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Abstract. We mathematically model Smectic-A (SmA) phases with a modified Landau-de5
Gennes (mLdG) model as proposed in [1]. The orientational order of the SmA phase is described by6
a tensor-order parameter Q, and the positional order is described by a real scalar u, which models7
the deviation from the average density of liquid crystal molecules. Firstly, we prove the existence8
and regularity of global minimisers of the mLdG free energy in three-dimensional settings. Then, we9
analytically prove that the mLdG model can capture the Isotropic-Nematic-Smectic phase transition10
as a function of temperature, under some assumptions. Further, we explore stable smectic phases on11
a square domain, with edge length λ, and tangent boundary conditions. We use heuristic arguments12
to show that defects repel smectic layers and that nematic ordering promotes layer formation. We use13
asymptotic arguments in the λ → 0 and λ → ∞ limits which reveal the correlation between the num-14
ber and thickness of smectic layers, the amplitude of density fluctuations with the phenomenological15
parameters in the mLdG energy. For finite values of λ, we numerically recover BD-like and D-like16
stable smectic states observed in experiments. We also study the frustrated mLdG energy landscape17
and give numerical examples of transition pathways between distinct mLdG energy minimisers.18
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1. Introduction. Liquid crystals are mesophases intermediate between the solid22

and liquid states, characterized by orderly molecular arrangements [2], that is, the23

constituent molecules align along certain locally preferred directions, referred to as24

“directors” in the literature. These orderly molecular arrangements give rise to dis-25

tinctive optical and electrical properties in liquid crystals, making them valuable in26

display technologies, optical devices, and sensors [3, 4, 5]. Liquid crystals can exhibit27

different phases, such as nematic and smectic phases. The nematic phase has long-28

range orientational order but lacks positional order, while the smectic phase possesses29

both long-range orientational order and partial positional order, leading to a layered30

structure with positional coherence within the layers [6]. There are several smectic31

phases, such as Smectic-A and Smectic-C, each with distinct characteristics [7]. In32

the Smectic-A phase, the director is parallel to the normal of the layer. In contrast,33

in the Smectic-C phase, there is a non-zero angle between the director and the normal34
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of the layer. In this paper, we focus on the Smectic-A phase, which will simply be35

referred to as the “smectic phase”.36

External constraints, such as confinement and boundary anchoring, can induce37

deformations in the liquid crystal. These deformations may not coincide with the38

liquid crystal phase in the bulk, leading to geometric frustrations. As a result, a diverse39

array of textures with characteristic defect structures may spontaneously assemble40

[8, 9]. For instance, when a smectic liquid crystal is deposited on a substrate that41

promotes varying boundary anchoring, their layers may bend and form focal conic42

domains (FCDs) [10]. These FCDs have been utilized as guides for colloidal dispersion43

[11], in soft lithography [12], and as templates for superhydrophobic surfaces [13]. The44

experimental observations in [14] suggest a stable BD-type smectic profile on square45

domains, with a pair of line defects localised near a pair of opposite square edges. This46

BD-type configuration is stablised by the smectic positional ordering but is unstable47

for pure nematics [15, 16, 17], which indicates the distinctive properties of confined48

smectic configurations.49

Recent work has focused on the Nematic-Smectic (N-S) phase transition and50

the coupling between directors and smectic layers. For example, the existence of51

geometric memory in the N-S transition leads to FCDs melting into a dense array of52

boojums defects [18]. By using colloidal silica rods and leveraging their significant53

density difference with the dispersing solvent, nematic and smectic phases can be54

confined within a single chamber which produces a smectic-nematic interface, and55

the directors in the smectic-nematic interface leave fingerprints in the nematic slice56

[14]. On spherical shells, the N-S phase transition, or the emergence of the layer57

structure, initially occurs on the thicker side of the shell, distant from the point58

defects [19]. These experimental findings inspire us to mathematically study the N-S59

phase transition and structural phase transitions in confined smectic systems.60

The very complicated structures that emerge in the frustrated smectic phase are61

challenging to model mathematically. The key point in modelling the smectic phase62

is to incorporate the nematic director and the layer structure, i.e. an additional63

positional order parameter must be introduced to describe the modulation of the64

density of liquid crystal molecules, compared to a simple nematic phase. In recent65

decades, several powerful continuum mathematical theories have been used for the66

nematic phase such as the microscopic Onsager model, the macroscopic Landau-de67

Gennes (LdG) model, the macroscopic Oseen-Frank model, and the Ericksen-Leslie68

model [20]. For modelling the smectic phase, an additional positional order parameter69

is required to construct the layered structure. For instance, the extended Maier-70

Saupe model [21] is a molecular model for the smectic phase, which qualitatively71

predicts the N-S phase transition as a function of temperature. The molecular model72

is computationally expensive due to its inherent high-dimensional complexity but73

its parameters can be correlated with the underpinning molecular structures. For74

computational convenience, there have been competing phenomenological theories for75

smectic phases, obtained by adding the density modulation to the Oseen-Frank energy76

or the LdG energy for nematic phases [22, 23, 24, 1, 25, 26]. These phenomenological77

models can successfully predict the structures observed in experiments, although there78

is no mapping between the phenomenological parameters and structural details e.g.,79

properties of smectic layers. Most of the existing work focuses on numerical results,80

with a lack of interpretability of the models, which is essential for studying structural81

phase transitions and for controlling properties of confined smectic systems.82

We address some of these questions by a systematic study of the modified Landau-83

de Gennes (mLdG) model as presented in [1], which is adept at capturing geometric84
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frustration, FCDs, and oily streaks [27], commonly observed in experiments on con-85

fined smectics. In the mLdG framework, there are two order parameters: the LdG86

nematic order parameter, Q, described in detail in the next sections that encodes the87

