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A B S T R A C T

This paper provides a comprehensive review of inertia estimation methods, with a particular emphasis on the
challenges posed by the integration of renewable energy sources (RESs). It examines a broad spectrum of inertia
estimation methods, ranging from traditional swing equation-based methods to cutting-edge advancements such
as machine learning and real-time analytics. These estimation methods are systematically categorised and
evaluated based on key performance metrics including accuracy, simplicity, computational efficiency, and
robustness against noise. The analytic hierarchy process (AHP) is used to identify the most suitable methods for
low-inertia systems with high renewable energy penetration. The evaluation also includes an assessment of the
temporal operational modes and the implementation requirements for the estimation methods. This leads to
detailed recommendations on the most appropriate application environments for each method, considering
factors such as system scale and generation mix. Existing challenges and future directions related to inertia
estimation are also discussed.

1. Introduction

In the dynamic landscape of power systems, inertia is a fundamental
concept integral to grid stability [1,2]. Traditionally, power system
inertia predominantly originated from thermal and hydroelectric power
plants, which are characterised by their predictable operations. Conse-
quently, inertia estimation methods for these plants, typically based on
swing equations, have been considered both accurate and reliable [3].
However, as the energy sector evolves, particularly with the integration
of renewable energy sources characterised by less predictable opera-
tions, these traditional estimation methods face increasing limitations in
terms of accuracy and adaptability [4,5]. These limitations have driven
the development of cutting-edge advancements in inertia estimation
that can effectively address the complexities introduced by renewable
integrations [6].

In light of the growing complexity of power systems, it is imperative
to thoroughly review and evaluate inertia estimation methods. Despite
the importance of this assessment, comprehensive reviews on this topic
remain limited. For instance, the review in Ref. [7] focuses primarily on
traditional rate of change of frequency (RoCoF)-based estimation
methods. However, it lacks a broader analysis of advanced estimation

methods, such as machine learning. On the other hand, the review in
Ref. [8] explored a broader spectrum of estimation methods, expanding
beyond the RoCoF-based methods. However, it does not provide a
detailed evaluation of key performance metrics for the estimation
methods such as accuracy and computational complexity. Although [9]
evaluates key performance metrics for estimation methods, such as ac-
curacy, it does not cover a wide range of methods, which leaves a gap in
comprehensively addressing both traditional methods and those suited
for low-inertia grids.

From another perspective, some review papers assess the efficiency
of each estimation method in operating across various temporal opera-
tional modes, such as offline, online, and forecasting [6,10,11]. For
instance, the review in Ref. [10] examines the temporal operational
modes of inertia estimation methods, but does not include a compre-
hensive range of estimation methods nor a detailed evaluation across
other important performance metrics, such as accuracy and computa-
tional time. Similarly, although [6] covers range of estimation methods,
it does not provide a comprehensive evaluation of the implementation
requirements for these methods or their key performance metrics, which
are essential for low-inertia systems. Finally, the review in Ref. [11]
primarily evaluates estimation methods based on their temporal
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operational modes and implementation requirements. However, it also
lacks a detailed analysis of the methods themselves, including their
performance metrics, advantages, and disadvantages Additionally, it
fails to offer a clear categorisation of these methods.

In summary, existing reviews on inertia estimation methods include
several notable gaps. Many of these reviews have a limited scope,
focusing on a narrow range of estimation methods and often overlooking
advanced estimation methods, such as machine learning and other data-
driven methods. Additionally, the lack of a comprehensive classification
of estimation methods in many studies results in an incomplete under-
standing of the full capabilities of these methods. While some reviews
evaluate estimation methods based on temporal operational modes or
their implementation requirements, they often fail to provide a thorough
evaluation of their key performance metrics critical for low-inertia
systems, such as accuracy, computational efficiency, simplicity, real-
time capability, and robustness to noise. Moreover, these reviews fail
to specify the optimal conditions or recommended environments for the
application of each method, leaving a significant gap in practical
guidance.

This paper aims to address these significant gaps by providing a
comprehensive review of inertia estimation methods. It introduces a
novel systematic classification of a broad range of inertia estimation
methods, from traditional approaches to advanced machine learning
and other data-driven based methods. Additionally, the review exam-
ines over 130 articles and evaluate each inertia estimation method based
on key performance metrics such as accuracy, simplicity, computational
efficiency, and robustness against noise. The methods are ranked based
on these performance metrics using an AHP-based approach to deter-
mine the most appropriate method for low-inertia power systems.
Beyond the performance metrics, the evaluation extends to assess the
methods against different temporal operational modes and identify their
implementation requirements, which provides insights into the optimal
environments for each method. The paper also explores key challenges
and outlines future research directions in inertia estimation, particularly
in the contexts of renewable integration.

The paper is organised as follows. Section II explores the funda-
mental principles of inertia and momentum in power systems. Section III
provides a systematic classification of inertia estimation methods and
discusses their main concepts, along with their advantages and disad-
vantages. Section IV presents a comprehensive evaluation of these
methods, assessing them based on key performance metrics. It also
evaluates the estimation methods against different temporal operational
modes and their implementation requirements. Section V ranks the
methods using the AHP to identify the most suitable methods for low-
inertia systems, and provides recommendations on the optimal envi-
ronments for each method. Section VI focuses on special topics in inertia
estimation, including contributions in the literature related to the esti-
mation of synthetic and virtual inertia, as well as the indirect estimation
of inertia through the analysis of electromechanical modes. Finally,
section VII discusses the challenges associated with inertia estimation
and outlines potential directions for future research.

2. Essential principles of physical inertia, synthetic inertia and
momentum

This section introduces the fundamental concepts of physical inertia,
synthetic inertia, and angular momentum within the context of power
system dynamics, and establishes the mathematical relationship be-
tween inertia and angular momentum.

2.1. Physical inertia

Physical inertia fundamentally captures the stored kinetic energy
within the revolving mass of all machines directly connected to the
power system. This stored energy acts as an immediate buffer against
sudden power imbalances and plays a vital role in determining how

quickly the system frequency changes following a disturbance. The
inertia constant H (in seconds) characterises this kinetic energy per unit
of rated apparent power [19]. Accordingly, for a machine with rated
apparent power S (in MVA), the total stored kinetic energy Ek (in MVA.s)
is expressed as:

Ek = S*H (1)

Moreover, the inertia constant can be expresses in terms of the ma-
chine physical parameters as:

S*H=
1
2
Jω2*10− 6 (2)

where, J is the moment of inertia of the rotating parts (in kg.m2), and ω
is the synchronous angular speed in mechanical radians per second.
These expressions show that, the total kinetic energy increases as the
inertia constant H increases. In other words, a higher inertia constant
indicates that more energy is stored in the rotating mass.

The ongoing shift toward renewable energy sources is dramatically
altering the inertia landscape. Fig. 1(a) presents the total stored kinetic
energy in GVA⋅s from synchronous machines connected to the national
grid, which has been decreasing over recent years. As traditional fossil-
fuel generators are replaced by renewable sources such as wind and
solar, along with increased HVDC imports, fewer synchronous machines
remain connected. This results in reduced stored kinetic energy and,
consequently, lower system physical inertia [12,13]. Moreover, insuf-
ficient physical inertia within the power grid makes it challenging to
maintain frequency within its normal range. This insufficiency can
heighten the risk of power outages, and widespread blackouts [14,15].
This is clearly illustrated in Fig. 1(b), which shows the higher RoCoF in
low-inertia systems.

2.2. Synthetic inertia

Synthetic inertia, often referred to as virtual inertia, replicates the
effect of rotational kinetic energy by allowing inverter-based resources
(IBRs) to respond inherently and almost instantaneously to changes in
grid frequency. Unlike conventional synchronous generators, which
naturally provide inertia through the momentum of their rotating
masses, synthetic inertia is delivered by grid-forming converters. A key
advantage of these converters is their ability to maintain an internal
frequency reference independent of the grid. When a disturbance occurs,
the grid frequency begins to diverge from the inverter internal fre-
quency, creating a phase angle difference that drives an immediate ex-
change of active power (closely mimicking the inertial response of a
synchronous machine). This response typically occurs within 20 ms and
does not depend on frequency measurement or external control triggers.
Instead, it arises from the inherent interaction between two voltage
sources operating at slightly different frequencies. While synthetic
inertia is highly effective in stabilizing frequency during the critical first
moments of a disturbance, its performance can be limited by inverter
current constraints and the complexity of tuning advanced control al-
gorithms [16]. One of the primary challenges in estimating synthetic
inertia lies in the relatively rapid nature of the fast frequency response
(FFR) provided by grid-forming converters. Because FFR occurs within
milliseconds, it is difficult to distinguish the true inertial effect from FFR.
Therefore, any method developed to estimate synthetic inertia must be
capable of operating with high temporal resolution and accurately
isolating the inertial component from overlapping control-based re-
sponses, such as FFR. This is particularly important in modern power
systems with high shares of inverter-based resources [17].

Table I outlines several factors that directly influence the system
overall inertia, including both physical and virtual, along with its impact
on the RoCoF.

M. Abouyehia et al.
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2.3. Momentum

Angular momentum is another key concept in power system dy-
namics and is defined as the product of the moment of inertia and the
synchronous angular speed of the rotating mass. Mathematically, the
angular momentum M (in MJ⋅s/rad or kg⋅m2.rad/s) is given by

Ref. [19]:

M= Jω (3)

Angular momentum represents the system ability to resist changes in
rotational speed. Similar to inertia, it plays a critical role in maintaining
frequency stability following a disturbance. There is a direct relationship
between the inertia constant H and angular momentum M. This rela-
tionship is given by M = 2HS

ω , which highlights that inertia constant and
angular momentum are inherently linked through the synchronous
angular velocity. Consequently, some studies in the literature focus on
estimating angular momentum, while others estimate the inertia con-
stant. The choice between the two often depends on the modelling
framework and available measurement data. Nonetheless, given their
direct mathematical equivalence through the synchronous angular ve-
locity, both inertia and angular momentum convey the same essential
information regarding the system dynamic behaviour.

3. Classification of inertia estimation methods

The methods for inertia estimation are diverse, ranging from tradi-
tional analytical methods to advanced machine learning approaches.

Fig. 1. Impact of the energy transition on system kinetic energy and frequency dynamics: (a) reduction in total stored kinetic energy due to displacement of syn-
chronous generation, and (b) corresponding increase in the RoCoF in low-inertia power systems.

