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Abstract: Micro-milling is increasingly recognized as a crucial technique for machin-
ing intricate and miniature 3D aerospace components, particularly those fabricated from
difficult-to-cut Ti-6Al-4V alloys. However, its practical applications are hindered by sig-
nificant challenges, particularly the unavoidable generation of burrs, which complicate
subsequent finishing processes and adversely affect overall part quality. To optimize
the burr formation in the micro-milling of Ti-6Al-4V alloys, this study proposes a novel
hybrid-ranking optimization algorithm that integrates Grey Relational Analysis (GRA)
with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This
approach innovatively combines GRA and TOPSIS with a random forest regression (RFR)
model, facilitating the exploration of nonlinear and complex relationships between input
parameters and machining outcomes. Specifically, the effects of spindle speed, depth of
cut, and feed rate per tooth on surface roughness and burr width generated during both
down-milling and up-milling processes were systematically investigated using the pro-
posed methodology. The results reveal that the depth of cut is the most influential factor
affecting surface roughness, while feed rate per tooth plays a critical role in controlling burr
formation. Moreover, the GRA-TOPSIS-RFR method significantly outperforms existing
optimization and prediction models, with the integration of the RFR model enhancing
prediction accuracy by 42.6% compared to traditional linear regression approaches. The
validation experimental results agree well with the GRA-TOPSIS-RFR-optimized outcomes.
This research provides valuable insights into optimizing the micro-milling process of tita-
nium components, ultimately contributing to improved quality, performance, and service
life across various aerospace applications.

Keywords: Ti6Al4V alloys; micro-milling; parameter optimization; Taguchi method; grey
relational analysis; random forest; GRA-TOPSIS

1. Introduction

Titanium alloys are widely used in aerospace, petrochemical, and automobile fields
due to their high strength, good corrosion resistance, and high heat resistance [1,2]. Re-
cently, the products made from titanium alloys in these fields have been further developed
towards miniaturization with their functional structural features in micrometres [3,4]. These
miniaturized products normally have complex three-dimensional geometric structures and
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require high machining quality, creating a great demand for the development of micro-
milling technology [5] as this method is powerful for producing sub-micron machining
accuracy in machining freeform surface structures [6]. However, titanium alloys, especially
the Ti-6Al-4V alloy, are known as one typical difficult-to-machine material [7,8] due to
their poor machinability and the difficulty in the mechanical cutting process [9,10]. For
example, the presence of burrs is unavoidable in the micro-milling processes of titanium
alloys [11], which not only reduces the quality and accuracy of the machined surface but
also causes the wear of milling cutters [12]. As a result, it affects the processing efficiency
and increases production costs. The traditional deburring methods (e.g., manual deburring
and mechanical deburring) in macro-milling processes cannot be directly applied to remove
micro-scale burrs in micro-milling since these methods may not be appropriate to trim the
smaller and complex geometrical structures on the processed miniaturized products [13,14].
Hence, there is a pressing need for in-depth investigations into the optimization of burrs
during micro-milling processes of Ti-6Al-4V alloys. Such exploration is crucial to improve
the machined surface quality and further enhance their service performance and lifespan.

Considerable efforts have been dedicated to investigating the formation mechanism
of milling burrs in titanium alloy processing [15,16]. Numerous three-dimensional finite
element models (FEMs) have been constructed to simulate the micro-milling process of
the Ti-6Al-4V titanium alloy [17,18]. These models have provided insights into the impact
of tool geometry, blunt circle radius of the tool cutting edge, as well as the coating, on
the process of burr formation and the resulting burr sizes. Through FEM simulation and
experimental analysis, Chen [11] systematically classified the types of burrs occurring in the
microgroove milling process of Ti-6Al-4V and reported that the size of milling burrs gener-
ated on the up-milling side is much larger than that on the down-milling side. Recently,
with the development of digital-driven artificial intelligence (AI) technologies [19,20], a lot
of digital-driven analysis methods have been adopted to optimize the machining surface
quality and reduce the burr sizes, like multi-objective optimization, grey correlation anal-
ysis (GRA), and particle swarm algorithm [15,21]. These methods have their respective
pros and cons. Meanwhile, hybrid Al approaches, integrating some of the abovementioned
methods are gradually showing their powerful capacities to reveal the relationship between
processing factors and machining responses [22,23].

Several hybrid approaches have been proposed in the past to enhance the performance
of multi-criteria decision-making (MCDM) processes like GRA. Dhuria [24] developed a
hybrid GRA approach with entropy weight assignment during ultrasonic machining of
the Ti-6Al-4V alloy. The entropy weight method assigns more weights to the response
with higher variation and is regarded as a better approach than uniform weights. The
GRA-PCA approach was used to study the radial overcut of D2 steel during EDM pro-
cessing by Pradhan [25]. Though the parametric study and optimization provided better
overall performance, the R2 value for the GRG model was found to be just 0.83. The
GRA PCA approach was also used by Kharwar and Verma [26] during the drilling of car-
bon nanocomposites and by Umamaheswarrao [27] during the hard turning of AISI steels.
With the objective of optimizing abrasive water jet machining, a grey-SVM approach was
introduced by Deris [28]. The advantage of this approach with respect to other hybrid
methods is its ability to suppress the redundant features from the dataset. Dewangan [29]
used a hybrid-grey fuzzy approach for the multi-objective optimization of the EDM process
to affect a 10% overall improvement compared to the initial condition.