(nematic) directors and a positional order parameter u, which models the deviation88

of the molecular density from the average density. The mLdG free energy comprises89

the LdG free energy (which depends on Q and its gradient), a bulk smectic energy90

pivotal for nematic-smectic transitions, and a nematic-smectic coupling energy. The91

bulk smectic energy is a standard Ginzburg-Landau potential or a quartic polynomial92

in u. The nematic-smectic coupling energy depends on the Hessian of u and is param-93

eterised by two phenomenological parameters - a coupling strength, B0, and a second94

parameter, q, which determines the thickness and multiplicity of smectic layers, at95

least in the mLdG framework. The nematic-smectic coupling energy determines the96

relative alignment of the layer normals and directors, and within the remit of our97

work, the mLdG energy minimisers have co-aligned layer normals and directors and98

are hence, thought to model the SmA phase. The mLdG energy minimisers model99

stable and experimentally relevant (observable) smectic phases.100

Firstly, in Section 2, we prove the existence and regularity of the mLdG en-101

ergy minimiser, in three-dimensional settings, subject to strong and weak versions102

of experimentally relevant tangent boundary conditions for the directors. The tan-103

gent boundary conditions require the directors to be tangent to (in the plane of) the104

boundary. In Section 3, we analytically study the Isotropic-Nematic-Smectic phase105

transitions as a function of temperature. The LdG bulk energy has analytic criti-106

cal points: isotropic and nematic critical points under periodic boundary conditions107

[2]. We cannot find analytic critical points of the mLdG energy easily and this poses108

technical challenges in demonstrating that the mLdG energy can capture the N-S109

phase transition. We show that there are two critical temperatures, T ∗
1 > T ∗

2 in the110

mLdG model. Then we prove that the nematic phase loses stability at T < T ∗
2 by111

studying the second variation of the mLdG energy and provide an analytic estimate112

of the Morse index of the nematic critical point for T < T ∗
2 . We further use the113

Crandall and Rabinowitz bifurcation theorem [28] to demonstrate that the nematic114

phase undergoes a pitchfork bifurcation at T = T ∗
2 , accompanied by the appearance115

of layered smectic structures. In Section 4, we demonstrate that the nematic-smectic116

coupling term favours the formation of layered structures in regions of strong nematic117

or orientational ordering, again something which could be experimentally checked.118

Lastly, we study mLdG energy minimisers on square domains, as a function of the119

temperature and square edge length λ, subject to tangent boundary conditions for the120

directors on the edges. We draw on parallels with the nematic study in [29, 30, 31],121

provide some physical interpretations of the phenomenological parameters in the bulk122

smectic energy and the nematic-smectic coupling energy and also give some numeri-123

cal examples of transition pathways between distinct energy minimisers. The energy124

landscape is very frustrated with multiple minimisers, that have subtle differences in125

their structural properties, and this introduces new challenges in the study of mLdG126

solution landscapes. We conclude with some perspectives in Section 5.127

2. Theoretical framework. The Landau-de Gennes (LdG) model [2] is the128

most celebrated continuum theory for nematic liquid crystals and has been hugely129

successful for describing the Isotropic-Nematic (I-N) phase transition [32] and struc-130

tural transitions for nematics [33]. The LdG theory describes the nematic phase by131

the LdG Q-tensor order parameter, which is a traceless and symmetric 3× 3 matrix.132

The Q tensor is isotropic if Q = 0, uniaxial if Q has a pair of degenerate nonzero133
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eigenvalues, and biaxial if Q has three distinct eigenvalues [2]. A uniaxial nematic134

phase has a single distinguished direction of averaged molecular alignment, modelled135

by the eigenvector with the non-degenerate eigenvalue. A biaxial nematic phase has136

a primary and a secondary nematic director. In approximately two-dimensional (2D)137

scenarios, we can use the reduced Landau-de Gennes (rLdG) model, with the rLdG138

order parameter - a symmetric and traceless 2×2 matrix with only two degrees of free-139

dom: one degree of freedom for the nematic director in the plane and the second degree140

of freedom describes the degree of ordering about the 2D director [16, 29, 34, 35]. In141

this paper, we use a modified LdG (mLdG) theory to study confined smectic phases,142

wherein we use either the LdG or the rLdG order parameter to describe the orienta-143

tional/nematic ordering with an additional real-valued positional order parameter u144

and additional energy terms to describe the intrinsic layering of smectic phases [1, 36].145

2.1. Preliminaries. The modified Landau-de Gennes (mLdG) energy is pro-146

posed in [1, 36] and is given by147

(2.1) E(Q, u) =

∫
Ω

(fLdG(Q) + fbs(u) + fint(Q, u)) dx,148

where Ω ⊂ R3 is the working domain, the nematic order parameter Q(x) ∈ R3×3,149

and the positional order parameter, u(x) ∈ R, models the deviation of the molecular150

density from the average molecular density at position x. The positional order pa-151

rameter, u, is the real part of the complex order parameter in [6]. For further details,152

we refer the reader to [23]. The first term in (2.1) is the LdG free energy density,153

(2.2) fLdG(Q) :=
K

2
|∇Q|2 + fbn (Q) ,154

where K is a positive material-dependent elastic constant. The elastic energy density155

penalizes spatial inhomogeneities, and the thermotropic bulk energy density, fbn,156

dictates the preferred nematic liquid crystal (NLC) phase as a function of temperature,157

158

(2.3) fbn(Q) :=
A

2
trQ2 − B

3
trQ3 +

C

4
(trQ2)2,159

where A = α1(T − T ∗
1 ) is the rescaled temperature, with α1 > 0, and T ∗

1 is a char-160

acteristic liquid crystal temperature; B,C > 0 are material-dependent bulk con-161

stants. For example, typical values for the representative NLC material MBBA are162

B = 0.64× 104Nm−2, C = 0.35× 104Nm−2 and K = 4× 10−11N [33, 37]. The min-163

imisers of fbn depend on A and determine the NLC phase for spatially homogeneous164

samples. The minimiser of fbn is the isotropic state for A > B2

27C . For A < B2

27C , the165

minimisers of fbn constitute a continuum of Q-tensors defined below:166

N =

{
Q = s+

(
n⊗ n− I3

3

)}
, s+ =

B +
√
B2 − 24AC

4C
,167

where n is an arbitrary unit vector field (referred to as the nematic director), and I3168

is the 3× 3 identity matrix.169

The second term in (2.1) is the bulk energy density of the smectic order parameter170

u, which can be derived from the Landau theory of phase transitions [6, 23, 25]:171

(2.4) fbs(u) =
a

2
u2 +

b

3
u3 +

c

4
u4,172
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where a = α2(T − T ∗
2 ) is a temperature-dependent parameter with α2 > 0, and173