Table 1
Summary of factors influencing system inertia and resulting RoCoF behaviour
[18].

Factor Impact on power system inertia

Generator physical
inertia

A reduction in generator inertia lowers the overall system
inertia, which results in a higher RoCoF immediately after a
disturbance.

Load inertia A reduction in load-side rotating masses, such as industrial
motors, decreases the overall system inertia, leading to an
increased RoCoF immediately following a disturbance.

Synthetic/virtual
inertia

A reduction or absence of synthetic/virtual inertia limits the
system ability to emulate inertial response, causing a sharper
RoCoF and greater frequency deviation immediately after a
disturbance.

Fig. 2. Comprehensive classification of inertia estimation methods.
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These methods can be categorically organised based on their underlying
principles. As depicted in Fig. 2, inertia estimation methods are classi-
fied into six main categories such as analytical-based methods, adaptive-
based methods, statistical-based methods, model-assisted identification
methods, machine learning-based methods, and frequency domain-
based methods. The following sub-sections provide a detailed discus-
sion of each method, outlining their core concepts and highlighting their
respective strengths and limitations.

3.1. Analytical-based estimation methods

Analytical-based methods refer to inertia estimation techniques that
rely on first-principles and explicit mathematical formulations derived
from the physical laws governing power system dynamics. These
methods excel in environments with synchronous generators due to
their well-defined dynamic equations. They use predictable generator
behaviours and established equations, such as the swing equation, to
accurately estimate inertia. These methods can be sub-classified as
follows.

a. Swing Equation-Based Estimation Methods

The swing equation is a fundamental analytical method used in
estimating power system inertia. This method excels in estimating the
rotational inertia for synchronous generator rotors. It utilises a differ-
ential equation to analyse the power system frequency response
following an electrical disturbance, which is mathematically expressed
as:

2HS
f0

(
df
dt

)

=Pm − Pe (4)

where, f0 represents the nominal frequency. Pm and Pe are the me-
chanical and electrical power outputs of the generator, respectively. The
variable f corresponds to the actual measured frequency.

The accuracy of swing equation-based methods relies heavily on
precise frequency measurements, as outlines in (4). There are various
methods to capture and analyse frequency changes in power systems
after disturbances. Consequently, swing-equation-based estimation
methods are categorised further based on the different approaches used
to measure frequency, as follows.

• Rate of Change of Frequency (RoCoF)-Based Estimation Method

This method calculates frequency and its rate of change (RoCoF)
from PMU data, then applies (4) to estimate inertia. This method is
activated when the absolute RoCoF exceeds a predetermined threshold.
Consequently, it excels in environments with significant disturbances,
such as step loading and generator outages, which impact the RoCoF
response and trigger the estimation method. Table II summarises various
RoCoF-based methods referenced in the literature, and highlights their
strengths and weaknesses.

In summary, RoCoF-based methods are simple and suitable for real-
time inertia monitoring due to their ability to provide rapid feedback on
inertia changes. However, the accuracy of RoCoF-based inertia estima-
tion is sensitive to the selection of the threshold value, and an inap-
propriate threshold might lead to inaccurate results. Moreover, this
method relies solely on frequency and power measurements and
potentially overlooking the other factors, such as system damping.

• Polynomial Fitting-Based Estimation Method

Polynomial fitting is another swing-equation-based method that
provides more stable frequency calculations than the RoCoF method.
This method avoids potential numerical instabilities that arise in RoCoF
methods when calculating inertia (H) in (4), particularly due to the di-

vision by the frequency derivative, whichmay approach zero. Therefore,
polynomial fitting excels in environments characterized by rapid fre-
quency changes and high noise levels [23,24]. The operational frame-
work of the polynomial fitting process is illustrated in Fig. 3. This
method utilises the measured frequency deviation (Δf) from PMU data.
It selects an appropriate polynomial order for frequency deviations,
typically fifth-order for inertia applications [25]. TheA1 coefficient from
the polynomial fitting (highlighted in red in Fig. 3) effectively maps the
derivative of frequency in (4) without numerical issues, as further
described in Ref. [25]. Inertia estimation is then performed using this
coefficient instead of relying on derivative action. Table III summarises
the application of polynomial fitting methods to PMU data for

Table 2
Summary of RoCoF-based methods in literature.

Ref. Concept Key advantage, disadvantage and test
system characteristics

[20] Relies on RoCoF calculations
using wide-area frequency
monitoring

Calculates RoCoF based on the 0.5-s
frequency change following a
disturbance. It is simple but less
accurate with small disturbances.
Proven effective in large systems such as
the U.S. eastern interconnection system.

[21] Relies on RoCoF using local PMU
frequency measurements

Does not need for wide-area frequency
monitoring. Demonstrates high
accuracy with estimation errors showing
a mean of − 0.7 %. Proven effective in
moderate system sizes such as the IEEE
39-bus test system.

[22] Relies on RoCoF using PMU and
synchrophasor measurements

Utilises synchrophasor data to estimate
the inertia in real-time. It is accurate but
requiring computational resources.
Proven effective in moderate system
sizes such as the 39 bus New England
system.

Fig. 3. Inertia estimation using polynomial fitting.
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estimating frequency deviations without numerical issues.
In summary, the polynomial fitting adapts well to the dynamic fre-

quencies observed in large, interconnected power systems, which makes
it more reliable in complex scenarios. However, the additional curve
fitting processes may introduce computational demands. Moreover, the
time required for identifying the appropriate polynomial order and
fitting the curve may cause a slight delay in obtaining inertia estimates
compared to RoCoF-based method. These challenges make it more
suitable for offline estimation.

b Modified Swing Equation-Based Estimation Method

This method is another analytical estimation approach that excels in
environments with complex dynamics, particularly in medium power
systems that have a diverse generation mix [26]. This improved formula
is developed to address the numerical issues in (4) by avoiding division
by derivative calculations, similar to the polynomial fitting. In summary,
this method provides a rapid and robust framework for real-time esti-
mation. It effectively manages frequency variations and external dis-
turbances in stable manner. However, this improved formula is sensitive
to the selection of specific parameters, which require optimal tuning and
potentially result in increased computational time.

c Second Derivative of the Frequency (SDFD)-Based Estimation
Method

2HS
f0

(
df
dt

)

=Pm − Pe − DG
(
f − f0

)
(5)

The swing equation, as initially presented in (4), does not fully in-
cludes the complexities of power system dynamics, such as damping
effects. However, this method is another analytical estimation method
but provides a refined representation in (5), which integrates the
damping effect.

where, DG represents the damping constant. The formulation in (5) is
further simplified to (6), as discussed in Ref. [26]:

H= − f0
dPe

dt

/

2S

(
d2f
dt2

)

(6)

This method excels in systems with slow dynamics, particularly in
generator-dominated power systems that exhibit large inertia. It is
simple and can estimate the system inertia after disturbances by only
analysing the frequency second derivative [31,32]. This method, though
relatively uncomplicated, depends on a disturbance occurrence (off-
line). It faces challenges, especially numerical issues when the denom-
inator (representing the second derivative of the frequency) approaches
zero [26]. To address this challenge, the use of an inflection point de-
tector (IPD) has been suggested [33,34]. Fig. 4(a) shows how IPD
eliminates the zero crossing in the second derivative of frequency by
tracking points on a measured frequency curve where the second de-
rivative crosses zero (inflection points). It then connects these points to
obtain an approximate RoCoF without inflection points, thus allowing
for the system inertia to be estimated without numerical issues. Fig. 4(b)
compares the SDFD versus IPD in inertia estimation, where SDFD pro-
duces numerical issues while IPD does not.

3.2. Adaptive-based estimation methods

This section discusses the adaptive methods for estimating inertia in
power systems. These methods use real-time adaptive algorithms to
enhance the accuracy and responsiveness of inertia estimation under
varying operational conditions. These methods can be sub-classified as
follows.

a. Sliding Window-Based Estimation Method

The sliding window method is an adaptive method that provides a
robust inertia estimation, particularly excelling in real-time applications
involving generator mixes with fast dynamics. This method is accurate
as it employs a series of sequential data points within a defined window
size (N) to compute the mean value, rather than depending on a single
point measurement [35]. This window is applied sequentially over the
input data in a sliding manner to estimate the inertia [36]. Various
methods in the literature utilise the sliding window approach which are
summarized in Table IV.

In summary, sliding window-based estimation methods surpass in
precisely tracking the inertia constant in real-time. However, they face
challenges such as reliance on accurate data, computational intensity,
and sensitivity to power system conditions. Moreover, the effectiveness
of these methods depends on the optimal chosen window size, with
potential issues arising from data noise sensitivity and changes in dy-
namics over time.

b R, V, and RV-Based Estimation Methods

These methods are adaptive estimation approaches that excel in
environments with large loads characterized by significant dynamics.
Inertia estimation is significantly influenced by the characteristics of
active power loads. Despite this important factor, the majority of inertia
estimation methods do not account for these characteristics. However,
the R, V, and RV-based estimation methods do consider these charac-
teristics [41]. These methods take into account various models of load
behaviour, including constant loads, frequency-dependent loads,
voltage-dependent loads, and hybrid models that integrate both fre-
quency and voltage dependencies, as follows:

ΔP(t)= h1(f(t)) + h2(v(t)) (7)

where, ΔP(t) represents the change in active power load. The function
h1(f(t)) models the impact of frequency variations on the active power.
Conversely, h2(v(t)) is responsible for modelling the impact of voltage

Table 3
Summary of polynomial fitting methods in PMU data analysis.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[24] Utilises fixed-order polynomial
fitting for frequency smoothing
(first-order fitting for linear ranges,
and second for parabolic ranges)

Proposes an offline and simple
estimation. Effective in systems with
low noise levels but may struggle
with larger disturbances. Proven
effective in moderate system sizes
such as Nordic32 test system.

[27] Applies fifth-order polynomial
approximation while considering
the load dynamics

Minimizes oscillatory effects.
Requires more computational
resources due to higher-order fitting.
Proven effective in large system sizes
such as Taiwan power system.

[28] Applied fifth-order polynomial
fitting for PMU data

Provides robust inertia estimates
against high renewable penetration.
High computational complexity and
sensitivity to data quality. Proven
effective on large system sizes such
as Japanese power system.

