14]	[11 14]	[15 16]	[11 14]	[15 16]	[13 16]	[17 18]	[14 15]
3	[15 16]	[12 13]	[17 18]	[12 13]	[17 18]	[14 15]	[19 20]	[16 17]
4	[17 18]	[14 15]	[19 20]	[14 15]	[19 20]	[16 17]	[21 22]	[18 19]
5	[19 20]	[16 17]	[21 22]	[16 17]	[21 22]	[18 19]	[23 24]	[20 21]
6	[21 22]	[18 19]	[23 24]	[18 19]	[23 24]	[20 21]	[25 26]	[22 23]
7	[23 24]	[20 21]	[13 36]	[20 21]	[25 26]	[22 23]	[15 38]	[24 25]
8	[35 36]	[22 23]	[14 35]	[22 23]	[37 38]	[24 25]	[16 37]	[14 37]
9	[37 38]	[34 35]	[15 38]	[34 35]	[39 40]	[36 37]	[17 40]	[15 36]
10	[39 40]	[36 37]	[16 37]	[36 37]	[41 42]	[38 39]	[18 39]	[16 39]
11	[41 42]	[38 39]	[17 40]	[38 39]	[43 44]	[40 41]	[19 42]	[17 38]
12	[43 44]	[40 41]	[18 39]	[40 41]	[45 46]	[42 43]	[20 41]	[18 41]
13	[45 46]	[42 43]	[19 42]	[42 43]	[47 48]	[44 45]	[21 44]	[19 40]
14		[44 45]	[20 41]	[44 45]		[46 47]	[22 43]	[20 43]
15			[21 44]	[12 35]			[23 46]	[21 42]
16			[22 43]	[13 34]			[24 45]	[22 45]
17			[23 46]	[14 37]			[25 48]	[23 44]
18			[24 45]	[15 36]			[26 47]	[24 47]
19				[16 39]				[25 46]
20				[17 38]				
21				[18 41]				
22				[19 40]				
23				[20 43]				
24				[21 42]				
25				[22 45]				
26				[23 44]				

Table 14: Resilience calculation results for a k=2 combined components disruption (showing the ID of the components for each Option in the columns) resulting at zero resilience

Figure 17: Mean resilience results for the system options of the case study

Figure 18: Resilience results for k = 1, 2, 3, 4 components disruption
Journal of Mechanical Design

Figure 19: Mean effects plot for the design variables against resilience

Figure 20: Interaction plot for the design variables against resilience

Journal of Mechanical Design

Table 15: Methodological aspects incorporated in the proposed method compared to two relatable methods existing in the literature

Methodological aspects	[3]	[36]	Proposed Method
Redundancy analysis			Incorporates
Time-based analysis	Incorporates		Incorporates
Physical & functional network- based system representation		Incorporates	Incorporates
Resilience calculation based on recovery	Incorporates		Incorporates