T ∗
2 < T ∗

1 is a critical material temperature related to N-S phase transition; b, c > 0174

are material-dependent constants. A non-zero b will result in non-symmetrical layer175

structures [23], and we take b = 0 to study symmetric layer structures. When a < 0,176

i.e. the temperature is low enough, the minimisers of fbs(u) prefer a non-zero density177

distribution, u.178

The third term in (2.1) is the coupling term between the smectic and nematic179

order parameters:180

(2.5) fint(Q, u) =

B0

∣∣D2u
∣∣2 , A ⩾ B2

24C ,

B0

∣∣∣D2u+ q2
(

Q
s+

+ I3
3

)
u
∣∣∣2 , otherwise,181

where B0 is a phenomenological coupling constant between Q and u, typically chosen182

to be on the scale of 1/q4 to counterbalance the magnitude of the coupling energy183

density fint [1, 23]. D2u is the Hessian of u. For a low temperature T < T ∗
2 and184

assuming a uniaxial Q = s+ (n⊗ n− I3/3), fint is minimized by u = sin(qn · x),185

which corresponds to a layered structure that has the layer normal co-aligned with186

the uniaxial director n, characteristic of the SmA phase. Consequently, q is often187

identified with the wave number of the SmA layers [1, 23], and is expected to be related188

to the SmA layer thickness l by q = 2π/l. The layer thickness l of a homogeneous189

SmA, is usually slightly larger than the long axis of a rod-like liquid crystal molecule,190

L, but less than 2L [38]. The layer thickness of the equal mass mixture of 8OPhPy8191

and 6OPhPy8 in the SmA phase is about 28.5 Angstrom in [39].192

The admissible Q-tensors belong to the space193

(2.6) W 1,2
Ω,S0

=
{
Q ∈ S0|Q ∈ W 1,2

Ω

}
,194

and the admissible smectic order parameter, u, belongs to W 2,2
Ω , where195

(2.7)

S0 :=

{
Q ∈ R3×3 : Qij = Qji,

3∑
i=1

Qii = 0

}
,

W k,p
Ω =

u : Ω → R :

∫
Ω

|u|p +
∑
|α|⩽k

|Dαu|p
dx < ∞

 .

196

To study the Isotropic-Nematic-Smectic (I-N-S) phase transition and structural197

transitions in confinement, we consider three different kinds of boundary conditions:198

(1) Periodic boundary condition for Q and u on a one-dimensional domain Ω = [0, h]:199

200

(2.8)

{
Q(0) = Q(h), DxQ(0) = DxQ(h),

u(0) = u(h), Dxu(0) = Dxu(h), Dxxu(0) = Dxxu(h).
201

We impose periodic boundary conditions on the derivative of Q to ensure that Q is202

smooth at the boundaries. Similarly, we impose periodic boundary condition on the203

second derivative of u.204

(2) Dirichlet boundary conditions for Q [16, 29] and natural boundary condition205

for u are specified as follows,206

(2.9){
Q = Qbc on ∂Ω,(
D2u+ q2

(
Q
s+

+ I3
3

)
u
)
· ν⃗ = 0,

[
∇ ·
(
D2u+ q2

(
Q
s+

+ I3
3

)
u
)]

· ν⃗ = 0, on ∂Ω,
207
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with the specified Dirichlet boundary Qbc ∈ W
1
2 ,2

∂Ω,S0
, where W

1
2 ,2

∂Ω,S0
is a fractional208

order Sobolev space which is the image space of the trace operator on W 1,2
Ω,S0

[40].209

One admissible example is the tangential Dirichlet boundary condition in [35], for210

which the nematic director is tangent to or in the plane of the domain boundary and211

such boundary conditions are motivated by experiments [15]. The natural boundary212

condition for u implies that the molecular density distribution is unconstrained.213

(3) We can also use weak boundary conditions or surface energies for the LdG214

order parameter as shown below [41], and the total energy is215

(2.10) Ẽ(Q, u) = E(Q, u) + ω

∫
∂Ω

∥Q−Qbc∥2dS, ω ⩾ 0,216

where ω ⩾ 0 is the penalty strength. From the method of variations, the critical point
of (2.10) satisfies the weak anchoring boundary conditions for Q [42] and natural
boundary condition for u,{

∂Q
∂ν⃗ + 2ω

K (Q−Qbc) = 0 on ∂Ω(
D2u+ q2

(
Q
s+

+ I3
3

)
u
)
· ν⃗ = 0,

[
∇ ·
(
D2u+ q2

(
Q
s+

+ I3
3

)
u
)]

· ν⃗ = 0, on ∂Ω.

2.2. The proofs of existence and regularity.217

Proposition 2.1. The mLdG energy functional (2.1) has at least a global min-218

imiser (Q̃, ũ) in W 1,2
Ω,S0

×W 2,2
Ω , subject to the above three types of boundary conditions.219

Proof. The admissible space W 1,2
Ω,S0

×W 2,2
Ω is non-empty. The existence of a global220

minimiser of (2.1) under Dirichlet boundary conditions for both Q and u has been221

proven in [36]. We prove that the existence of a global minimiser also holds with weak222

anchoring for Q and natural boundary condition for u. The bulk energy fbn(Q) is a223

fourth-order polynomial of Q, and the fourth-order term is positive because C > 0.224

Hence, there exists a positive M (that depends on A, B, C) such that fbn(Q) ⩾ C
8 |Q|4225

for |Q|2 ⩾ M , so that226

(2.11) fbn(Q) ⩾

{
C
8 |Q|4 ⩾ MC

8 |Q|2, |Q|2 ⩾ M,

min|Q|2⩽M fbn(Q) = constant, |Q|2 ⩽ M.
227

Thus, there exist two positive constants, C1(A,B,C) > 0, C2(A,B,C) > 0, such that228

229

(2.12)

∫
Ω

fbn(Q)dx ⩾ C1(A,B,C)∥Q∥2L2
Ω,S0

− C2(A,B,C),230

and231

(2.13)

∫
Ω

K

2
|∇Q|2 + fbn(Q)dx+ ω

∫
∂Ω

∥Q−Qbc∥2dS

⩾ min

(
K

2
, C1(A,B,C)

)
∥Q∥2

W 1,2
Ω,S0

− C2(A,B,C),

232

which means (2.1) is coercive with respect to Q. Now we prove the coerciveness233

estimate in u, i.e. if E(Q, u) is bounded, then u is also bounded in W 2,2
Ω . The234

bulk energy fbs(u) is a fourth order polynomial of u with c > 0, and
∫
Ω
fbs(u) dx235

is bounded, so ∥u∥L2
Ω
, ∥u2∥L2

Ω
are also bounded. Similarly, ∥Q∥L2

Ω,S0
, ∥Q2∥L2

Ω,S0
are236

shown to be bounded.237
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When A ⩾ B2

24C , the boundedness of ∥D2u∥2
L2

Ω
can be directly obtained from (2.5).