Similarly to optimization, several approaches are explored in recent years for ma-
chining response prediction. Among those, machine learning (ML)-based approaches
are reported to be the best performing in terms of prediction accuracy. A few of the lat-
est advancements in ML-based machining response prediction are discussed henceforth.
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Rajamani [30] has used an adaptive neuro-fuzzy inference system (ANFIS) model and
whale optimization algorithm (WOA) to predict and optimize process responses during
the laser machining of Hastelloy C276. The responses considered were cutting rate, kerf
taper, and surface finish. The results are very promising with an R? value of 97% for
prediction and an enhanced performance upon optimization. ANFIS model-based response
prediction was also attempted by Manikandan [31] for the wire EDM processing of MMCs.
The drilling process was modelled by Latha and Senthilkumar [32] using a fuzzy logic
model. The criticism of the fuzzy model is its lack of flexibility and over-dependence on
expert knowledge for the rule set creation. For a process with a material removal mech-
anism that is not completely understood, creating a fuzzy-based system can be tedious
and inaccurate. Together with FEM analysis, a random forest regression (RFR) model
was developed for microhardness prediction by Arisoy and Ozel [33] during the turning
operation of Ti-6Al-4V. Prashanth et al. [34] compared SVM, Gaussian regression, and en-
semble techniques for grinding response prediction under different cooling environments.
Curiously, the Gaussian regression method was found to outperform the other two in terms
of R? and RMSE performance matrices.

From the literature, it was understood that there is an active scope for the optimization
and response prediction of milling parameters through advanced computational and statis-
tical techniques. Though the GRA method has the potential to select the optimal machining
conditions, performance enhancement is often very marginal. Hybrid techniques which
combine the advantages of multiple MCDM methods can be looked into to resolve this
limitation. Additionally, the literature review highlighted that ML prediction models like
fuzzy logic rely on operator knowledge to set the rules and are not trainable. From an
industrial production context, maximizing product quality measures are very critical. A
comprehensive investigation of the influence of machining parameters on micro-milling is
thus performed towards processing the components that comply with industrial require-
ments. Therefore, this paper aims to perform micro-groove milling experiments in titanium
alloys to reveal the influence of micro-milling process parameters (spindle speed, depth
of cut, and feed rate) on the formation mechanism of burrs on the down-milling side and
up-milling side. Additionally, a hybrid GRA-TOPSIS model is proposed in this study, based
on the Taguchi experimental design. By utilizing this model, a combination of cutting
process parameters that can achieve minimum machining surface roughness and burr
size in the micro-milling of titanium alloy micro-miniature components is obtained. This
provides valuable parameter guidance for the optimization of the micro-milling process.
Furthermore, the research explores the integrating random forest regression (RFR) model
to the proposed GRA-TOPSIS, which exhibits superior prediction accuracy compared to
existing machine learning-based models for micro-milling applications. The introduction
of the RFR model holds great potential for enhancing the accuracy of response prediction
in micro-milling processes.

2. Experimental Design and Analysis Methods
2.1. Materials and Machining Set-Up

The micro-milling groove experiments were carried out on a house-built five-axis
precision machine tool, which adopts a high-speed motorized spindle with a maximum
speed of 80,000 rpm and also a precise three-dimensional transportation platform. A
precision optical microscope was used for tool setting. Ti-6Al-4V alloys in the size
of 20 mm x 20 mm x 10 mm were used for workpieces. The specific chemical composition
and mechanical properties of Ti-6Al-4V alloys are listed in Tables 1 and 2, respectively. Re-
garding the micro-milling grooves, their length was set as 2 mm, and the distance between
adjacent grooves was 1 mm. A commercial micro-milling cutter with AITiN coating was
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adopted in this experiment (HTS, Hetaisheng Tools, Shenzhen, China). This mill has a
double edge, and its diameter and chamber length are 0.6 mm and 0.05 mm, respectively.
The helix angle of the milling cutter is 30°. The radius of the cutting edge is about 1.631 um.
All micro-groove experiments were performed under dry-cutting conditions. There are two
types of milling modes engaged in the microgroove milling tests: up-milling mode and
down-milling mode [11,35], as shown in Figure 1. The division of these two types of milling
modes is highly related to the change in undeformed cutting thickness (UCT) during the
material removal process in one rotation of the cutting edge [36]. It can be summarized that
the UCT increases from zero to the value of f, in the up-milling mode, while it decreases
from the value f; to zero with the rotation of cutting edges.

Table 1. Chemical composition of Ti-6Al-4V.

Chemical

Al Sn /Zr Mo C Si Cr Fe Cu Nb Ti
Elements
W(Ef);g)ht 4.22 5.48 0.0625 0.0025 0.005 0.369 0.022 0.0099 0.112 <0.02 0.0386 90
(1)

Table 2. Mechanical properties of Ti-6Al-4V.

Parameter Value
Tensile strength (MPa) 950
Elastic modulus (GPa) 114
Density (g/cm?) 4.42
Vickers hardness (kgf/mm?) 330

Digital-driven
optimization

I Taguchi Method

— ,‘b-_J
Micro-milling machine )

Micro-milled
groove surfaces

Up-milling Burr width

‘ Down-milling \
Up-milling
feasure surface roughnes

Figure 1. Machining set-up and the measurement schematic of burr width.

After micro-milling, the workpiece was cleaned with ultrasonic waves, and the surface
roughness of the micro-grooves was measured with a white light interferometer with a
resolution of 0.1 nm. The micro-groove topography features, especially the burrs on the
down-milling side and the up-milling side of grooves, can be observed with a scanning
electron microscope (SEM). Meanwhile, the size of burrs, i.e., its width, can be measured by
analyzing the obtained SEM images, as shown in Figure 1. The width values were evaluated
as the average of measurement results from five different locations on the micro-milled
groove surfaces.