[29] Applied fifth-order polynomial
fitting for systems with virtual
inertia techniques

Estimates virtual inertia of systems
with high wind integration. The
accuracy is low about 85–90 %.
Proven effective in small power
system model.

[30] Uses variable-order polynomial
curve fitting with least squares
adjustment

Accurate and robust inertia
estimation. Sensitive to the correct
selection of polynomial order which
affects accuracy. Proven effective in
a small custom IEEE standard
distribution system with solar PV.

M. Abouyehia et al.
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changes on the active power. According to these load dynamics, three
adaptive inertia estimation methods depend on (7) are introduced:

• R-Based Estimation Method

This method focuses on frequency-driven power deviations. It uti-
lises the function h1(f(t)) for estimation. This method does not require
voltage data and bypass the complexities associated with voltage de-
pendency [24,27].

• V-Based Estimation Method

This method prioritizes voltage variations, using the function h2(v(t))
to measure power deviations resulting from voltage-dependent loads. It
does not directly account for frequency effects, therefore; its efficiency
highly dependent on the accuracy of the chosen load mode [27,42].

• RV-Based Estimation Method

This method combines the R and V methods. It addresses both
voltage and frequency variations through h1(f(t)) and h2(v(t)) and offers
a comprehensive inertia estimation framework [27,41,43]. Comparative
analysis of these methods is shown in Table V.

In summary, these estimation methods offer an advantage over other
methods by accounting for the impact of load dynamics on inertia
estimation. However, they face challenges in accurately assessing the
effects of frequency and voltage variations. To address this issue, an
optimization-based approach using particle swarm optimization (PSO)
is employed to determine the optimal contribution of h1(f(t)) and
h2(v(t)) on active power changes [44].

3.3. Statistical-based estimation methods

Through the application of statistical data analysis, these methods

Fig. 4. Inflection point detector method, (a) eliminating zero crossing points in the second derivative of frequency using IPD, and (b) inertia estimation using IPD
vs SDFD.

Table 4
Summary of sliding window methods in inertia estimation.

Ref. Concept Key advantage, disadvantage and test
system characteristics

[35] Combines sliding window method
with RoCoF calculations

Proves accuracy and adaptability to
varying grid conditions. Complex due
to data processing and dependent on
precise real-time data. Proven
effective on small systems such as EEE
9-bus system.

[36] Utilises multiple smoothing sliding
windows for both active power and
RoCoF before and after disturbance

Precision in capturing RoCoF and
active power dynamics. The
variability in PMU performance,
affecting the reliability of inertia
estimates. Proven effective on small
systems.

[37] Incorporates a fixed-size sliding
window updated periodically for
inertia tracking under normal
conditions

Provides real-time tracking of inertia
under normal conditions. Reliance on
high-quality PMU data, which can be
prone to noise and inaccuracies. The
method demonstrates an error below
5 %. Proven effective in moderate
system sizes such as the IEEE 39-bus
system.

[38] Incorporates a sliding window used
for regional inertia estimation of
power systems with high wind
power penetration

Enhances accuracy in wind-
integrated power systems. Relies on
the precise selection of measurement
nodes and robust data processing,
potentially increasing computational
complexity. Proven effective in
moderate system sizes such as the
IEEE 39-bus test system.

[39] Implements dynamic window
length adjustment based on
disturbance size

Provides robust and real-time inertia
estimation without requiring a
detailed model of the grid. Depends
heavily on the quality and
synchronization of input data from
PMUs. Proven effective in small
benchmark power grids.

[40] Implements an adaptive sliding
window method with variable
lengths using least squares and
median filtering

Highly accurate estimates that
facilitate better control and stability
in low inertia grids. Relies on
consistent high-quality data and
specific window size settings that may
not generalize across different system
conditions. Proven effective in
moderate system sizes such as
Hawaiian islands.

Table 5
Comparative analysis of R, V and RV based estimation methods [6,27,41].

R method V method RV method

Data required for
estimation

Frequency
dynamics

Voltage dynamics Combination of
frequency and
voltage dynamics

Sensitivity to
noise

Low Moderate High

Accuracy (%) ≈85–90 % ≈85–90 % ≈95 %
Computational
time

Low (millisecond
to seconds)

Low (milliseconds
to seconds)

Moderate (seconds
to tens of seconds)

Implementation
complexity

Low Low Moderate

Limitations Does not account
for the impact of
voltage changes
on dynamics

Effectiveness
depends on the
accuracy of the
load model to
voltage

Challenges arise in
precisely
evaluating the
contribution of
frequency and
voltage variations
to the load model

M. Abouyehia et al.
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improve the accuracy and responsiveness of inertia estimation under
varying operational conditions. They excel in complex systems with
RESs due to the unpredictable nature of their behaviour. The statistical
characteristics of RESs can be modelled using either stochastic models or
the ARMAX model, as outlined below.

a. Stochastic Model-Based Estimation Methods

Stochastic model-based estimation methods are particularly excel for
inertia estimation in large power systems with high renewable energy
penetration. They effectively manage the variability and uncertainty
inherent in these environments. Particularly, these methods handle the
complex stochastic relationships and time-dependent interactions be-
tween system frequency and inertia in RESs [9]. They also capture the
random fluctuations in system dynamics, and provide accurate inertia
estimates even under small disturbances and normal conditions. Several
methods in the literature utilise stochastic processes for inertia estima-
tion, as summarized in Table VI.

In summary, these methods provide real-time inertia estimation
under normal conditions, moving beyond swing equation-based
methods that focus solely on post-disturbance analysis. However,
implementing and operating this stochastic model requires a deep un-
derstanding of statistical methods and substantial computational re-
sources. The accuracy of these methods are heavily dependent on the
quality and completeness of the input data; poor data quality can lead to
unreliable estimates. Additionally, their efficiency rely on careful se-
lection and tuning of the stochastic parameters.

b. AutoRegressive Moving Average with eXogenous inputs
(ARMAX) Based Estimation Method

The ARMAX model is another statistical-based method, that excels
particularly well in medium-sized power systems with a high penetra-
tion of RESs. It models the system output as a combination of three types

of regression terms: contributions from past inputs, past outputs, and
past disturbances or noise [49]. This allows for a more dynamic and
comprehensive approach, that accommodates the inherent variability in
RES-dominated systems. Fig. 5 illustrates the operational framework of
ARMAXmethod, which captures the dynamics of disturbances to predict
the frequency deviation (Δf) at each time step (k). This method predicts
the current Δf(k) using past frequency deviations and both past and
current input changes in power (Δp), while also accounting for
non-measurable or noise inputs (e) from both current and previous time
steps. The ARMAX model parameters, ai, bi, and ci include the autore-
gressive (AR), moving average (MA), and exogenous input (X) in-
fluences, respectively, and need to be precisely estimated. To optimally
estimate these model parameters, the predicted Δf is compared with the
actual measured Δf to generate an error signal. The ARMAX model pa-
rameters are iteratively refined to minimize this prediction error when it
exceeds a predefined threshold value (≈ 10− 3). These parameters are
then utilised for inertia estimation [50]. Various methods in the litera-
ture utilise the ARMAX model, which are summarized in Table VII.

In summary, ARMAX is robust and uses real-time or possibly noisy
data for its calculations. However, constraints such as the need for large
data windows and higher relative errors in the estimation of some pa-
rameters pose convergence challenges. Additionally, all ARMAX-based
methods are heavily dependent on the tuning parameters of the
ARMAX, which may be a constraint in real-world applications.

Table 6
Summary of stochastic model-based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[45] Utilises a first-order autoregressive
stochastic model with a logistic
distribution

Enhances the accuracy by modelling
inertia as a combination of logistic
and stochastic components. Relies
on detailed and accurate historical
data for model calibration. Proven
effective in large system sizes such
as Italian transmission network.

[46] Utilises a stochastic covariance
matrix approach

Does not require disturbances for
estimation. Requires consistent
high-quality measurements and a
detailed model of the grid. Proven
effective in large system sizes such
IEEE 39-bus system and a 1479-bus
model of the all-island Irish
transmission system.

[47] Utilises a stochastic process for
online estimation in power systems
with high renewable penetration

Accurately predicts the inertia
changes, crucial for maintaining grid
stability with high renewable
penetration. Reliance on extensive
real-time data which can be
challenging to gather consistently.
Proven effective in large system sizes
such as Italian power grid.

[48] Dynamic system inertia estimation
using switching Markov Gaussian
stochastic models

The method excels in continuous
real-time inertia estimation with a
mean squared error within 0.1 of the
variance. Relies heavily on
consistent, high-quality
measurement data. Proven effective
in large system sizes such as UK
system. Fig. 5. ARMAX method for inertia estimation.
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3.4. Model-assisted identification methods

Model-assisted identification methods refer to techniques that rely
on simplified or reduced-order dynamic models to estimate system pa-
rameters, typically using real-time measurement data. Unlike purely
data-driven approaches, these methods incorporate prior structural
knowledge of the system. These methods can be classified as follows.

a Micro-Perturbation-Based Estimation Methods (MPM)

These methods are particularly well-suited for modern power sys-
tems composed of components with diverse and nonlinear dynamic
behaviours, such as renewable energy sources, energy storage systems,
electric vehicles, and DC grids [56]. These typically employ a first-order
transfer function to model the relationship between active power output
deviations and angular speed, with system inertia treated as an unknown
parameter within the transfer function. Unlike traditional
swing-equation-based methods, MPM does not rely on large distur-
bances to identify system parameters. Instead, a small perturbation
signal is deliberately introduced into the system to induce variations in
frequency and active power at the point of common coupling. The sys-
tem response to this perturbation signal, specifically, deviations in fre-
quency and active power, is carefully measured. These measurements
are then used to fit the transfer function and accurately identify its un-
known parameters, including system inertia [6]. Table VIII summarises
various perturbation-based methods in the literature, each differing in
perturbation signal design and implementation complexity.