For A < B2

24C , ∥D2u∥2
L2

Ω
is bounded by∫

Ω

∣∣D2u
∣∣2 dx ⩽

∫
Ω

2

∣∣∣∣D2u+ q2
(
Q

s+
+

I3
3

)
u

∣∣∣∣2 dx+ 2

∫
Ω

∣∣∣∣q2(Q

s+
+

I3
3

)
u

∣∣∣∣2 dx.
Given the boundedness of both ∥u∥2

L2
Ω
and ∥D2u∥L2

Ω
along with the inequality, ∥u∥2

L2
Ω
+238

∥D2u∥L2
Ω
⩾ C3(Ω)∥∇u∥2

L2
Ω
from Theorem 5.19 of [43], we have established the bound-239

edness of ∥u∥W 2,2
Ω

which proves the coerciveness estimate for u. The weak lower240

semi-continuity of the LdG energy and the surface energy is guaranteed in [42] and241

the weak lower semi-continuity features of fbs and N-S coupling term are guaranteed242

in [36]. The existence of a global minimiser follows from the direct methods in the243

calculus of variations.244

For A < B2

24C , the Euler-Lagrange equations of the free energy (2.1) are given by245

(2.14)

K∆Q =AQ−B

(
Q2 − tr(Q2)

3
I3

)
+ Ctr(Q2)Q

+ 2B0q
2/s+ ·

(
u ·D2u− tr(u ·D2u)

3
I3

)
+ 2B0q

4 · Q

s2+
u2,

2B0∆
2u =− au− bu2 − cu3 − 2B0D

2u :

(
q2
(
Q

s+
+

I3
3

))
− 2B0∇ ·

(
∇ ·
(
q2
(
Q

s+
+

I3
3

)
u

))
− 2B0 ·

∣∣∣∣q2(Q

s+
+

I3
3

)∣∣∣∣2 u.
246

where ∆2u =
(

∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

)2
u, and we prove that the weak solutions of (2.14),247

Q̄ ∈ W 1,2
Ω,S0

,ū ∈ W 2,2
Ω , are in fact, classical solutions of (2.14).248

Proposition 2.2. Let Ω be a bounded, connected open set in R3, ∂Ω is C4,1/2249

continuous, and K,B0 ̸= 0, then the weak solutions Q̄ ∈ W 1,2
Ω,S0

, ū ∈ W 2,2
Ω of (2.14)250

are classical solutions of (2.14), i.e. Q̄ ∈ C2
Ω,S0

and ū ∈ C4
Ω.251

Proof. Assume that Q̄ ∈ W 1,2
Ω,S0

, ū ∈ W 2,2
Ω are weak solutions of the following252

Euler-Lagrange equation,253

(2.15)

K∆Q̄ =AQ̄−B

(
Q̄2 − tr(Q̄2)

3
I3

)
+ Ctr(Q̄2)Q̄︸ ︷︷ ︸

f1(Q̄)

+ 2B0q
2/s+ ·

(
ū ·D2ū− tr(ū ·D2ū)

3
I3

)
︸ ︷︷ ︸

f2(ū)

+2B0q
4 · Q̄

s2+
ū2︸ ︷︷ ︸

f3(Q̄,ū)

,

∆2ū =− a

2B0
ū− b

2B0
ū2 − c

2B0
ū3︸ ︷︷ ︸

f4(ū)

−D2ū :

(
q2
(
Q̄

s+
+

I3
3

))
︸ ︷︷ ︸

f5(Q̄,ū)

−∇ ·
(
∇ ·
(
q2
(
Q̄

s+
+

I3
3

)
ū

))
︸ ︷︷ ︸

f6(Q̄,ū)

−
∣∣∣∣q2( Q̄

s+
+

I3
3

)∣∣∣∣2 ū︸ ︷︷ ︸
f7(Q̄,ū)

.

254
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From the density of C∞
Ω in W 1,2

Ω and W 2,2
Ω [40], we can assume that the boundary255

data (or trace) of ū and Q̄ coincide with functions in C∞
Ω .256

Recall that we are working in 3D case. By using the Sobolev embedding the-257

orem in the 3D case [40], we have u ∈ W 2,2
Ω ↪→ C

0, 12
Ω ,Q ∈ W 1,2

Ω,S0
↪→ L6

Ω,S0
, and258

then f1(Q̄), f2(ū), f3(Q̄, ū) ∈ L2
Ω,S0

. The right-hand side of the first partial differen-259

tial equation is in L2
Ω,S0

, and elliptic regularity yields Q ∈ W 2,2
Ω,S0

, which is allowed260

by the regularity of boundary data and that of the domain [44]. Hence, we have261

f4(ū) ∈ C
0, 12
Ω ⊂ L2

Ω, f5(Q̄, ū), f6(Q̄, ū), f7(Q̄, ū) ∈ L2
Ω. Then the right-hand side of262

the second partial differential equation in (2.15) is in L2
Ω,S0

, and elliptic regularity263

yields u ∈ W 4,2
Ω . Then, the right-hand side of the first equation of (2.15) belongs to264

W 2,2
Ω,S0

↪→ C
0,1/2
Ω,S0

, and the Schauder estimate [45] gives Q ∈ C
2,1/2
Ω,S0

. One can continue265

to alternately increase the regularity of Q̄ and ū to obtain the full regularity.266

In the subsequent discussion, we will focus on the 2D (two-dimensional) case to267

facilitate comparisons with the experimental observations of smectic phases on square268

domains [14] and with the numerical results for nematic phases on 2D domains [16, 46].269

The results in Sections 3, 4.1, 4.2, can be generalized to 3D cases, by employing270

the same methodology. In [47], the authors prove that in the thin film limit or271

for approximately 2D scenarios, and for certain choices of the surface energies that272

enforce tangent boundary conditions, the LdG energy minimisers are z-invariant, have273

a fixed eigenvector, z⃗ (the unit-vector in the z-direction) with associated fixed negative274

eigenvalue. This automatically reduces the number of degrees of freedom from 5 to275