2.2. Experimental Design

The micro-groove milling test was designed by using the Taguchi method. The control
factors were the spindle rotation speed “N”, feed per tooth “f,”, and depth of cut “a,”,
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respectively. Based on the practical engineering practice, the spindle rotation speed “N”
was set as 5000, 15,000, and 25,000 rev/min, and the corresponding cutting velocity is
9.43 m/min, 28.25 m/min, and 47.13 m/min; the feed per tooth “f,” was set as 0.1, 0.3,
and 0.5 mm/tooth; while the depth of cut “a,” was set as 0.05, 0.15, and 0.25 mm. The
specific milling parameters can be found in Table 3. After micro-groove milling tests, the
proposed GRA-TOPSIS ranking was utilized in Python 3.10 to evaluate the influence of
these machining parameters on the burr generation behaviours and also the machined
surface qualities.

Table 3. The parameters used in micro-milling tests.

Level
Symbol Factors
1 2 3
Spindle speed
A N (RPM) 5000 15,000 25,000
B Depth of cut 0.05 0.15 0.25
ap (mm)
C Feed per tooth 01 03 05

f2 (um/tooth)

Meanwhile, the array of Ly7 types was used in this micro-groove milling test, as shown
in Table 4, which meets the requirements of the Taguchi method: the total freedom degree
cannot be smaller than the number of variables.

Table 4. The Ly array and response results.

Exp. Group Factors Response Results

R, WdB WuB

A B ¢ (um) (um) (um)

1 Al1B1C1 5000 0.05 0.1 0.349 92.05 44.25
2 A1B1C2 5000 0.05 0.3 0.385 59.83 48.76
3 A1B1C3 5000 0.05 0.5 0.338 13.56 11.03
4 A1B2C1 5000 0.15 0.1 0.347 45.23 31.45
5 A1B2C2 5000 0.15 0.3 0.302 33.68 23.95
6 A1B2C3 5000 0.15 0.5 0.581 8.53 3.65
7 A1B3C1 5000 0.25 0.1 0.662 50.95 29.53
8 A1B3C2 5000 0.25 0.3 0.704 13.68 23.24
9 A1B3C3 5000 0.25 0.5 0.291 13.45 28.35
10 A2B1C1 15,000 0.05 0.1 0.259 47.62 37.46
11 A2B1C2 15,000 0.05 0.3 0.301 51.18 41.53
12 A2B1C3 15,000 0.05 0.5 0.567 24.35 21.62
13 A2B2C1 15,000 0.15 0.1 0.385 19.23 10.95
14 A2B2C2 15,000 0.15 0.3 0.443 17.92 18.45
15 A2B2C3 15,000 0.15 0.5 0.987 12.98 5.67
16 A2B3C1 15,000 0.25 0.1 0.846 26.13 12.45
17 A2B3C2 15,000 0.25 0.3 0.851 24.89 15.39
18 A2B3C3 15,000 0.25 0.5 1.203 15.56 14.78
19 A3B1C1 25,000 0.05 0.1 0.369 61.58 69.35
20 A3B1C2 25,000 0.05 0.3 0.248 10.96 17.22
21 A3B1C3 25,000 0.05 0.5 0.396 9.24 7.95
22 A3B2C1 25,000 0.15 0.1 0.435 121.65 72.42
23 A3B2C2 25,000 0.15 0.3 0.327 27.89 30.61
24 A3B2C3 25,000 0.15 0.5 1.294 15.8 9.35
25 A3B3C1 25,000 0.25 0.1 1.058 175.32 96.48
26 A3B3C2 25,000 0.25 0.3 0.731 34.58 44.35
27 A3B3C3 25,000 0.25 0.5 1.474 26.88 12.86

3. Analysis Methods for Optimizing the Milling Parameters
3.1. GRA-TOPSIS Method
In the past, the TOPSIS method has been widely used for multi-criteria decision-

making, especially in manufacturing applications. Though the approach is easy to apply
and understand, traditional TOPSIS has several fundamental shortcomings like ranking
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reversal [37], inability to understand relative importance based on distance from mul-
tiple reference points [38], and high subjectivity. The GRA-TOPSIS methodology is an
improvement over both GRA and TOPSIS methods for multi-objective optimization. It
replaces the relative geometric distance between the alternatives with the grey relational
coefficient (GRC) from the Grey Relational Analysis (GRA). The method has the following
steps.

(1) A decision matrix D;;, is developed considering all the responses and their alternatives.
Xij gives the jth response of ith alternative; also, m and n are the number of alternatives
and responses, respectively.

X1 X12 X1n
by X X

Dm _ 21 '22 2n (1)
Xml Xm2 --- Xmn

(2) The normalization of the decision matrix with the following formula:

X
. N wherej=1,2..., n )

ij
m 2
\/ ~i=1 xij

(38) The computation of the weighted normal decision matrix by choosing appropriate
response weights. Weights are chosen based on relative importance. In the case of
equal response significance, each weight w; = 1/n, as shown in the following:

. n
vij = wjrij, Given 2].:1 wi =1 3)

(4) The selection of best and worst solution candidates among the weighed normalized
matrix. The best value for a “lower is better” solution like surface roughness is the
lowest value among the weighted normal responses and vice versa. The equations for
best and worst solutions are as follows:

4
=of, 0fvf,......,0F @)
v = (2 oglier) (20 T =12, )} 5

(5) The positive grey relational coefficients with respect to the “best solution” are com-
puted as
Amin; + eAmax

(v;r — vij) + eAmax

Gch = (6)

7

Similarly, the negative grey relational coefficients with respect to the “worst solution”

are computed as

Aminj + eAmax

GRC;; = @)

(ZJ; — vij) + eAmax

where Amax; = v;r —v;; Aminj = v — v]* ; € is called a distinguished coefficient with a

value that is between 0 and 1.
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(6) DPositive and negative grey relational grades are computed as average positive and
negative grey relational coefficients, respectively.