In summary, micro-perturbation-based estimation methods offer a
flexible and effective framework for inertia estimation in low-inertia and

heterogeneous power systems. Their key advantage lies in their ability to
perform parameter identification without relying on large disturbances,
making them suitable for real-time and online applications. They are
especially compatible with systems hosting inverter-based resources and
fast-acting devices. However, these methods generally require careful
design of the perturbation signal to ensure sufficient excitation and a
favourable signal-to-noise ratio. In addition, some formulations depend
on high-accuracy measurement infrastructure, such as PMUs and may
exhibit sensitivity to preprocessing, filtering, or signal tuning.

b Kalman Filter-Based Estimation Methods

Kalman filter, and its variation, the extended Kalman filter (EKF), are
other model assisted-identification methods [6]. These methods notably
excels in environments with high levels of noise. They function by
iteratively refining estimates of system states and parameters, such as
inertia, based on newly acquired measured data [61]. Various methods
in literature use the Kalman filter for inertia estimation, which are
summarized in Table IX.

In summary, the Kalman filter-based methods operates in real time.
However, these methods assume that the system model is known (the
equations describing the system dynamics). Therefore, if the model is
incorrect or incomplete, this can lead to inaccurate estimates. Addi-
tionally, for non-linear systems, the process of linearization can intro-
duce errors.

Table 7
Summary of ARMAX model-based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[51] Uses a low-order ARMAX model for
estimation based on synchrophasors
measurements

Offers fast, dynamic inertial constant
estimation with low computational
complexity. Requires high-quality
data and is sensitive to noise and
outliers. Proven effective in
moderate system sizes such as IEEE
68-bus system.

[52] Applies ARMAX model for regional
inertia estimation

Accurately tracks regional inertia
shifts due to renewable integration
and dynamic loads. Dependent on
the availability and precision of
synchrophasor data, which can vary.
Proven effective in moderate system
sizes such as IEEE 68-bus system.

[53] Employs ARMAX for equivalent
inertia estimation under small
disturbances

Provides a stable, continuous
estimation method that integrates
smoothly into operational practices.
Requires consistent, high-quality
data for accurate inertia modelling.
Proven effective in small models
such as single wind turbine.

[54] Implements ARMAX with time-
domain vector fitting

Provides precise inertia constants
from normal operating condition
data and transient responses without
extensive computational demand.
Susceptible to noise which can
significantly affect the accuracy.
Proven effective in moderate system
sizes such as IEEE 9 and IEEE 39-bus
system.

[55] Inertia estimation at specific node or
system levels using ARMAX with
recursive maximum likelihood
method

Offers high-resolution inertia
estimates critical for grid stability
under varying conditions. Requires
precise data input and is
computationally intensive. Proven
effective in moderate system sizes
such as IEEE 39-bus system.

Table 8
Summary of micro-perturbation-based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and test
system characteristics

[56] Injects a small perturbation signal
through a power electronic
interface. Frequency and active
power responses are measured and
used to identify a first-order
transfer function for estimating the
equivalent inertia constant.

Enables online estimation; suitable
for systems with heterogeneous
components. Accuracy may degrade
when the damping coefficient D is
small. Proven effective in moderate
system sizes such as the IEEE 36-bus
system.

[57] Applies a small perturbation signal
by modulating active power using
any device capable of injecting or
absorbing power. Frequency
deviations are measured using GPS-
synchronized extensible
measurement units (XMUs), and
inertia is estimated using the swing
equation and measured RoCoF.

Utilises low power perturbation
signal. Requires multiple XMUs and
GPS synchronization; includes
estimation delay due to 1-h
averaging. Proven effective in an
islanded Japanese grid with 5 diesel
generators.

[58] Introduces small step perturbations
through an energy storage system
(ESS).

Straightforward method. Offline
process; sensitive to signal filtering
and preprocessing. Proven effective
on a 3.125 MVA diesel genset and an
experimental 13 kW natural gas
genset.

[59] Evaluates four different types of
small perturbation signals and uses
a moving horizon estimation (MHE)
algorithm based on local frequency
and ROCOF measurements to
estimate inertia and damping
constants.

Supports real-time estimation using
only local measurements; The study
proves that using square wave
excitation yields the highest
estimation accuracy. Performance is
highly sensitive to signal design
(amplitude, ramp rate, crest factor).
Proven effective in a PV–Hydro–ESS
microgrid.

[60] Injects small perturbation signals
through a grid-forming converter.
The virtual rotor speed is measured
and fitted using vector fitting (VF)
to extract the principal frequency
dynamics and estimate system
inertia.

Does not require generator-level
models or measurements. Requires a
controllable grid-forming converter
and assumes high SNR. Proven
effective in modified IEEE 39-bus and
IEEE 118-bus systems.
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3.5. Machine learning and AI-based estimation methods

These methods are particularly effective for real-time inertia esti-
mation in systems with a high penetration of RESs. Instead of relying on
predefined system models or significant disturbance, they utilise the
minor fluctuations in the power system, such as variations in power
output from renewable sources, to deliver accurate inertia measure-
ments [68]. The effectiveness of machine learning (ML)–based inertia
estimation methods is heavily dependent on the quality and diversity of
the training dataset. Machine learning models are commonly trained on
ambient or small-signal operating data, rather than rare, large-scale
disturbances. This reliance on ambient data improves real-world appli-
cability, especially as modern power systems increasingly utilise
high-resolution, time-synchronized measurements from advanced digi-
tal devices. The continued development of measurement infrastructure,
including cloud-based storage and wide-area monitoring systems, will
make such diverse datasets more accessible, thereby enhancing the
performance and scalability of ML approaches in future grids. Further-
more, the inherent risk of overfitting in ML models can be effectively
mitigated through standard regularization strategies, such as dropout,
early stopping, batch normalization, and cross-validation. Together,
these advances position ML-based methods as a promising and practical
tool for real-time inertia estimation in increasingly complex and dy-
namic power systems. The ML-based methods can be sub-classified as
follows [69].

• Artificial Intelligence-Based Estimation Method

AI-based estimation methods, including artificial neural networks
(ANN), are machine learning-based estimation methods and excel in
addressing the complexities of modern power systems, even in low-
inertia systems [70]. These methods use historical data from PMUs to
estimate system inertia and disturbance size. They rely on measure-
ments such as the total active power generated by all generators and the
frequencies at different buses [71]. Various methods in literature use AI
which are summarized in Table X.

In summary, the adoption of AI-based methods underscores their
capability for more accurate and real-time inertia estimation. None-
theless, these methods come with their own set of challenges, such as the
need for extensive datasets for model training, the possibility of over-
fitting, and the "black box" nature of ANN models. They require signif-
icant computational power and specialised knowledge for effective
implementation. They are sensitive to significant noise in the training
data, which can adversely affect the accuracy.

• SINDy-Based Estimation Method

The SINDy (sparse identification of nonlinear dynamics) method is
another machine learning-based method commonly employed when the
governing equations of the power system are unknown [76]. This
method is also useful in systems where traditional models may fall short
in capturing intricate relationships in complex power systems. Fig. 6

Table 9
Summary of Kalman-based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and test system characteristics

[62] Uses a robust Kalman filter with PMU data Resilience to uncertainties. Dependency on high-quality synchrophasor measurements can be a limitation. Proven
effective in moderate system sizes such as IEEE 39-bus system.

[63] Employs an extended Kalman filter for inertia and
rotor angle estimation

Reduces the estimation error when the exact time of disturbance is known. Prone to errors if the disturbance timing is
incorrect. Accuracy varies with the initial assumption of inertia constants, showing a potential error range from − 90%
to +100 %. Proven effective in small microgrids.

[31,
64]

Applies both EKF and unscented Kalman filter
(UKF) for inertia estimation

UKF provides higher order state estimation compared to EKF, which improves accuracy in highly nonlinear systems.
UKF requires more computational resources compared to EKF. Proven effective in small models such as a single-
machine-infinite-bus model.

[65] Two-stage Kalman filter for power system state
and inertia estimation

Enhances real-time responsiveness to dynamic state changes, crucial for power systems with high renewable
penetration. Complex and reliance on accurate initial system modelling and noise characteristics. Proven effective in
small modern systems.

[66] Applies UKF for adaptive inertia estimation Provides robust and fast parameter estimation suitable for real-time adaptive protection systems. Complexity increases
with the scale of the power system. Proven effective in moderate system sizes such as IEEE 16-machine 68-bus system
model.

[67] Dynamic state and parameter estimation using
EKF with PMU data

Implements EKF for estimation of rotor angle and inertia. Reduces computational load. Dependent on the quality and
availability of PMU data, which can be a limitation. Proven effective in small system such as 9-bus system.

Table 10
Summary of AI-based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[68] Utilises long-recurrent
convolutional neural network
(LRCN) and graph convolutional
neural network (GCN) for inertia
estimation. Uses 1100 samples from
ambient probing for training and
validation.

Achieves high estimation accuracy
of 97.34% for LRCN and 98.15% for
GCN. Dependence on the quality of
PMU data for training and
operation. Proven effective in
moderate system sizes such as IEEE
24-bus system.

[71] Employs ANN-based models for
inertia forecasting. Uses between 80
and 160 steady-state operating
points for training and validation.

Provides robust inertia forecasts in
renewable-intensive power systems.
Dependent on the availability and
granularity of input data from wind
farms. Proven effective in small
power system consists of multiple
wind farms.

[72] Integrates ANN-based approach.
Uses 81,744 samples from ambient
probing for training and validation.

Utilises HVDC converter-triggered
perturbations for system inertia
estimation. Offers robustness to
noise with 96.4 % accuracy.
Depends on the quality of input data
for high accuracy. Proven effective
in moderate system sizes such as
IEEE 39-bus system.

[73] Utilises convolutional neural
networks (CNN) for continuous
inertia estimation. Uses 300,000 s of
ambient simulation data for training
and validation.

Provides real-time inertia tracking,
crucial for adaptive grid
management. Requires extensive
data and resources for training.
Proven effective in moderate system
sizes.

[74] Utilises CNN with local frequency
measurements. Uses 1700 samples
from ambient probing for training
and validation.

Provides accurate inertia constant
estimates with 97.35 % accuracy.
Relies on the presence and accuracy
of local measurement systems and
their integration with CNNs. Proven
effective in moderate system sizes
such as IEEE 39-bus system.

[75] Residual neural network (ResNet)
for inertia estimation in low-inertia
systems. Uses 2951 samples from
disturbance-based events.