2, see below:276

(2.16) Q =

(
Q2D + q3

6 I2 0
0 - q33

)
,Q2D =

(
q1 q2
q2 −q1

)
,277

where the constant, q3, depends on the phenomenological parameters in the LdG278

energy and the anchoring coefficients in the surface energies. The symmetric, traceless279

2×2 matrix, Q2D is often referred to as the rLdG order parameter [29]. Consequently,280

the LdG energy reduces to281

(2.17)

E2D(Q2D, u) =

∫
Ω2D

fbs(u) + fint,2D(Q2D, u)

+
K

2
|∇Q2D|2 + A2D

2
tr(Q2

2D) +
C

4
(tr(Q2

2D))2︸ ︷︷ ︸
fbn,2D(Q2D)

dx,
282

where Ω2D ⊂ R2 (the 2D cross-section of the 3D domain in the thin-film limit),283

A2D = A− q3B
3 +

q23C
6 . When A2D < 0, the minimizer of fbn,2D is Q2D = s+,2D(n2D×284

n2D − I2/2), where n2D is an arbitrary 2D unit vector and285

(2.18) s+,2D =
√
−2A2D/C,286

and thus, the 2D coupling energy density, fint,2D, is defined to be:287

(2.19) fint,2D(Q2D, u) =

B0

∣∣∣D2u+ q2
(

Q2D

s+,2D
+ I2

2

)
u
∣∣∣2 , A2D < 0,

B0

∣∣D2u
∣∣2 , A2D ⩾ 0.

288

For brevity, we omit the subscript, 2D, in E2D, fint,2D Ω2D, Q2D, s+,2D, A2D. All289

subsequent results are based on the functional in (2.17), also known as the rLdG290

energy in [29].291
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3. Thermotropic phase transition. We consider the I-N-S phase transition292

with periodic boundary conditions. Consider the one-dimensional domain Ω = [0, h]293

and assume that the rLdG order parameter, Q, is of the form294

(3.1) Q =

(
Q 0
0 −Q

)
.295

This corresponds to n2D = (1, 0) in the definition of Q2D above so that there is only296

one degree of freedom: the scalar order parameter, Q, that measures the degree of297

ordering about the director. When A < 0, the free energy (2.17) simplifies to298

(3.2)

E1D(Q, u) =

∫ h

0

fbs(u)+B0

[
uxx + q2

(
Q√

−2A/C
+

1

2

)
u

]2
+KQ2

x+AQ2+CQ4 dx,299

and for A ⩾ 0,300

(3.3) E1D(Q, u) =

∫ h

0

fbs(u) +B0u
2
xx +KQ2

x +AQ2 + CQ4 dx.301

The two temperature-dependent parameters are A = α1(T−T ∗
1 ), and a = α2(T−T ∗

2 ),302

where T ∗
2 < T ∗

1 . It is known that the isotropic phase loses stability for T < T ∗
1 , and303

we show that the nematic phase (with u = 0) loses stability at T < T ∗
2 , and the304

smectic phase (with non-zero u) is the energy minimiser for a < 0. Hence, T ∗
1 and T ∗

2305

are the critical temperatures for the I-N and N-S phase transitions respectively, with306

T ∗
2 < T ∗

1 [2].307

The admissible spaces are308

(3.4){
Q ∈ VQ = {Q ∈ W 1,2

Ω , Q(0) = Q(h), DxQ(0) = DxQ(h)},
u ∈ Vu = {u ∈ W 2,2

Ω , u(0) = u(h), Dxu(0) = Dxu(h), Dxxu(0) = Dxxu(h)},
309

and the E-L equations for A < 0 are310

(3.5)



2KQxx = 2AQ+ 4CQ3 + 2B0q
2uuxx√

−2A/C
+ 2B0q

4√
−2A/C

(
Q√

−2A/C
+ 1

2

)
u2,

−2B0uxxxx = au+ cu3 + 4B0q
2

(
Q√

−2A/C
+ 1

2

)
uxx + 2B0q

2 Qxxu√
−2A/C

+4B0q
2 Qxux√

−2A/C
+ 2B0q

4

(
Q√

−2A/C
+ 1

2

)2

u.

311

Proposition 3.1. Let c,B0,K,C be positive constants, and let q = 2πn0

h for a312

fixed positive integer n0, where n0 = 1, 2, 3, · · · . As temperature decreases, the energy313

functional (3.2) exhibits second-order I-N phase transition at T = T ∗
1 , and nematic314

phase is stable for T ∗
2 ⩽ T < T ∗

1 , but loses stability when T < T ∗
2 .315

Proof. The isotropic phase (QI ≡ 0, uI ≡ 0) is always a solution of the E-L316

equation of (3.2) for A < 0 and (3.3) for A ⩾ 0, and the nematic phase (QN ≡317 √
−A/2C, uN ≡ 0) is the solution of (3.5) when A < 0.318

For T ⩾ T ∗
1 , we have a = α2(T − T ∗

2 ) ⩾ 0, A = α1(T − T ∗
1 ) ⩾ 0 i.e. fbs(u) ⩾319

0, AQ2 + CQ4 ⩾ 0. Hence, for any Q, u in admissible space, the isotropic phase320

(QI ≡ 0, uI ≡ 0) is the global minimiser for T ⩾ T ∗
1 , i.e.321

(3.6) E1D(Q, u) =

∫ h

0

fbs(u) +B0u
2
xx +KQ2

x +AQ2 +CQ4 dx ⩾ 0 = E1D(QI , uI).322
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For T ∗
1 > T ⩾ T ∗

2 , we have a = α2(T − T ∗
2 ) ⩾ 0, i.e. fbs(u) ⩾ 0. Hence, for323

any Q, u in admissible space, nematic phase (QN ≡
√
−A/2C, uN ≡ 0) is the global324

minimiser for T ∗
1 > T ⩾ T ∗

2 .325

To investigate the stability of nematic phase near T = T ∗
2 , we calculate the second326

variation of (3.2) at (QN ≡
√

−A/2C, uN ≡ 0) for a periodic perturbation, (η1, η2),327

(3.7) δ2E1D(η1, η2) =

∫ h

0

(
a(T ) · η22 + 2B0

(
η2xx + q2η2

)2
+ 2K(η1x)

2 − 4Aη21

)
dx.328

The stability of the nematic phase is measured by the minimum eigenvalue of δ2E1D,329