" GRCH
GRGFH = =0 ""71i (8)
1
" GRC:
GRG; = # )

(7) Calculating an alternative’s relative closeness compared to the ideal solution is
given by
GRG}

= i:1,2, ...... ,m 10
GRG] 4+ GRG; 10

i
(8) Ranking the alternatives based on the descending order of P;.

3.2. Random Forest Regression (RFR) Methods

The ensemble is an approach in Al that combines multiple ML models in a way to
obtain better accuracy than the constituent models. Three dominant categories of ensemble
techniques are stacking, bagging, and boosting. Bagging stands for bootstrap aggregation.
Bagging trains several weak ML models like decision trees parallelly and use those models’
combined predictions to come up with the final output. For a regression problem, the
bagged model prediction is the mean of all weak learners’ predictions. Similarly, for a
classification problem, the final predicted class is the best-voted class among all the weak
learner predictions.

Random forest regression is a special type of bagging which improves upon the
predictive performance of conventional bagging models. Unlike earlier bagging techniques,
the RFR model restricts the features to consider at any split point, in order to minimize the
correlations across the data samples. This number of features “m” is taken as /p as a rule
of thumb, if p is the number of model parameters. Compared to other ensemble techniques,
RFR has the advantages of diversity, reduced dimensions per weak learner model, and
computing optimization through parallel processing. The important hyperparameters are
the number of decision trees, the number of features at the split node, and the minimum
number of leaves to consider splitting. The steps involved in RFR modelling are as follows:

(1) In RFR, the “n” number of random data subsets are generated from the original
dataset with replacement.

(2) Next, “n” decision tree models are trained by considering each generated data sample.

(3) The individual decision tree model predictions are recorded.

(4) The final prediction is the mean of all individual model predictions.

A generic architecture of an RFR model is given in Figure 2.

[ Prediction 1 ] [ Prediction 2 ]
([ Mean prediction _
Final Prediction

Figure 2. Random forest regression architecture.
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4. Results and Discussion

4.1. ANOVA
4.1.1. ANOVA of the Surface Roughness

The measured surface roughness at different milling conditions can be found in Table 4.
In order to optimize the machined surface quality, the main effect based on ANOVA was
carried out to reveal the specific influence of the controlling factors, e.g., spindle speed (N),
depth of cut (ap), and feed rate per tooth (f,), on the measured surface roughness R,, as
shown in Figure 3a. It can be seen that with the rise in spindle speed, the R, values also
increase, and the minimum value of R, was obtained at N = 5000 RPM. This phenomenon
could be attributed to tool wear which predominantly occurs in the high-speed milling of
the titanium alloy, resulting in a severe ploughing effect in the material removal process.
The depth of cut has a similar effect on R, to the spindle speed. The minimum R, was
obtained at a, = 0.05 mm. But, when it comes to the feed rate, the change in Ra does not
remain proportional to the increase in f,. The minimum R, was obtained at f, = 0.03 mm/z.
This is because, in the micro-milling process, if the feed rate per tooth is quite small, it
could make the practical UCT less than the critical value of generating an effective shear
removal of the material. Thus, f, = 0.03 mm/z could be approximated as a critical value in
this cutting test.

a b
( ) 0.9 ( ),: 80
= = = - L r
8 i().R— B - g = 70
£30rfalf - oy of - -
Z2 2 D% 50 - r
v o 0.6F - 3 = &
EaR 9. = .5 40 v L
= = 05F - - ==
- 23301 ) '
< Z 04f N - - 20f - 5
g 552
0.3 I 1 1 1 1 ! L 1 1 5 5 10 W 1 1 1 1 1 1 1 L
PP IV N A S SO P8P
BN <-3°\,:~°° QMY 0T P& L O 0T o7 TR R

N’
wn
=

Burr width averages in ‘&

Up-milling side (pm)
2 &
) T T
0‘ T T
a
T T T

Figure 3. Main effect plot of ANOVA for (a) Ra; (b) burr width generated in down-milling mode;
(c) burr width generated in up-milling mode.

Meanwhile, the ANOVA results with a confidence interval of 95% are given in Table 5.
One can see that the depth of cut (represented by factor B) has the largest effect on the
machined surface roughness, followed by feed rate per tooth (factor C) and spindle speed
(factor A). The contribution percentage of these three factors is calculated as 37.8% (B),
16.6% (B), and 11.1% (A), respectively. It is worth noting that the interaction between
spindle speed and feed rate per tooth (A*C) also has an important effect on the R, with a
contribution percentage of 13.48%. However, the effect of the interaction A+B and B+C on
R, could be ignored as obtained p is higher than 0.05.
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Table 5. ANOVA results for R,.
Seq Adj Adj Cont.
Sour. Fre. SS SS MS F p (%)
A 2 0.3488 0.3488 0.1744 8.75 0.010 11.1
B 2 1.1924 1.1924 0.5962 29.92 0.000 37.8
C 2 0.5221 0.5221 0.2610 13.10 0.003 16.6
AxB 4 0.2466 0.2466 0.0616 3.09 0.082 7.8
AxC 4 0.4200 0.4200 0.1050 5.27 0.022 13.3
BxC 4 0.2594 0.2594 0.0648 3.25 0.073 8.24
RE 8 0.1594 0.1594 0.0199 5.1
Total 26 3.1486