Enhances estimation accuracy (97.8
%) through deep learning. Relies
heavily on accurate and
comprehensive training data
(limitation in real-world operational
conditions). Proven effective in
moderate system sizes such as IEEE
39-bus system.
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shows the operational framework of the SINDy method. The method
initiates by recording key system measurements such as frequency and
active power from all buses (k) over a specific period (n). These mea-
surements are considered as states of the system, which capture its dy-
namic behaviour. A nonlinear state-space model, typically based on a
second-order nonlinear relationship, is assumed using these states for
inertia estimation. This nonlinear state space model comprises state
differentiation vectors, the state vectors, and the state matrix. State
differentiation vectors are constructed by applying numerical differen-
tiation to the measured states over the time period (n). On the other
hand, the state vector includes the measured states from all buses (k),
and their second-order combinations, such as the product of a state with
itself and the cross-product of different states. An unknown parameter
matrix, including inertia, is assumed to correlate the state vectors and
their derivatives vectors. The method then employs iterative refinement
of this parameter matrix through linear regression, that aims to mini-
mize the prediction error against the nonlinear model assumptions. This
iterative process enhances the accuracy of the estimated parameters,
which ensures they closely represent the dynamics of the grid. Various
methods in the literature employ SINDy for parameter identification,
which are summarized in Table XI.

In summary, the primary advantage of this method is its capability to
estimate system inertia in scenarios where there is a lack of precise
knowledge about the governing differential equations, which is typical
in complex systems. However, a potential disadvantage of the SINDy
method is the necessity for a substantial amount of precise data to
achieve accurate estimation along with its high computational time.

3.6. Frequency domain-based estimation methods

These methods operate in the frequency domain, in contrast to the
previous methods that estimate directly in the time domain. These

methods utilise transformations such as the Fourier transform or
Wavelet transform to analyse system frequency responses to distur-
bances in the frequency domain, which are then used to estimate inertia
[6,9]. These methods are classified based on the transformer used, as
follows.

• Wavelet-Based Estimation Method

The wavelet-based method is a precise frequency domain-based
estimation method [81]. Wavelet transforms offer both time and fre-
quency information for the measured signal, which makes it effective for
the precise localization of transients [82]. This method is particularly
useful in systems where the frequency response is relatively dynamic
over the period of interest. However, the effectiveness of the
Wavelet-based method heavily depends on the quality of digital sam-
pling; inaccurate or insufficient sampling can lead to error in inertia
estimates. Moreover, the Wavelet transform is computationally inten-
sive, particularly in large systems with complex oscillation modes [83].

• Discrete Fourier Transform (DFT)-Based Estimation Method

The DFT-based method is another frequency domain-based estima-
tion method. Unlike wavelet estimation, this method is particularly
useful in systems where the frequency response is relatively stationary
over the period of interest [84]. DFT-based methods can be sensitive to
noise, which can compromise the accuracy and reliability of the results.
Additionally, DFT may struggle to capture short-term, non-stationary
oscillations in systems that are strongly damped, and in large-scale
systems with multiple oscillation modes, the computational demands
increase [85]. A limited number of references utilise the DFT and
wavelet for inertia estimation, which are summarized in Table XII.

4. Comprehensive evaluation of inertia estimation methods

This section presents an in-depth evaluation of inertia estimation
methods, structured into three key dimensions, which are described in
Fig. 7. The first part evaluates the methods based on critical performance

Fig. 6. SINDy method for inertia estimation.

Table 11
Summary of SINDy based inertia estimation methods.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[77] Utilises EKF and SINDy methods Enables precise and real-time
estimation of system dynamics, ideal
for developing predictive digital
twins. Relies on the precision and
availability of data. Proven effective
in small and simple models.

[78] Utilises SINDy method for
parameter identification

Achieves high accuracy in parameter
estimation and enhances the
precision of dynamic power grid
models. Dependent on the quality
and granularity of time-series data.
Proven effective in moderate system
sizes such as IEEE 39-bus system.

[79] Utilises SINDy and performs a
comparison with Physics-informed
neural networks (PINNs)

Achieves high accuracy in dynamic
modelling across various system
conditions with notable
computational efficiency. Relies on
detailed and high-quality data.
Effective in moderate and small sizes
such as 6 and 39 bus systems.

[80] Comparative analysis of SINDy and
sliding window Methods

Identifies that the SINDy algorithm is
not suitable for real-time
applications compared to the sliding
window algorithm, which
demonstrates higher precision and
more manageable computational
complexity. Effective in small system
sizes such as 11-bus system.
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metrics such as accuracy, simplicity, computational efficiency, and
robustness against noise, while also highlighting the advantages and
disadvantages of each method. The second part evaluates the capability
of each method to operate in different temporal operational modes and
offers insights into their suitability for offline, online discrete, online

continuous, and forecasting operations. The third part evaluates the
methods based on their implementation requirements. The variation in
these requirements is significant, as some methods depend on pre-
defined mathematical models for functionality, while others rely on
direct measurements to acquire system inertia information. Addition-
ally, while some methods are specifically designed for single-machine
applications, others can be adapted to estimate the equivalent inertia
of multiple machines. While certain methods require significant dis-
turbances to function effectively, others can utilise ambient data to
accurately assess inertia under normal conditions without major dis-
turbances. Therefore, each method has specific implementation re-
quirements that can either enhance its performance in certain
environments or limit its capabilities in others.

4.1. Performance evaluation of inertia estimation methods

Inertia estimation methods differ significantly in their performance
when evaluated against key metrics such as accuracy, simplicity,
computational efficiency, and robustness against noise. Each method
presents specific advantages and disadvantages, which influence its
applicability in different environments, particularly in low-inertia
power systems. Table XIII summarises these key metrics for the inertia
estimation methods.

4.2. Evaluation based on temporal operational modes

Each inertia estimation method is designed to operate within specific
temporal operational modes based on its capabilities and intended
application. These modes can be broadly categorised into offline, online
discrete, online continuous, and forecasting. This section will describe
each temporal operational mode in detail and define which inertia
estimation methods are most suitable for each mode.

a Offline Inertia Estimation Mode

Offline inertia estimation is typically performed post-event, where
system dynamics are analysed after major disturbances, such as gener-
ator outages or significant changes in load. This mode uses historical
data to calculate total system inertia [24]. It typically requires low
computational effort. However, as with any post-event analysis, offline
mode is limited to specific time periods after disturbances, which makes
it unsuitable for real-time monitoring or proactive grid management.
The accuracy of offline estimation mode can be affected by factors such
as the size of the disturbance, measurement noise, and oscillations in the
system, which can distort the RoCoF calculations. Therefore, methods
such as polynomial fitting, and low-pass filtering are typically employed
to enhance the reliability of RoCoF calculations. Another significant
disadvantage is that the offline estimation mode becomes increasingly
challenging with the higher penetration of RESs.

The most suitable methods for offline estimation mode include swing
equation-based methods, modified swing equation-based method, sec-
ond derivative of frequency-based method, frequency domain-based
methods, and R, V, and RV-based methods. Fig. 8 summarises the
most suitable methods for each temporal operational mode.

b. Online Discrete Inertia Estimation Mode

Online discrete inertia estimation mode typically uses PMU data to
provide near real-time estimates of system inertia. This mode focuses on
capturing system-wide events such as generator trips or large load var-
iations, which cause noticeable frequency deviations. The primary
advantage of this mode is its ability to estimate inertia in near real-time,
which allows grid operators to react swiftly to disturbances. However,
online discrete mode faces several challenges, such as its limited reso-
lution, as it only provides estimates during specific events and lacks the
continuity offered by online continuous mode. Additionally, it highly

Table 12
Summary of DFT and wavelet-based methods in literature.

Ref. Concept Key advantage, disadvantage and test
system characteristics

[86] Wavelet-based adaptive
algorithm for power
disturbance analysis

Increases accuracy in the analysis of
power flows, especially under conditions
of low inertia and high renewable
penetration. Complexity and
computational demands may limit
deployment in larger microgrids. Proven
effective in small microgrids.

[87] Combines interpolated DFT and
Kalman filtering

Achieves lower estimation errors and
suitable for dynamic grid environments.
Complex implementation and dependent
on precise model tuning. Proven effective
in moderate system sizes such as IEEE 16-
machine 68-bus system model.

[88] Enhanced DFT-based
estimation of dynamically time-
varying inertia

Provides high accuracy and reduced
computational load. Implementation
complexity due to the need for precise
model tuning and signal separation.
Proven effective in small models such as
small motors or generators.

Fig. 7. Comprehensive evaluation of inertia estimation methods.
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affects by system noise, particularly in systems with high levels of
renewable generation. To enhance the accuracy of online discrete mode,
methods such as Kalman filter-based methods and ARMAX model-based
method are often employed. These methods help to filter out noise and
provide more reliable estimates.

The most suitable methods for online discrete mode include swing
equation-based methods, modified swing equation-based method, sec-
ond derivative of frequency-based method, R, V, and RV-based methods,
Kalman filter-based methods, ARMAX model-based method, and fre-
quency domain-based methods.

c. Online Continuous Inertia Estimation Mode

Online continuous inertia estimation provides real-time, continuous

monitoring of system inertia using PMU data or wide area measurement
systems (WAMS). This mode offers the highest temporal estimation
resolution, which makes it suitable for real-time applications in systems
with high RES penetration. Unlike online discrete mode, which provides
estimates only during specific disturbances, online continuous mode
maintains a constant flow of estimates under both disturbed and normal
conditions. This continuous monitoring allows grid operators to track
inertia fluctuations in real time and proactively manage changes in
system stability. However, several challenges are associated with online
continuous mode. One of the primary difficulties lies in the accurate
estimation of power imbalances during normal operations, where dis-
turbances may be small and difficult to detect. Additionally, the
computational complexity of continuous estimation is higher than that
of discrete mode. Noise and electromechanical oscillations can also

Table 13
Summary of key performance metrics of inertia estimation methods.