330

(3.8) µT = inf
η1∈VQ,η2∈Vu

δ2E1D(η1, η2)∫ h

0
η21 + η22dx

.331

If µT < 0, the nematic phase is unstable. If µT > 0, the nematic phase is stable.332

For T < T ∗
1 , i.e., −4A > 0, any perturbation with a non-zero η1 is always a stable333

direction. Thus, we only consider the perturbation (0, η2). The Fourier expansion of334

the function, η2, in Ω = [0, h] is given by335

(3.9) η2 = w0/2 +
∞∑

n=1

wn cos(
2πnx

h
) + vn sin(

2πnx

h
).336

By substituting (3.9) into (3.7), we have

δ2E1D(0, η2) = h/2·
(
a+ 2B0q

4

2

)
w2

0+h/2·
∞∑

n=1

[
2B0

(
4π2n2

h2
− q2

)2

+ a

]
(w2

n+v2n).

(0, η) is an eigenfunction of (3.7) if and only if337

(3.10) 2aη + 4B0ηxxxx + 8B0q
2ηxx + 4B0q

4η = λη.338

One can verify that (3.10) is the first order optimal condition (or KKT condition339

[48]) of (3.8). By substituting (3.9) into (3.10), we get that η ≡ 1, η = cos( 2πnxh )340

and η = sin( 2πnxh ), n = 1, 2, 3 · · · are the eigenvectors of δ2E with eigenvalues µ =341

a + 2B0q
4 and a + 2B0

(
4π2n2

h2 − q2
)2

, n = 1, 2, 3 · · · , respectively. For n0 ∈ Z+ s.t.342 (
4π2n2

0

h2 − q2
)2

= 0, then η = sin( 2πn0x
h ) = sin (qx) and η = cos( 2πn0x

h ) = cos (qx)343

are the eigenvectors corresponding to the minimum degenerate eigenvalue µ = a.344

For T ∗
1 > T ⩾ T ∗

2 , i.e., a ⩾ 0, the second variation is always positive, i.e., the345

nematic phase is stable. For T < T ∗
2 , i.e., a < 0, the eigenvector η ≡ 1 is an346

unstable eigendirection if and only if the corresponding eigenvalue a + 2B0q
4 < 0 is347

negative, and the eigenvectors sin(2πnxh ) and cos( 2πnxh ), n = 1, 2, 3 · · · , are unstable348

eigendirections if and only if the corresponding eigenvalue a + 2B0

(
4π2n2

h2 − q2
)2

is349

negative. Thus, the Morse index of the nematic phase, i.e., the number of eigenvectors350

corresponding to negative eigenvalues is351

(3.11) inematics = 2× card(Nnematics) +m0,352

where353

(3.12) Nnematics =

{
n ∈ Z+ : a+ 2B0

(
4π2n2

h2
− q2

)2

< 0

}
354
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and card(Nnematics) is the cardinal number of Nnematics. If a + 2B0q
4 ⩾ 0, m0 = 0;355

otherwise m0 = 1, i.e. η ≡ 1 is an unstable eigendiretion. As a < 0 decreases, more356

positive integers satisfy the constraint in (3.12), and the Morse index of the nematic357

phase, inematics, increases.358

Remark 3.2. The energy functional in (3.2) exhibits a second-order I-N phase359

transition, so that the isotropic and nematic phases cannot coexist in the 2D Q-360

tensor model (2.17). The 2D isotropic phase, Qiso,2D = 0, is not equivalent to the361

3D isotropic phase, Qiso,3D = 0 (see (2.16)). A first-order I-N phase transition can362

be demonstrated using a similar method that employs the full 3D Q-tensor, with five363

degrees of freedom, in (2.1).364

For example, in Figure 1, we substitute the parameter values in the caption, into365

(3.11), and get Nnematic = {3, 4, 5} and m0 = 0, i.e., the Morse index of the nematic366

phase inematics = 6 with unstable eigendirections η = sin(nx), cos(nx), n ∈ Nnematics.367

Nematic phase u+0.1V1 u+0.1V2 u+0.1V3

u+0.1V4 u+0.1V5 u+0.1V6 u+0.1V7

Fig. 1. The nematic critical point for h = 2π, q = 4, T = −30, T ∗
1 = 0, T ∗

2 = −10, a = T−T ∗
2 =

−20, A = T − T ∗
1 = −30, B0 = 0.1, c = 10, C = 10. V1 to V6 are the unstable eigendirections

associated with u and V7 is a stable eigendirection. The pairs of unstable eigendirections V1 and
V2, V3 and V4, V5 and V6 are the orthogonal linear combinations of sin(nx) and cos(nx) with
n = 4, 3, 5 respectively. The colour bar represents the modulation of the density, and we use the
same visualization method in the following figures. The white lines define the nematic director.

The aforementioned calculations show that the nematic phase loses stability as368

the temperature decreases. In the remainder of this section, we demonstrate that369

when the nematic phase loses stability, it bifurcates into a more stable smectic phase.370

To study this, we consider the E-L equation for u,371

(3.13) 2B0uxxxx + au+ cu3 + 4B0q
2uxx + 2B0q

4u = 0,372

i.e. fix Q ≡ s+
2 in (3.5) for brevity, but the results also hold for variable Q. In373

the proof of Proposition 3.1, we note that the minimum eigenvalue of the nematic374

phase is degenerate, which presents technical difficulties in bifurcation theory [49]. To375

circumvent this issue, we construct the following working space:376

(3.14) V = Vu ∩W 1,2
0,Ω,377

where Vu is defined in (3.4). This restricts η = cos(qx) from serving as an eigenvector378

and then simplifies the minimum eigenvalue at the nematic phase.379

Proposition 3.3. Given any positive c,B0, and q = 2πn0

h , where n0 is a natural380

number, a pitchfork bifurcation of (3.13) arises at a = 0 or T = T ∗
2 , u ≡ 0 in V .381

More precisely, there exists positive numbers ϵ, δ and two smooth maps382

(3.15) t ∈ (−δ, δ) → a(t) ∈ (−ϵ, ϵ), t ∈ (−δ, δ) → wt ∈ V383
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such that all the pairs (a, u) ∈ R× V satisfying

u is a solution to (3.13), |a| < ϵ, ∥u∥W 2,2
Ω

⩽ ϵ

are either

nematic phase : u ≡ 0 or smectic phases : u = ±
(
tsin(qx) + t2wt

)
.