4.1.2. ANOVA of the Burr Width in Down-Milling

Figure 3b shows the main effect based on ANOVA for revealing the specific influence
of the controlling factors on the burr width generated in down-milling mode (WdB). It
can be seen that the WdB decreases significantly with the rise in feed rate (f,). This is
because the change in this factor can increase UCT, meaning the ploughing effect could
play a more important role in the micro-milling process. In particular, the ploughing
effect becomes dominant when the cutting edges enter and exit the samples, causing the
pile-up of burrs at the groove edges. Meanwhile, the minimum WdB was achieved at a
spindle speed of 15,000 RPM. The increase in WdB at high spindle speeds (N = 25,000 RPM)
might be attributed to the tool wear. In addition, it was observed that the middle depth of
cut (ap = 0.15 mm) could contribute to the achievement of a minimum of WdB.

Table 6 presents the ANOVA analysis result for the burr width generated in the
down-milling mode. It was found that the feed rate per tooth (factor C) has the largest
effect on the WdB, followed by spindle speed (factor A). The contribution percentage of
these two factors is calculated as 39.5% (C) and 9.0% (A), respectively. The effect of the
depth of cut (represented by factor B) on WdB can be neglected as p > 0.05. Regarding
the interactions between parameters, the B*C has an important effect on WdB with a
contribution percentage of 16.3%. There is no obvious influence of B*C on WdB.

Table 6. ANOVA results for WdB.

Seq Adj Adj Cont.
Sour. Fre. SS SS MS F 14 (OA))
A 2 3379.5 3379.5 1689.7 4.52 0.049 9.0
B 2 401.5 401.5 200.7 0.54 0.604 1.1
C 2 14,843.4 14,843.4 7421.7 19.83 0.001 39.5
AxB 4 6122.6 6122.6 1530.7 4.09 0.043 16.3
AxC 4 8944.5 8944.5 2236.1 5.98 0.016 23.8
BxC 4 930.3 930.3 232.6 0.62 0.660 2.5
RE 8 2993.5 2993.5 374.2 8.0
Total 26 37,615.2

4.1.3. ANOVA of the Burr Width in Up-Milling

As mentioned above, the burr widths generated in the up-milling mode (WuB) are
generally smaller than WdB in the down-milling mode. One possible reason might be that,
although the burr formation in up-milling has a similar mechanism to that in down-milling,
e.g., the ploughing effect, the formed burrs tend to move into the groove area with the
rotation of the cutter and could be removed by the next cutting processes. The main effect
based on ANOVA for WuB is shown Figure 3¢, which is quite similar to that in Figure 3b
for WdB.
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The ANOVA results for the burr width generated in the up-milling mode are presented
in Table 7. It can be seen that the feed rate per tooth (factor C) exerts the most important
role in WuB, having a contribution percentage of up to 43.4%. The spindle speed (factor A)
and depth of cut (factor B) account for 7.2% and 8.6% of the contribution percentage on
WuB. Regarding the interactions between parameters, A*B and A*C play important effects
on WuB, with contribution percentages of 12.7% and 15.2, respectively. There is no obvious
effect of B*C on WuB.

Table 7. ANOVA results for WuB.

Seq Adj Adj Cont.
Sour. Fre. SS SS MS F p (%)
A 2 88.73 88.73 44.37 4.72 0.044 7.2
B 2 106.76 106.76 53.38 5.68 0.029 8.6
C 2 537.53 537.53 268.76 28.58 0.001 43.4
AxB 4 157.66 157.66 39.41 4.19 0.040 12.7
AxC 4 187.91 187.91 46.98 4.99 0.026 15.2
BxC 4 83.95 83.95 20.99 2.23 0.155 6.8
RE 8 75.24 75.24 941 1
Total 26 1237.8

4.2. Machine Learning-Based Response Prediction

Initially, linear regression models were built for predicting the surface roughness (Ra),
burr widths on the down-milling side (WdB), and burr widths on the up-milling side (WuB),
as expressed in Equations (10)—(12). In addition, the R? value for these three models
is 0.7009, 0.5591, and 0.7164, respectively. Figure 4 shows the concordance between
the experimental data, as listed in Table 2, and the predicted data by the proposed
models (Equations (10)—(12)).

Ra = 0.535+0.200A + 0.072B — 0.831C — 0.0774A2

) ) (11)
+0.1208A * C + 0.0461B2 + 0.1809C
WdB = 131.1 — 46.6A — 53.4C + 18.6A2 12)
+12.8C%2 +3.15A B —12.83A % C
WuB =104.2 —38.1A +9.9C — 51.2B + 13.79A2
+9.09B% — 0.41C% + 6.84A + B (13)

—12.16A % C

To improve upon the prediction accuracy, a random forest regression (RFR) model
is adopted due to its interpretability, robustness, and strong predictive performance in
manufacturing contexts compared to the Support Vector Regression (SVR) and Artificial
Neural Networks (ANNSs). The variations in the actual versus RFR-predicted responses
are shown in Figure 5. It can be seen that the prediction accuracy of the RFR model
is significantly better with R? values of 0.93, 0.93, and 0.96 for the responses R,, WdB,
and WuB, respectively. The RFR model’s ability to capture nonlinearity, handle feature
interactions, robustness to outliers, ability to handle non-numerical features, and feature
selection mechanisms collectively contribute to its superior performance. This is specifically
true during the modelling of complex process mechanisms like micro-milling. More in-
depth error analyses, such as RMSE and MAE, could be further explored if needed.
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Figure 5. The relationship between the experiment results and RFR predicted results for the responses
(a) Ra; (b) WAB; (c¢) WuB.