Estimation
Method

Concept Accuracy Simplicity Computational
Efficiency

Robustness
Against
Noise

Advantages Disadvantages

Swing Equation-
BasedMethods

Utilises the
relationship between
system frequency and
power imbalance

Low to
moderate
(≈80 %–85
%)

High (requires only
power and frequency
measurements)

High (milliseconds
to seconds)

Moderate Simple, and widely
recognized

Overlook complex actual
dynamics, and numerical
challenges

Modified Swing
Equation-
Based Method

Refines the swing
equation with
advanced dynamics
for improved
estimation

Moderate
(≈85 %–90
%)

Moderate to high
(includes complex
power system
dynamics)

Moderate to high
(seconds to tens of
seconds)

Moderate to
high

Enhances numerical
stability

Optimal parameter
selection increases
computational needs and
impacts adaptability in
different environments

Second
Derivative of
Frequency
(SDFD)-Based
Method

Inertia estimation
using the acceleration
of frequency changes

Moderate
(≈85 %–90
%)

Moderate to high
(intensive filtering
required and IPD
algorithm)

Moderate to high
(seconds to tens of
seconds)

Low to
moderate

Robust, and model
independence

Uncertainties with noisy
data, and demands high
precise measurements

Sliding Window-
Based Method

Utilises a sliding
window of
measurements rather
than relying on a
single measurement

Moderate
(≈85 %–90
%)

Moderate to high
(requires filtering
sliding windows)

Moderate to high
(seconds to tens of
seconds)

High Allows for localized
analysis, and adepts
with transient
events

Critical window size
selection, and potential
overlook of long-term
responses

R, V, and RV-
BasedMethods

Improved Inertia
estimation from
frequency deviation or
voltage magnitude
changes post-
disturbance

Moderate to
high (≈85
%–95 %)

Moderate (requires
accurate
measurements and
includes the non-
linear load
dynamics)

Moderate to high
(seconds to tens of
seconds)

Moderate to
high

Accounts for load
dependency on
frequency and
voltage

Challenge in defining
load and frequency/
voltage correlation

Stochastic
Model-Based
Method

Applies stochastic
models to
measurements for
inertia variation
capture

Moderate to
high (≈85
%–95 %)

Low (extensive data
requirement)

Low (tens of
seconds to minutes)

Low to
moderate

Capable of real-time
estimation, and
handles system
complexity

Data quality
dependency, requires
advanced statistical
knowledge, and complex

ARMAX Model-
Based Method

Utilises auto
regression, moving
averages, and
exogenous inputs for
inertia estimation

High (≈90
%–95 %)

Low to moderate
(detailed parameter
and complex model
selection for fitting)

Low (tens of
seconds to minutes)

Moderate to
high

Comprehensive
dynamics modelling,
and includes
external influences

Extensive data
requirement,
computationally
intensive, and model
order selection is critical

Micro-
Perturbation-
Based Method
(MPM)

Online inertia
estimation in normal
operation based on
minor perturbations

Low to
moderate
(≈80 %–85
%)

Moderate (intensive
measurements
required)

Moderate to high
(seconds to tens of
seconds)

Moderate Suitable for micro
disturbance-based
online estimation

Requires perturbing the
system, which may not
be practical

Kalman Filter-
BasedMethods

Uses real-time
measurements with
predictive updates for
system state and
parameters estimation

High (≈90
%–95 %)

Low to moderate
(requires accurate
model system
dynamics)

Moderate to high
(seconds to tens of
seconds)

High Real-time
estimations with
predictions, and
offers dynamic
updating

High computational
demand, complex, and
accuracy is dependent on
the assumed model

Machine
Learning-
BasedMethods

Utilises historical data
patterns and machine
learning for inertia
estimation

High (≈90
%–95 %)

Low to moderate
(training data quality
significantly need
time and storage)

High during
estimation
(milliseconds to
seconds), low
during training

High Adaptive, flexible,
and capable of
learning from large
datasets

Dependence on data
quality, and risks of
model overfitting

Frequency
Domain-Based
Methods
(Wavelet and
DFT)

Analyses system
oscillations using
discrete Fourier
transform or Wavelet
transform for inertia
estimation

Low to
moderate
(≈80 %–85
%)

Low (frequency-
domain analysis
requires
computation
resources)

Low (tens of
seconds to minutes)

Low to
moderate

Efficient in
oscillations analysis,
and no derivative
calculations needed

Large-system
complexity, and noise
sensitivity
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affect the accuracy of inertia estimates, which requires the application of
filtering and signal processing techniques.

The most suitable methods for online continuous mode include
ARMAX model-based method, Kalman filter-based methods, R, V, and
RV-based methods, machine learning-based methods, stochastic model-
based method, sliding window-based method, and micro-perturbation-
based method.

d. Forecasting Inertia Estimation Mode

Forecasting inertia estimation predicts future system inertia based on
generator schedules, renewable energy forecasts, and demand forecasts.
This mode is particularly useful for operational planning and risk
management, which allows system operators to predict changes in
inertia and take pre-emptive actions to mitigate frequency stability is-
sues. Forecasting is critical in low-inertia systems, where the variability
of renewable energy sources can lead to significant fluctuations in sys-
tem inertia. Forecasting mode faces several key challenges, such as the
accuracy of forecasts depends heavily on the quality of input schedules
and forecasts. Additionally, system variability can introduce consider-
able uncertainty into forecasts.

The most suitable methods for forecasting mode include Kalman
filter-based methods, ARMAX model-based method, machine learning-
based methods, and stochastic model-based method. Table XIV sum-
marises the comparative analysis of the temporal operational modes.

4.3. Evaluation of inertia estimation methods based on implementation
requirements: model dependency, estimation excitation and applicability
scope

Inertia estimation methods can be systematically evaluated by
examining their underlying implementation requirements. These re-
quirements are best understood by considering three fundamental fac-
tors: model dependency, excitation type, and applicability scope. Model
dependency refers to the degree to which an estimation method relies on
predefined mathematical models or prior knowledge of system dy-
namics. Excitation type pertains to the type of input signal or system
condition used to initiate the estimation process. Applicability scope
defines the spatial or operational level at which the method is intended
to function, ranging from single-generator estimation to system-level
inertia evaluation involving multiple generating units.

a. Evaluation Based on Model Dependency

The first factor related to implementation requirements focuses on
the modelling demands inherent to each method. Specifically, it exam-
ines whether a method relies on explicit physical models of system dy-
namics with minimal dependence on measurements, whether it can
operate primarily using measured data with minimal or no prior
modelling information.

• Model-Based Inertia Estimation

Model-based inertia estimation primarily requires established
mathematical models that represent the dynamic behaviour of power
system components. Inertia estimation is then carried out by identifying
unknown model parameters, through direct substation, optimization or
filtering techniques. These methods rely on a minimal set of observed
measurements, most commonly frequency and active power [8]. Com-
mon model-based inertia estimation methods include swing
equation-based approaches, Kalman filter and its variants. When accu-
rate system models are available, model-based methods can deliver
high-fidelity inertia estimates. However, their performance is highly
sensitive to modelling errors, parameter uncertainties, and
unaccounted-for system dynamics. These limitations are especially sig-
nificant in systems with a high proportion of converter-interfaced gen-
eration, where traditional modelling assumptions may no longer be
valid.

• Measurement (Model-less)-Based Inertia Estimation

Measurement-based inertia estimation, also known as model-less,
does not primarily require detailed mathematical dynamic models of
power system components. Instead, these methods infer inertial char-
acteristics directly from high-resolution, time-synchronized

Fig. 8. Suitable inertia estimation methods for different temporal opera-
tional modes.

Table 14
Comparative analysis of offline, online discrete, online continuous, and forecasting inertia estimation modes in power system.

Offline Mode Online Discrete Mode Online Continuous Mode Forecasting Mode

Concept Utilises post-disturbance data to
calculate system inertia

Estimates inertia from PMU data during
disturbances

Estimates inertia from PMU or
WAMS data continuously during
disturbances and normal
operations

Predicts system inertia based on
generator schedules, renewable energy
and demand forecasts

Advantages Simple and computationally
efficient

Provides near real-time estimates, high
accuracy, and applicable for wide range of
disturbance levels

High temporal estimation
resolution (typically updates
every 0.1–1 s), suitable for real-
time control, and enhanced
accuracy

Aids in operational planning, critical
for decision-making, and adjustable
forecasting horizons align with service
markets

Limitations Relies on disturbance size
knowledge, limited to
retrospective analysis, and less
effective with low inertia systems

Limited temporal resolution (updates only
during disturbances), estimation accuracy
dependent on precise disturbance detection,
and faces difficulties with real-time
processing

High computation time, complex,
requires advanced data processing
capabilities and filtering process

Limited by the availability of schedule
and the historical data, and time-series
models used in forecasting are complex
and significantly influence accuracy
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measurements. In addition, these methods require the use of signal
processing techniques, statistical analysis, or machine learning algo-
rithms to extract inertia-related features from the measured system
response. Common measurement-based inertia estimation methods
include stochastic dynamic methods, and machine learning methods.
These methods provide increased flexibility where system models are
incomplete, complex or unavailable. However, their accuracy and reli-
ability can be limited by the quality of measurement data, sensitivity to
noise, and the challenge of distinguishing inertia-related dynamics from
other control actions, such as primary frequency control.

b. Evaluation Based on Excitation Type

The second factor related to implementation requirements focuses on
the nature of the excitation signal used to initiate the inertia estimation
process. This factor distinguishes between methods that require large
disturbances, such as generator trips or sudden load changes, and those
that operate under ambient conditions using small-signal variations
naturally present in the system.

• Large Disturbance-Based Inertia Estimation

Large disturbance-based inertia estimation utilise the system fre-
quency response following major events such as generator outages, or
load shedding. This approach typically analyses the RoCoF during the
initial inertial response period, before the activation of primary fre-
quency control mechanisms. Accurate estimation in this context requires
high-resolution frequency measurements, along with a reliable assess-
ment of the power imbalance caused by the disturbance. Both model-
based and measurement-based estimation methods can be used to esti-
mate system inertia following such large disturbances.

• Ambient Data-Based Inertia Estimation

Inertia can be estimated using ambient data, which capture the
natural fluctuations in signals such as frequency caused by random small
load variations or inherent variability in renewable generation. This
approach enables continuous inertia estimation and is particularly ad-
vantageous in modern low inertia power systems, where large distur-
bances are either uncommon or undesirable. However, ambient based
methods may be susceptible to noise and measurement uncertainty,
particularly in low signal-to-noise environments, unless advanced
filtering and signal processing techniques are employed to extract
meaningful dynamic information. Table XV provide a comparative
analysis between large disturbance-based and ambient data-based
inertia estimation.

c Evaluation Based on Applicability Scope

The third factor related to implementation requirements focuses on
the scope of applicability. This includes whether the method targets a
single synchronous machine or aims to provide inertia estimates at an
aggregated system or regional level.