Proof. The proof follows the same paradigm as in Theorem 5.2 in [50] and Theo-384

rem 5.1 in [46], and we address the necessary technical differences that arise because385

the study in [50] and [46] focuses on a second-order partial differential equation, while386

our analysis involves a fourth-order partial differential equation.387

To show that a pitchfork bifurcation arises at a = 0, we apply the Crandall and388

Rabinowitz bifurcation theorem [28] to the operator F : R × V → W−2,2
Ω (W−2,2

Ω is389

the dual space of W 2,2
Ω ) defined by390

(3.16) F(a,w) := 2B0Dxxxxw + aw + cw3 + 4B0q
2Dxxw + 2B0q

4w.391

We have to check four assumptions of Theorem 1.7 in [28]:392

(a) F(a, 0) = 0; (b) The partial derivatives DaF , DwF , DawF exist and are con-393

tinuous; (c)dim
(

W−2,2(Ω)
Range(DwF(0,0))

)
= dim (Kernel (DwF(0, 0))) = 1; (d) DawFw0 /∈394

Range(DwF(0, 0)), where w0 ∈ Kernel (DwF(0, 0)).395

F(a, 0) = 0 holds for all a ∈ R. We have396

(3.17)


DaF(a,w) = w,

DwF(a,w) = 2B0Dxxxx + a+ 3cw2 + 4B0q
2Dxx + 2B0q

4,

DawF(a,w) = 1,

397

and they are continuous, since DwF(a,w) : V → W−2,2
Ω is a bounded linear operator.398

For checking F satisfies assumption (c), we should calculate the kernel space of399

(3.18) DwF(0, 0) = 2B0Dxxxx + 4B0q
2Dxx + 2B0q

4 = 2B0(Dxx + q2)(Dxx + q2)400

in V , i.e. the solution space of the following differential equation:401

(3.19)

{
DwF(0, 0)w = 2B0Dxxxxw + 4B0q

2Dxxw + 2B0q
4w = 0,

w(0) = w(h) = 0, Dxw(0) = Dxw(h), Dxxw(0) = Dxxw(h).
402

The general solution of the differential question in (3.19) without considering the403

boundary condition is404

(3.20) w = (k1 + k2x)sin(qx) + (k3 + k4x)cos(qx), ki ∈ R, i = 1, 2, 3, 4.405

By taking the boundary condition into account, we have w = k1sin(qx), k1 ∈ R, and406

(3.21) dim (Kernel (DwF(0, 0))) = dim ({w = k1sin(qx), k1 ∈ R}) = 1.407

For any ua, ub ∈ V , we have408

(3.22)

⟨DwF(0, 0)ua, ub⟩ = 2B0

∫ h

0

(
(Dxx + q2)(Dxx + q2)ua

)
ubdx

= 2B0

∫ 1

0

(
(Dxx + q2)(Dxx + q2)ub

)
uadx = ⟨ua, DwF(0, 0)ub⟩

409
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by using the boundary conditions of ua and ub, which meansDwF(0, 0) is a self-adjoint410

operator, and hence it is a Fredholm operator of index 0 [51]. We have411

(3.23) dim

(
W−2,2(Ω)

Range(DwF(0, 0))

)
= dim (Kernel (DwF(0, 0))) = 1,412

which satisfies assumption (c). We also need to check the last assumption (d),413

(3.24) DawF(a,w)sin(qx) = sin(qx) /∈ rangeDwF(0, 0),414

i.e. the following differential equation,415

(3.25)

{
2B0Dxxxxw + 4B0q

2Dxxw + 2B0q
4w = sin(qx),

w(0) = w(h) = 0, Dxw(0) = Dxw(h) = 0, Dxxw(0) = Dxxw(h),
416

does not have a solution. One can check that the general solution of (3.25) without417

considering the boundary condition is418

(3.26) w = −x2sin(qx)

16B0q2
+ k1sin(qx), k1 ∈ R,419

and it cannot satisfy the boundary conditions with any k1 ∈ R, so that sin(qx) /∈420

Range (DwF(0, 0)). All the assumptions of Crandall and Rabinowitz’s theorem are421

satisfied, and the proposition follows directly from [28].422

Proposition 3.4. Given positive c,B0,K,C, and q = 2πn0

h , where n0 is a natural423

number, in (3.5), the nematic phase (Q ≡ s+/2, u ≡ 0) loses stability in VQ × V at424

the critical temperature T = T ∗
2 , via a symmetric pitchfork bifurcation.425

Proof. In Proposition 3.3, we fix Q ≡ s+
2 in (3.5) for brevity, but the results426

also hold for coupled system (3.5) without treating Q to be a constant by defining427

F(a,w1, w2) = (F1(a,w1, w2),F2(a,w1, w2)) : R× VQ × V → W−1,2
Ω ×W−2,2

Ω where428

(3.27)

F1(a,w1, w2) :=− 2KDxxw1 + 2A(a)(s+(a)/2 + w1) + 4C(s+(a)/2 + w1)
3

+
2B0q

2w2Dxxw2

s+(a)
+

2B0q
4
(
1 + w1

s+(a)

)
w2

2

s+(a)
,

F2(a,w1, w2) :=2B0Dxxxxw2 + aw2 + cw3
2 + 4B0q

2

(
1 +

w1

s+(a)

)
Dxxw2

+ 2B0q
2w2Dxxw1

s+(a)
+ 4B0q

2Dxw1Dxw2

s+(a)
+ 2B0q

4

(
1 +

w1

s+(a)

)2

w2,

429

A(a) = α1(
a
α2

+ T ∗
2 − T ∗

1 ) and s+(a) =
√

−2A(a)/C. The proof follows the same430

paradigm as in Proposition 3.3. One can check that431

(3.28) D(w1,w2)F(0, 0, 0) =
(
−2KDxx − 4A(0), 2B0(Dxx + q2)(Dxx + q2)