4.3. Multi-Objective Optimization Using GRA-TOPSIS

The GRA-TOPSIS ranking matrix is computed next. The weighted normalized decision
matrix is computed using Equations (1)—(3) and is given in Table 8. An unbiased weighting
scheme is followed in this study. Table 9 lists the “best” and “worst” grey relational
coefficients (GRC+ and GRC—), “best” and “worst” grey relational grades (GRG+ and
GRG—), and performance indicator (Pi) for all responses as per Equations (4)—(10). As
shown in Figure 6, the value of Pi indicates the overall performance of the process with
respect to the responses under consideration. The alternatives are ranked based on the
decreasing order of Pi with Pi = 0.725 fetching the highest rank, corresponding to the
parameter combination A3B1C, (spindle speed = 25,000 rpm; depth of cut = 0.05 mm;
feed per tooth = 0.3 um/tooth). The overall performance improvement in this parameter
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combination in terms of superior surface finish and burrs with respect to lower-ranked

settings is verified in the subsequent section.

Table 8. Normalized decision matrix.

S. No. N-R, N-WdB N-WuB W-N-R, W-N-WdB W-N-WuB GRC+ R,
1 0.10 0.33 0.23 0.03 0.11 0.08 0.86
2 0.11 0.21 0.26 0.04 0.07 0.09 0.82
3 0.09 0.05 0.06 0.03 0.02 0.02 0.87
4 0.10 0.16 0.17 0.03 0.05 0.06 0.86
5 0.08 0.12 0.13 0.03 0.04 0.04 0.92
6 0.16 0.03 0.02 0.05 0.01 0.01 0.65
7 0.19 0.18 0.16 0.06 0.06 0.05 0.60
8 0.20 0.05 0.12 0.07 0.02 0.04 0.57
9 0.08 0.05 0.15 0.03 0.02 0.05 0.93
10 0.07 0.17 0.20 0.02 0.06 0.07 0.98
11 0.08 0.18 0.22 0.03 0.06 0.07 0.92
12 0.16 0.09 0.11 0.05 0.03 0.04 0.66
13 0.11 0.07 0.06 0.04 0.02 0.02 0.82
14 0.12 0.06 0.10 0.04 0.02 0.03 0.76
15 0.28 0.05 0.03 0.09 0.02 0.01 0.45
16 0.24 0.09 0.07 0.08 0.03 0.02 0.51
17 0.24 0.09 0.08 0.08 0.03 0.03 0.50
18 0.34 0.06 0.08 0.11 0.02 0.03 0.39
19 0.10 0.22 0.37 0.03 0.07 0.12 0.84
20 0.07 0.04 0.09 0.02 0.01 0.03 1.00
21 0.11 0.03 0.04 0.04 0.01 0.01 0.81
22 0.12 0.43 0.38 0.04 0.14 0.13 0.77
23 0.09 0.10 0.16 0.03 0.03 0.05 0.89
24 0.36 0.06 0.05 0.12 0.02 0.02 0.37
25 0.30 0.62 0.51 0.10 0.21 0.17 0.43
26 0.20 0.12 0.23 0.07 0.04 0.08 0.56
27 0.41 0.10 0.07 0.14 0.03 0.02 0.33

Table 9. GRA-TOPSIS-based ranking of alternatives.
GRC+ GRC+ GRC+ GRC- GRC- GRC-— .

S. No. R, WdB WdC R, WdB wdcC GRG+ GRG-— Pi Rank
1 0.86 0.50 0.53 0.35 0.50 0.47 0.63 0.44 0.588 23
2 0.82 0.62 0.51 0.36 0.42 0.49 0.65 0.42 0.604 19
3 0.87 0.94 0.86 0.35 0.34 0.35 0.89 0.35 0.720 3
4 0.86 0.69 0.63 0.35 0.39 0.42 0.73 0.39 0.653 14
5 0.92 0.77 0.70 0.34 0.37 0.39 0.79 0.37 0.683 8
6 0.65 1.00 1.00 0.41 0.33 0.33 0.88 0.36 0.712 4
7 0.60 0.66 0.64 0.43 0.40 0.41 0.63 0.41 0.605 18
8 0.57 0.94 0.70 0.44 0.34 0.39 0.74 0.39 0.654 13
9 0.93 0.94 0.65 0.34 0.34 0.41 0.84 0.36 0.700 6
10 0.98 0.68 0.58 0.34 0.40 0.44 0.75 0.39 0.657 11
11 0.92 0.66 0.55 0.34 0.40 0.46 0.71 0.40 0.639 16
12 0.66 0.84 0.72 0.40 0.36 0.38 0.74 0.38 0.660 10
13 0.82 0.89 0.86 0.36 0.35 0.35 0.86 0.35 0.708 5
14 0.76 0.90 0.76 0.37 0.35 0.37 0.81 0.36 0.689 7
15 0.45 0.95 0.96 0.56 0.34 0.34 0.79 0.41 0.657 12
16 0.51 0.83 0.84 0.49 0.36 0.36 0.72 0.40 0.643 15
17 0.50 0.84 0.80 0.50 0.36 0.36 0.71 0.41 0.637 17
18 0.39 0.92 0.81 0.69 0.34 0.36 0.71 0.47 0.602 20
19 0.84 0.61 0.41 0.36 0.42 0.63 0.62 0.47 0.569 24
20 1.00 0.97 0.77 0.33 0.34 0.37 0.92 0.35 0.725 1
21 0.81 0.99 0.92 0.36 0.33 0.34 0.90 0.35 0.723 2
22 0.77 0.42 0.40 0.37 0.61 0.66 0.53 0.55 0.493 26
23 0.89 0.81 0.63 0.35 0.36 0.41 0.78 0.37 0.675 9
24 0.37 0.92 0.89 0.77 0.34 0.35 0.73 0.49 0.598 21
25 0.43 0.33 0.33 0.60 1.00 1.00 0.37 0.87 0.297 27
26 0.56 0.76 0.53 0.45 0.37 0.47 0.62 0.43 0.589 22
27 0.33 0.82 0.83 1.00 0.36 0.36 0.66 0.57 0.537 25
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The method only ranks the parameter combinations within the dataset considered.
Evaluating the performance of any parameter combinations outside the considered dataset
can be made possible by modelling the performance indicator Pi using RFR. An R? value
of 0.947 is obtained, and the results are plotted as shown in Table 8.