• Single Machine Inertia Estimation Scope

This scope is typically applied to estimate the inertia of a single
machine, such as a SG or a non-synchronous converter [63,67,89–99].
Methods designed for this specific scope are generally implemented
using local measurements obtained directly from the machine terminals.
The most suitable methods for this purpose include swing
equation-based methods, modified swing equation methods, second
derivative of frequency-based methods, and Kalman filter-based esti-
mators. Despite their effectiveness for individual machine-level analysis,
the localized nature of these methods limits their applicability in eval-
uating system-wide inertia. Furthermore, their performance depends

heavily on the accuracy of local measurements.

• Multiple Machines Inertia Estimation Scope (Regional Inertia Estimation)

In large-interconnected power systems, it is often necessary to esti-
mate the inertia of an entire region or a group of machines. If a model-
based approach is adopted for this scope, equivalent system models are
constructed by aggregating coherent generators and their associated
loads. This enables the estimation of regional inertia through reduced-
order dynamic equivalents that represent the collective behaviour of
the subsystem. Alternatively, if a measurement-based approach is
adopted for this scope, PMU data collected at inter-area boundaries.
These measurements are then used to infer the net inertia contribution
of the region [100–108]. The most suitable methods for this scope
include the Kalman filter-based method, the ARMAX model-based
method, and the machine learning-based methods. While regional
methods offer broader coverage and system-level insights, they intro-
duce their own challenges. These include managing heterogeneous
generation mixes (including both SGs and CIGs) as well as managing and
synchronizing measurements collected across wide geographical areas.
Fig. 9 illustrates the applicability scope of inertia estimation methods,
with Fig. 9(a) depicting the estimation for a single machine and Fig. 9(b)
representing the estimation across multiple machines.

Table XVI provides an evaluation of inertia estimation methods

Table 15
Comparative analysis between large disturbance-based and ambient data-based
inertia estimation.

Large Disturbance-Based
Estimation

Ambient Data-Based
Estimation

Required Data
Inputs

RoCoF calculations during
disturbances and sometimes
power imbalance

Continuous flow of ambient
data from different
measurement devices during
disturbances and normal
operations

Sensitivity to
Renewable
Integration

Moderate to high (varies
with disturbance magnitude
and how the renewable
sources affect the RoCoF
response)

Low to moderate (depend on
the size and accuracy of the
data)

Advantages Rapid results, and suitable
for real-time disturbance
analysis

Commonly model-free,
continuous monitoring of
inertia, and suitable for
normal operation

Disadvantages Requires significant
disturbances, challenges in
estimating RoCoF
accurately, and typically
uses terminal frequency as a
proxy for machine rotor
speed

Requires extensive data for
reliable estimation, and
highly sensitive to noise and
data quality

Fig. 9. Applicability scope of inertia estimation methods, (a) inertia estimation
for a single machine, and (b) inertia estimation for multiple machines.
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based on their commonly reported model dependency, excitation type
and applicability scope, as documented in the existing literature.

5. AHP-based ranking and optimal environmental
recommendations for inertia estimation methods

This section builds on the comprehensive evaluations conducted in
the previous section and is divided into two parts. The first part ranks the
estimation methods based on the key performance metrics, using an
AHP-based approach, to determine the most suitable method in the low
inertia power systems. The second part provides recommendations for
the most suitable environments for each inertia estimation method in
general.

5.1. AHP-based ranking of estimation methods for low-inertia power
systems

The AHP-based approach ranks the estimation methods to identify

the most suitable method for low-inertia power systems with high
penetration of RESs. It uses the key performance metrics outlined in
Table XIII, which include accuracy, simplicity, computational efficiency,
and robustness against noise. Since the AHP process requires numerical
values, the qualitative performance metrics scores (such as low, mod-
erate, and high) from Table XIII are converted into quantitative scores.
Each performance metric is assigned a score from 1 to 5, where 1 rep-
resents the lowest performance and 5 indicates superior performance.
This scoring process is applied consistently across all methods and their
metrics, as illustrated in Fig. 10. The AHP-based approach then assigns
equal weights to each performance metric, with each metric given a
weight of 25 %, reflecting their balanced importance in low-inertia
systems with high penetration of renewable energies. Fig. 11 presents
the final ranking of the methods based on these weighted scores. Ma-
chine learning-based methods, Kalman filter-based methods, and the
sliding window-based method emerge as the top-ranked methods,
particularly excelling in accuracy, real-time performance, and robust-
ness to noise, which make them well-suited for systems with high
renewable variability. In contrast, methods such as the frequency
domain-based estimation methods rank lower, primarily due to their
limitations in handling real-time demands and noise resilience, which
are essential in modern renewable energy systems.

5.2. Recommendations on suitable environments for inertia estimation
methods

This part builds on the comprehensive evaluations from Section IV,
which considers key performance metrics, temporal operational modes,
and implementation requirements of the estimation methods. Based on
these evaluations, this part provides recommendations for the most
suitable environment for each inertia estimation method. These rec-
ommendations take into account factors such as system scale (small,
medium, or large), the type of power system (only synchronous gener-
ators or generation mix), and the operational mode (offline, online, or
forecasting). Strengths and limitations of each method are matched to
the most appropriate operational environments. The summary of envi-
ronmental recommendations for each method is provided in Table XVII.

6. Special topics in inertia estimation: synthetic inertia
estimation and electromechanical mode analysis

This section presents selected advanced topics in inertia estimation,
highlighting recent developments in estimating synthetic and virtual
inertia in inverter-based systems, as well as indirect estimation methods
based on electromechanical mode analysis.

Table 16
Evaluation of inertia estimation methods based on model dependency and
applicability scope.

Estimation
Method

Model Dependency Excitation Type Estimation
Scope

Swing Equation-
Based Methods

Model-based
(classical swing
equation)

Typically applied
following large
disturbances

Single
machine or
regional

Modified Swing
Equation-
Based Method

Model-based
(classical swing
equation with
damping constant)

Typically applied
following large
disturbances

Typically used
with single
machine in
literature

Second
Derivative of
Frequency
(SDFD)-Based
Method

Model-based
(derivative of the
classical swing
equation)

Typically applied
following large
disturbances

Single
machine or
regional

Sliding Window-
Based Method

Measurement-based
(uses simple division
between average
power and RoCoF)

Typically applied
following large or
ambient
fluctuations

Single
machine or
regional

R, V, and RV-
Based Methods

Measurement-based
(relies on empirical
relationships
between RoCoF,
voltage, and power
changes)

Typically applied
following large
disturbances

Typically used
for regional-
level
estimation.

Stochastic
Model-Based
Method

Measurement-based
(relies on self-
generated stochastic
models such as
Markov models)

Typically applied
under normal
operating
conditions

Typically used
for regional-
level
estimation.

ARMAX Model-
Based Method

Measurement-based
(relies on self-
generated ARMAX
model without
physical modelling)

Typically applied
under ambient
conditions or
small-
disturbance.

Single
machine or
regional

Micro-
Perturbation-
Based Method
(MPM)

Measurement-based
(typically assume a
simple first-order
transfer function
model)

Typically applied
following
controlled
probing signals

Typically used
with single
machine

Kalman Filter-
Based Methods

Model-based (full or
reduced state-space
models)

It can be applied
under ambient
conditions or
disturbances.

Single
machine or
regional

Machine
Learning-
Based Methods

Measurement-based Typically applied
under normal
operating
conditions

Typically used
for regional-
level
estimation.

Frequency
Domain-Based
Methods
(Wavelet and
DFT)

Measurement-based It can be applied
under ambient
conditions or
large-disturbance.

Typically used
with single
machine

Fig. 10. Quantitative scoring of inertia estimation methods across key perfor-
mance metrics.
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6.1. Estimation of synthetic (virtual) inertia in inverter-based power
systems

This part reviews how the estimation methods classified in Section III
have been adapted for application to synthetic inertia estimation.
Particular attention is also given to advanced algorithmic frameworks
that have been specifically developed to address the unique character-
istics of synthetic inertia, including its fast dynamic response and time-
varying behaviour. The summary of core contributions in synthetic and
virtual inertia estimation methods is provided in Table XVIII.

6.2. Indirect inertia estimation using electromechanical modes analysis

Electromechanical mode-based methods estimate inertia by identi-
fying the natural modes of oscillation in the system, specifically, their
frequencies, damping ratios, and in some cases, mode shapes. These
modes are extracted using system identification techniques such as auto-
regressive moving average (ARMA) modelling, matrix pencil (MP), or
stochastic subspace identification (SSI). Once the modal parameters are

Fig. 11. Final ranking of estimation methods based on AHP weighted scores.

Table 17
Recommended environment for inertia estimation methods [6,11].

Method Recommended Environment

Swing Equation-Based Methods Small-scale systems, traditional synchronous
generators, and offline or online estimation

Modified Swing Equation-Based
Method

Small to medium-scale systems, generation mix,
and offline or online estimation

Second Derivative of Frequency-
Based Method

Small to medium-scale systems, traditional
synchronous generators, and offline estimation

Sliding Window-Based Method Small to medium-scale systems, generation mix,
and online discrete estimation

R, V, and RV-Based Methods Small to medium-scale systems, generation mix
with highly variable loads and small renewable
interfaces, and online or offline estimation

Stochastic Model-Based Method Large-scale systems, generation mix with high
renewable penetration, and online or forecasting
estimation

ARMAX Model-Based Method Medium to large-scale systems, generation mix,
with renewable energy interfaces, and online or
forecasting estimation

Micro-Perturbation-Based
Method

Medium to large-scale, generation mix, and
online estimation

Kalman Filter-Based Methods Small to medium-scale systems, generation mix,
and online estimation

Machine Learning-Based
Methods

Large-scale systems, generation mix with
complex dynamics, and online or forecasting
estimation

Frequency Domain-Based
Methods (Wavelet and DFT)

Small to medium-scale systems with periodic
disturbances, generation mix, and offline
estimation.

Table 18
Summary of core contributions in synthetic and virtual inertia estimation
methods.

Category Reference Core contribution

Swing Equation-Based
Methods

[109] Proposed a discrete-time swing
equation formulation using PMU
measurements to estimate the
equivalent virtual inertia of wind
power plants.

[110] Incorporated internal reactance into
swing equation-based estimation,
enabling accurate aggregation of
virtual inertia across multiple IBRs.

