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A DGM for the generation of likely manufacturing sequences within 
the primary domain has been developed, showing their potential in 
manufacturing design. Further research is ongoing to enhance 
performance and applicability in other domains.
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Output
1. ADD $0$
2. ADD $3$
3. ADD $1$ at %T2%
4. STIR for %t3%
5. FILTER
6. WASH with DCM
7. DRY [VACUUM]
8. YIELD: $2$
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2. ADD $3$
3. ADD $1$ at %T2%
4. STIR for %t3%
5. FILTER
6. WASH with DCM
7. DRY [VACUUM]
8. YIELD: $2$

1. ADD $0$
2. ADD $3$
3. ADD $1$ at %T2%
4. STIR for %t3%
5. FILTER
6. WASH with DCM
7. DRY [VACUUM]
8. YIELD: $2$
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• Patents from 1971 to 2021.
• 385K procedures for synthesis and
purifcation of more than 359K molecules.
• Database contains information on
materials, conditions, and operations
obtained using natual language 
processing (NLP).
• Training set split (80:10:10).

Fig 1. From left to right, distributions of molecular weight, ClogP, and drug-likeness measured as 
QED for the synthesis products obtained.
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Future Continuous Manufacturing and Advanced Crystallisation Research Hub (CMAC), University of Strathclyde

Patent No. US8859535B2
Intermediate 178.2 (4-Bromo-
phenyl)-(2-oxa-
bicyclo[2.2.2]oct-4-
yl)methanone
To a solution of (4-Bromo-phenyl)-
(2-oxa-bicyclo[2.2.2]oct-4-
yl)methanol (224 mg, 0.821 mmol) 
in DCM (13 ml) was added a total 
of manganese dioxide (1.414 g, 
16.264 mmol) at RT and the 
reaction mixture was stirred for 20 
hrs. The suspension was filtered
through a pad of hyflo and the 
residue was washed with DCM, 
dried in vacuo to yield the title 
intermediate (220 mg, 0.745 
mmol, 91%) as a colourless solid.

• More than 20K terms identified to refer to operations.
• Multiple ways to refer to the same materials.
• Materials were standardised using InChI, while terminology for
operations was unified into 60 terms using as a reference the work 
conducted by [1] and [2].

Model: Variational Autoencoder (VAE) 3 Results and Discussion

Aim
Deep generative models (DGMs) are neural networks capable of generating realistic 
samples and learning hidden information. Most popular developments in this area include 
GPT, Dall-E and midjourney applied to generate text and images.
DGMs have been employed in fields such as drug discovery to generate new drug 
candidates with desirable biological and chemical properties.
Applications in pharmaceutical manufacturing have not been fully explored.
Potential Benefits of DGMs
• Assist process design by producing plausible manufacturing routes for  APIs/dosage forms
and targeting the design space.

• Improve process understanding through the utilisation of latent variables that may be
correlated to process parameters.

Challenges for their development
• Thousands of data are required to develop a model.
• No database with information on primary and secondary processing.

Background
Develop DGMs for the design of 
pharmaceutical manufacturing 
processes taking molecular descriptors 
as inputs and outputting a plausible 
chain of unit operations.

Collect data for 
model training

1

Design and 
development 

of DGM
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Index Type InChIKey

0 REACTANT MYEXTBQDVDPSHS-
UHFFFAOYSA-N

1 REACTANT NUJOXMJBOLGQSY-
UHFFFAOYSA-N

2 TARGET RZFLEKKWQKWKHJ-
UHFFFAOYSA-N

3 SOLVENT YMWUJEATGCHHMB-
UHFFFAOYSA-N

 MACC Keys  
and Type

 MACC Keys  
and Type

 MACC Keys  
and Type

Sampled 
noise 

ACN ($2$)$1$

$3$
NH2OH ($0$)

Sequence reconstruction 
using z, MACCS Keys 

and type

New Sequence Generation

As a reference, a model developed by [1] to predict action 
sequences was employed. This model was retrained with our 
dataset.
Manual revision of sequences indicates the VAE tends to generate 
consistent sequences, although errors can still be observed which 
explains a lower validity compared to reference model.
Future work will explore:
• Changes in architecture to
improve performance.

• Manual assessment by
experts to check plausibility.

• Adaptation of these models
for secondary processing.

Model BLEU Reconst.
Accuracy

Valid 
samples

Transformer [1]* 55% 3.6% 99%
Retrained* 48% 2.4% 95%
CVAE 99% 94% 65%
Invariant-CVAE 97% 86% 77%

TTaabbllee  11..  Performance metrics. * refers to prediction
accuracy. Model [1] validity criteria includes
additional rules 

Procedure projection onto latent 
space (z)

Generated sequence 2)
COMBINE → ADD $1$ → 
ADD $2$ → STIR at %T2% 
for %t0% → HEAT to %T4% 
→ STIR for %t3% → ADD 
$0$ → REFLUX → COOL → 
CONCENTRATE → MAKE_
SOLUTION → REPEAT >4 
time(s) → DRY_SOLUTION 
with K2CO3 → PURIFY → 
EVAPORATE solvent → 
YIELD: $3$ 

Generated sequence 1)
COMBINE → ADD $2$ 
→ ADD $0$ → ADD $1$
→ STIR at %T2% → 
PURIFY → 
CONCENTRATE → 
YIELD: $3$
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