The performance of the RFR is compared against other ML models next. For this,
four ML models are selected, namely, linear regression, K nearest neighbours (KNNs), and
decision tree (DT) regression. It can be observed as listed in Table 10 that RFR outperformed
other models significantly with respect to overall prediction accuracy for the current dataset.
This can also be further referred to in Figure 7 where the Pi predictions from multiple
models are plotted with respect to the experiment number. The trained RFR model can be
utilized to have a relative performance measure of any parameter settings, from the basic
understanding that the settings with larger Pi predictions would perform better than the
ones with lower Pi predictions.

Table 10. Comparisons of the performance of linear regression, DT, SVR, and KNN models during
the prediction of the GRA-TOPSIS performance index.

S. No. ML Models Prediction Accuracy (R?)
1 Linear regression (LR) 0.5016
2 Decision tree (DT) 0.7236
4 K nearest neighbours (KNNs) 0.866
5 Random forest regression (RFR) 0.947
0.7
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S
3
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Figure 7. Performance index prediction result comparison.
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In practical cases, analyzing the overall performance as a single response is more
beneficial than investigating individual performances. In the present case, the performance
index in GRA-TOPSIS can be considered as a single parameter that represents the overall
performance of the micro-milling process. As seen earlier, a higher value for the perfor-
mance index indicates an overall better performance in terms of R,, WuB, and WdB. The
response table for the mean of the closeness coefficient is shown in Table 11. From the
mean response table and the main effect plot of Pi in Figure 8, it is clear that spindle speed
has the maximum effect on the overall performance followed by the depth of cut and,
finally, feed /tooth. Additionally, to study the relative effect of process parameters on the
performance index (P;), ANOVA is performed, the details of which are shown in Table 12.
From the ANOVA results, it is worth noting that the individual contribution of spindle
speed is lower compared to the other two parameters, but it has sizable interaction effects.

Table 11. Response table for the mean of closeness coefficient.

Parameters A B C
Level 1 0.6577 0.6539 0.6178
Level 2 0.6547 0.6520 0.6030
Level 3 0.5784 0.5849 0.6700

Delta 0.0792 0.0690 0.0670
Rank 1 2 3
0.68 | = -
0.60 ry - P -
= 0.64 + B -
0.62 + - &
0.60 - - -
0.58 | =
1 1 1 1 1 | | | 1
D OH D AN A

Figure 8. Main effect plot of ANOVA for Pi.

Table 12. ANOVA results for Pi.

Seq Adj Adj Cont.

Sour. Fre. SS SS MS F p (%)

A 2 88.73 88.73 44.37 4.72 0.044 7.2

B 2 106.76 106.76 53.38 5.68 0.029 8.6

C 2 537.53 537.53 268.76 28.58 0.001 43.4
AxB 4 157.66 157.66 39.41 4.19 0.040 12.7
AxC 4 187.91 187.91 46.98 4.99 0.026 15.2
Bx+C 4 83.95 83.95 20.99 2.23 0.155 6.8

RE 8 75.24 75.24 941 1
Total 26 1237.8

For all of the results, the above analysis clarifies that the combination of GRA-TOPSIS
and random forest regression (RFR) can provide a powerful and effective tool for solving
complex manufacturing problems. GRA can help in selecting and ranking the most relevant
features towards the overall performance improvement in the micro-milling process. Its
capabilities are further enhanced by its integration with the TOPSIS approach. Moreover,
the RFR model can handle nonlinear and complex relationships between input variables
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and output variables. The presented model can achieve high prediction accuracy with low
error rates for optimization and prediction cases, as demonstrated earlier. Overall, the
GRA-RFR hybrid model offers a promising approach for data analysis and decision-making
in smart manufacturing, especially for complex precision manufacturing applications.

4.4. Confirmation of the Optimzied Paramters in Experments

Based on the above discussion in Section 4.3, the parameter settings of A3B1C2 were
found optimal from the main effect plot of the closeness coefficient using the GRA-TOPSIS
method. To validate the effectiveness of this finding, the corresponding experimental
results (i.e., surface roughness and milling burrs at both up- and down-milling sides)
generated by A3B1C2 were presented here and compared with the results generated by
the optimal parameter settings of A1B3C2 and A3B3C1, which had been identified as
the middle (i.e., 13th) and worse (i.e., 25th) combinations by the GRA-TOPSIS ranking in
Table 9.