Sliding Window-Based
Method

[111] Developed an adaptive sliding time-
window method combined with
regression analysis to estimate
equivalent inertia at the IBR-grid
interface.

R-Based Method [112] Applied a R-based framework to
support synthetic inertia control from
energy storage systems.

ARMAX Model-Based
Method

[113] Employed a weighted recursive
ARMAX model to identify system
dynamics from frequency and power
data, extracting system inertia from the
step response.

[114] Proposed an online ARMAX-based
estimator to quantify effective
synthetic inertia and droop in VSC-
HVDC systems.

Kalman Filter-Based
Methods

[115] Developed a UKF to estimate time-
varying inertia and damping of grid-
forming inverters using terminal
measurements, considering current
limiter effects.

[116] Designed an EKF enhanced by Grey
Wolf Optimization to improve
convergence and noise immunity in
PMU-based virtual inertia estimation.

Micro-Perturbation-Based
Method

[117] Introduced a method using Hann-
shaped perturbation signals injected by
IBRs to excite system dynamics and
estimate inertia and droop through
linear regression.

Machine Learning-Based
Methods

[118] Trained a neural network on steady-
state operational data to estimate
system equivalent inertia, considering
synchronous generators, asynchronous
motors, and wind turbines with or
without virtual inertia control.

Frequency Domain-Based
Methods

[119] Proposed a wavelet transform-based
method to estimate virtual inertia by
analysing frequency-domain
characteristics of power and frequency
signals.

Singular Value
Decomposition + RoCoF
Gradient Mapping

[120] Presented a data-driven method using
SVD and frequency gradient mapping
on RoCoF to estimate time-dependent
inertia with improved efficiency.

Advanced Systematic
Classification algorithm

[121] Developed a system identification-
based method to classify and quantify
non-synchronous inertia in AC
microgrids through RoCoF and
frequency deviation models.

Recursive Least-Squares
Approach

[122] Applied recursive least-squares
estimation using electromechanical
oscillation modes to estimate time-
varying inertia in high-renewable
systems.

Local Rational Model (LRM) [123] Proposed a non-parametric online
estimation method using local rational
models to track time-dependent virtual
inertia without system model
knowledge.

Impedance-Based
Estimation

[124] Developed an online estimation
technique linking impedance and
frequency response to determine nodal

(continued on next page)
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identified, analytical relationships derived compute system or area-level
inertia from these modes. In some cases, machine learning models are
trained to map modal features to inertia values. Various methods in the
literature employ electromechanical mode for inertia estimation, which
are summarized in Table XIX.

7. Inertia estimation challenges and research directions

This section outlines the challenges and potential research directions
related to inertia estimation in power systems. These challenges arise
from the diversity of energy generators, and the growing complexity of
recent power grids.

7.1. Challenges related to the influence of damping in inertia estimation

Inertia estimation methods often assume that damping effects are

negligible immediately after a disturbance, as the system response is
primarily driven by inertia during this initial period. This assumption is
valid for traditional synchronous generators, where damping co-
efficients are low (1–3 pu) and have minimal impact on inertia
estimation.

In contrast, RESs are connected to the grid through converters, such
as grid forming converters, which have higher damping coefficients
(20–30 pu). This high damping affects the system response immediately
after a disturbance and makes accurate inertia estimation challenging
when methods assume low damping. Future research should develop
methods that consider both low and high damping scenarios. This will
improve the accuracy of inertia estimation in systems with diverse
generator types and high levels of renewable integration.

7.2. Challenges related to the integration of hybrid data sources for inertia
estimation

As renewable penetration increases, integrating multiple data sour-
ces for inertia estimation becomes necessary. Traditional inertia esti-
mation relies heavily on PMUs and WAMS data; however, as grids
become more complex, additional data sources, such as weather data,
and IoT sensors from DERs, may enhance accuracy. A significant chal-
lenge lies in developing multi-source data fusion techniques that can
combine these diverse datasets, each with different temporal resolutions
and reliability levels, into a cohesive inertia estimation framework.
Research into hybrid data integration and machine learning algorithms
that can handle heterogeneous data sources would improve both the
accuracy and responsiveness of inertia estimation.

7.3. Challenges in temporal decomposition of inertia

In systems with both fast-responding synthetic inertia and traditional
synchronous inertia, separating the inertia response into different
timeframes is a unique challenge. Synthetic inertia responds faster than
mechanical inertia, which creates a need to estimate these components
separately for effective control. Developing inertia estimation methods
that distinguish between short-term synthetic inertia and longer-term
synchronous inertia can improve control strategies. This approach al-
lows for more precise tuning of grid parameters to balance both types of
inertia in different operational scenarios.

7.4. Challenges related to inertia contribution of loads

As previously mentioned in the R, V, and RV-based estimation
methods, the load does not remain invariably constant; it can be influ-
enced by the voltage and frequency of the bus to which it is connected.
For instance, synchronous motors are dynamic loads and inherently
respond to frequency fluctuations in the power grid. Therefore, accu-
rately assessing their contribution to inertia is challenging due to their
diverse operational scenarios and widespread dispersion. Moreover,
recent microgrids are experiencing changes in load types, notably due to
the rise in data center power consumption and the expansion of loads
powered by variable frequency drives, which significantly impact sys-
tem dynamics. This trend highlights the need for research focused on
precisely modelling, observing, and regulating the inertial contributions
of these new types of loads to enhance inertia estimation accuracy.

Table XX summarises these key challenges in modern inertia esti-
mation and highlights representative solutions proposed in the
literature.

8. Conclusion

This paper provided a comprehensive review of inertia estimation
methods, with a particular focus on their suitability in modern low-
inertia power systems. The review has covered both traditional
methods and cutting-edge estimation advancements. The estimation

Table 18 (continued )

Category Reference Core contribution

inertia for both synchronous and
inverter-based units.

Voltage-Controlled Zone
Method

[125] Introduced a voltage-controlled zone
concept to separate and estimate load,
synchronous, and non-synchronous
inertia with minimal PMU data
requirements.

Table 19
Summary of electromechanical modes-based estimation methods in literature.

Ref. Concept Key advantage, disadvantage and
test system characteristics

[126] Estimates system inertia by matching
the system electromechanical modes,
obtained from frequency
measurements using Prony method,
with those of a linearised dynamic
model.

Operates under ambient
conditions. Requires accurate
mode estimation, which is non-
trivial for well-damped modes.
Applied to IEEE 14 and IEEE 39-
bus system and.

[106] Estimates system equivalent inertia
and damping coefficient by
exploiting the analytical relationship
between electromechanical
oscillation parameters using local
iterative filtering decomposition.

Requires only tie-line active
power measurement. Estimation
accuracy degrades under poor
signal-to-noise ratio. Tested on
two-area 4-generator system and
IEEE 39-bus systems.

[127] Combines rigid body and inter-
generators modes for inertia
estimation. It uses ARMA for modes
extraction.

Uses multiple modes for improved
accuracy and does not require
knowledge of disturbance
magnitude. High inertia weakens
sensitivity of the rigid body mode
to H. Validated on IEEE 14-bus
and 39-bus systems.

[128] Derives a mathematical relationship
between inertia and
electromechanical oscillation modes.
It uses stochastic subspace
identification or frequency
decomposition for modes extraction.

Operates under ambient
conditions, and high
computational efficiency.
Assumes ambient excitation is
Gaussian and stationary. Only
validated on single-generator
infinite bus system.

[129] Uses the modal parameters
(frequency, damping, and mode
shape) of inter-area oscillations and
formulates the relationship between
modal parameters and area-level
inertia.

Enables area-level inertia
estimation using only PMU data.
Estimation accuracy may degrade
in areas with weak coupling or
high electrical distance. Validated
on IEEE 16-generator and North
China Grid.

[130] Identifies electromechanical modes
through the matrix pencil (MP)
method, then clusters dominant
modes using density-based spatial
clustering of applications with noise,
and finally employs a random forest
regressor (RFR) to estimate the
inertia constants per area

Robust to measurement noise.
Requires prior training of the RFR
model using historical data.
Validated on 39-Bus New England
system
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methods were comprehensively categorised, characterised and evalu-
ated based on their key performance metrics, temporal operational
modes, and implementation requirements. The analytic hierarchy
process-based ranking technique has been used to define the most
suitable methods in low-inertia power systems with high penetration of
RESs. The evaluation revealed that traditional methods, such as the
swing equation, are often insufficient in systems with high levels of
renewable energy penetration. In contrast, advanced methods including
machine learning and Kalman filter-basedmethods, demonstrate greater
adaptability in these environments. This review also underscored the
importance of real-time and forecasting inertia estimation in maintain-
ing grid stability and reliability. Methods such as sliding window,
ARMAX models, and micro-perturbation-based estimations emerged as
effective for continuous monitoring, whereas statistical and machine
learning methods showed significant promise in predicting future grid
conditions. Future research should focus on addressing unique chal-
lenges in inertia estimation, such as handling diverse damping scenarios,
integrating hybrid data sources, and temporally decomposing synthetic
and synchronous inertia.
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Mapping of key inertia estimation challenges to literature solutions.

Challenge Reference Proposed solution

Influence of Damping in
Inertia Estimation

[8] Reviews the impact of damping from
converter-based resources and
highlights methods capable of
decoupling inertia and damping.

[131] Proposes an extended dynamic
regression that jointly estimates inertia
and damping.

[132] Uses an adaptive unscented Kalman
filter to estimate time-varying inertia
and damping.

[117] Employs probing signals to estimate
inertia and droop as a damping proxy.

Integration of Hybrid Data
Sources for Inertia
Estimation

[69] Combines synchrophasor, load, and
weather data using machine learning
for inertia estimation.

[133] Uses semi-parametric probabilistic
models with hybrid data for day-ahead
inertia forecasting.

[134] Proposes a real-time inertia estimation
method using frequency and power
data via dynamic regressor extension
and mixing method, showcasing a
scalable approach compatible with
hybrid data integration.

Temporal Decomposition of
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[117] Uses Hann-window probing signals to
distinguish synthetic and mechanical
inertia.
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feedback signals on inertia response
timing.

[136] Provides a framework for separating
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Inertia Contribution of Loads [137] Proposes a model that simultaneously
estimates system inertia and load
relief.

[46] Uses covariance analysis of ambient
noise to estimate inertia including
loads.

[138] Applies typicality-based data analysis
to assess regional inertia, including
motor loads.
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