Figure 9a—c show the measured surface morphologies, surface contours, and the
SEM images of the micro-milled grooves with the parameter settings of A3B1C2 (rank 1st),
A1B3C2 (rank 13th), and A3B3C1 (rank 25th), respectively. One can see that, at the optimal
cutting conditions (A3B1C2), there are clear and trim residual tool marks on the generated
groove surfaces, as shown in Figure 9a, although a few residual chips have adhered on the
machined surfaces; on the other hand, in the other cutting conditions, the tool marks are
prone to severe fluctuations, as shown in Figure 9b,c, especially in the case of parameter
settings ranked 25th. In addition, the groove surface in Figure 9a is much smoother than
those in the other two cases. This scenario could be proved by the measured surface
roughness; in other words, R, = 0.248 um in Figure 9a is only around one-third or one-
quarter of those in Figure 9b,c.

Figure 10 presents the observed SEM images of the burr morphologies generated
in down- and up-milling modes under the optimal parameter settings and comparison
groups. One can see that the burrs generated by the down-milling process are always large
than that generated by the up-milling process. As mentioned above, in the down-milling
mode, the cutting edge moves away from the workpiece material after the UCT reduces
from its maximum (fz) to zero. This means that the UCT might be below the critical
value of chip formations at a certain moment in the down-milling mode. Once it happens,
the cutting edge would stack the material to the groove edges instead of removing the
materials through chip formation, which has been identified as a ploughing effect [36,39,40],
resulting in the formation of burrs. Moreover, it is worth noting that the micro-milled
grooves with the optimal parameter settings in Figure 10a witness the smallest burrs in
size when compared with those in Figure 10b,c. In particular, as shown in Figure 10c,
the width of the burrs generated by the A3B3C1 (rank 25th) is up to around 200 pum,
indicating quite poor and unacceptable machined surface quality. This scenario should
be attributed to the severe ploughing effect [41,42] caused by the small depth of cut and
feed rate per tooth. Moreover, there are lots of residual marks left on the machined
surfaces by the secondary cutting edges via the plough effect, resulting in poor surface
finish. In summary, through analyzing the machined surface morphologies, the optimal
parameter settings by GRA-TOSIS are proven to produce the optimal surface quality and
should be recommended in the practical machining of Ti6-Al4-V alloys for the industrial
manufacturing of miniaturized products. Moreover, the proposed approach will be used,
in the ongoing work, to predict the machining quality of new parameter combinations.
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Figure 9. Surface morphologies, surface contours, and SEM image of the machined micro-grooves in
the test No. 20 (a), No. 8 (b), and No. 25 (c). Based on the proposed GRA-TOPISS method, the rank of
the No. 20 test is the highest (rank 1st), while that of No. 25 is the lowest (rank 27th), and the rank of
No. 8 is in the middle (rank 13th).
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Figure 10. The burr morphologies generated in the down- and up-milling modes during micro-groove
milling: (a,b) N = 25,000 rpm, ap = 0.05 mm, f, = 0.3 um/tooth; (c,d) N = 5000 rpm, ap = 0.25 mm,
f, = 0.3 um/tooth; (e f) N = 25,000 rpm, ap = 0.25 mm, f;, =0.1 um/tooth.
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5. Conclusions

To enhance the machining quality of difficult-to-cut titanium alloys, this study pro-
poses a hybrid ranking algorithm to optimize the burr formation in the micro-milling
process of Ti-6Al-4V alloys, which integrates the random forest regression (RFR) model
for the first time with Grey Relational Analysis (GRA) and Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS) methods. Based on the proposed hybrid
GRA-TOPSIS-RFR approach, the micro-milling process of the Ti-6Al-4V alloy was mod-
elled and optimized, and the validation experimental results agree well with the optimized
outcomes. The main findings can be summarized below:

(1) The hybrid GRA-TOPSIS-RFR optimization algorithm proposed in this work can lever-
age the strengths of RFR models to handle complex, nonlinear relationships between
micro-milling parameters and the optimization performance index. RFR being more
accurate, robust, and explainable can be integrated effectively with GRA-TOPSIS to
model and optimize challenging manufacturing problems.

(2) Linear regression and RFR models were built for predicting the surface roughness (R,),
burr widths on the down-milling side (WdB), and burr widths on the up-milling
side (WuB). For the given dataset, the RFR model outperformed the linear regression
models with R? values of 0.93, 0.93, and 0.96 against 0.7009, 0.5591, and 0.7164 for R,,
WdB, and WuB, respectively.

(38) The surface roughness has a positive correlation with the spindle speed and depth of
cut, while R, was found to increase with a small feed rate due to the ploughing effect.
Both burr widths (i.e., WuB and WdB) were found to first decrease and then increase
with the rise in the spindle speed and depth of cut, while burr widths always showed
a decreasing trend with the increase in feed rate.

(4) The depth of cut has the largest influence on the surface roughness, while the feed
rate per tooth plays the most important role in burr formation in both down- and
up-milling processes.

(5) Based on the GRA-TOPSIS-RFR approach, the optimal parameter combination for
micro-milling Ti-6Al-4V was given as spindle speed N = 25,000 RPM, depth of
cut ap, = 0.05 mm, and feed rate per tooth f, = 0.3 um/tooth. Overall, the GRA-RFR
hybrid model offers a promising approach for data analysis and decision-making in
smart manufacturing, especially for complex precision manufacturing applications.

The proposed hybrid optimization technique has shown great potential for optimizing
the micro-milling process, which is an otherwise challenging task due to the complex
machining mechanism and higher-order parameter interactions. Though the presented
approach is very promising in its current state towards overall performance enhancement,
it has the potential to be further improved in future. Some future research directions include
testing the robustness of the proposed approach with different manufacturing processes,
quantifying and addressing model uncertainties, and extending the approach for real-time
optimization applications.
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