)
432

is also a Fredholm operator of index 0, and dim(Kernel(D(w1,w2)F(0, 0, 0)) = 1 since433

the spectrum [51] of −2KDxx − 4A(0), A(0) < 0 in VQ is positive which does not434

change the dimension of kernel space.435

In Figure 2, we numerically calculate the N-S bifurcation, accomplished using the436

sine spectral method for u and Fourier spectral method forQ [52] (see Appendix). This437
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numerical scheme covers the boundary conditions in VQ×V . For a > 0, the minimum438

eigenvalue at the nematic phase, as calculated both numerically and analytically, is439

both simple and positive, indicating stability. When a = 0, a simple zero eigenvalue440

emerges with eigenvector η = sin(qx). As a becomes negative, the nematic phase loses441

stability and bifurcates into two smectic phases, corresponding to u = t sin(qx)+ t2wt442

and u = −t sin(qx)− t2wt respectively, in pitchfork bifurcation.443

The numerically calculated bifurcation diagram of the I-N-S phase transition v.s.444

temperature T is shown in Figure 3. The isotropic phase with uI ≡ 0 and QI ≡ 0445

is always a critical solution of (3.2). When T ⩾ T ∗
1 , the isotropic phase is a global446

minimiser of (3.2). For T ∗
1 > T ⩾ T ∗

2 , the isotropic phase loses stability, and the447

nematic phase with uN ≡ 0 and QN ̸≡ 0 becomes stable. For T < T ∗
2 , the nematic448

phase loses stability and the smectic phase with uS ̸≡ 0 and QS ̸≡ 0 becomes stable.449

Nematic

Smectic

Smectic

Fig. 2. Schematic illustration of the the N-S phase transition with a = T + 10, b = 0, c = 10,
A = T , C = 10, K = 0.2, h = 2π, q = 4, B0 = 0.001, and the pitchfork bifurcation for a < 0.
The solid black line denotes a stable phase, while the dashed black line denotes an unstable phase in
all figures. We numerically calculate the minimiser (umin,Qmin) of (3.2) with various a, and plot
umin. We track the bifurcation across −5 ⩾ T ⩾ −15 (5 ⩾ a ⩾ −5).

4. Smectics under confinement. In this section, we focus on the low temper-450

ature regime (i.e., a < 0 and A < 0) to investigate smectic profiles under confinement.451

In Sections 4.1 and 4.2, we study the minimisers of the coupling energy, assuming a452

given rLdG Q-profile, compatible with a defect-free perfectly ordered nematic state453

and a nematic defect respectively. These formal calculations give us some heuristic in-454

sight into how smectic layers respond to nematic profiles, with and without defects i.e.455

do defects repel smectic layers and do smectic layers concentrate near well-ordered456

nematic regions and if so, is there a correlation between the layer normal and the457

nematic director?458

4.1. The positional order far from defects. Based on previous work [19, 53],459

we assume that far away from defects in confined geometries,460

(4.1) Q = s+

(
n⊗ n− I2

2

)
.461
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Isotropic
Nematic

Smectic

Fig. 3. Phase transitions for T ∗
1 = 0, T ∗

2 = −10, α1 = α2 = 1, C = c = 10, h = 2π, q = 4,
B0 = 0.001. We use umax(T ) and Qmax(T ), where umax(T ) = max0⩽x⩽h u∗

T (x) and Qmax(T )
= max0⩽x⩽h Q∗

T (x), to represent the global minimizer (Q∗
T (x), u∗

T (x)) of E1D at T . For better
visualisation, we plot the 2D y-invariants: Q̄(x, y) ≡ Q(x) and ū(x, y) ≡ u(x).

This models a perfectly ordered nematic state, which is also a minimiser of fbn in462

(2.17), with arbitrary 2D nematic director n. Based on the analysis in Section 3, we463

assume a simple periodic structure for u, compatible with a layer structure,,464

(4.2) u(x) = k1 cos(q̃k · x),465

where k = ∇u
|∇u| , if |∇u| ̸= 0, is the layer normal, and q̃ is the wave number of the466

layer. Substituting (4.1) and (4.2) into the coupling term (2.5), we obtain467

(4.3)

∣∣∣∣D2u+ q2
(
Q

s+
+

I2
2

)
u

∣∣∣∣2 = k21
∣∣−q̃2k⊗ k · u+ q2n⊗ n · u

∣∣2 .468

The above coupling term is minimised by q̃ = q, k = n. Thus, we deduce that away469

from defects, we can interpret the phenomenological parameter q in (2.17) to be the470

wave number of the smectic layers and the smectic layer normal is aligned with the471

nematic director, n, in perfect agreement with the definition of SmA. Of course, these472

deductions do not shed light into the structure of arbitrary critical points of (2.17).473

4.2. The positional order near defects. We can assume Q ≡ 0 near defects474

in the rLdG model [29]. Substituting Q = 0 into the coupling term (2.5), we obtain475

(4.4) Ecouple(Q ≡ 0, u) =

∫
Ω

B0

∣∣∣∣D2u+
q2u

2
I2

∣∣∣∣2 dx.476

It’s straightforward to verify that u ≡ 0 is a global minimiser since Ecouple(Q ≡477

0, u) ⩾ 0 = Ecouple(Q ≡ 0, u ≡ 0). Our aim is to demonstrate that u ≡ 0 is indeed478

the unique minimiser, which implies that domains with defects do not support layered479

structures. We prove (a) Ecouple(Q ≡ 0, u) is convex, so that every minimiser u∗ is a480

global minimiser, i.e. Ecouple(u
∗) = 0, and (b) if Ecouple(u

∗) = 0, then u∗ ≡ 0. (a)481

is obvious, since (4.4) is a squared norm of
(
D2u+ q2u

2 I2

)
. Next, we prove (b). If482 ∣∣∣D2u+ q2u

2 I2

∣∣∣2 ≡ 0, then uxy ≡ 0, uxx ≡ uyy = − q2u
2 . From the regularity result483
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in Proposition 2.2, we can assume that u has C3 regularity. Since uxy ≡ 0, then484

uxxy = − q2uy

2 ≡ 0, uxyy = − q2ux

2 ≡ 0, which imply ux = uy ≡ 0, and further u ≡ C0485

where C0 is a constant. Then we deduce C0 = 0 from uxx = uyy = − q2u
2 ≡ 0. Hence,486

(a) and (b) hold, which means that u ≡ 0 is the unique minimiser of (4.4).487

In Figure 4, given a Q-field on a square domain with edge length λ and natural488

boundary conditions for Q and u, we plot the numerical minimiser, u, of (2.17) with489

relatively large B0 and relatively small a and c. The u almost vanishes at the central490

point defect and produces a layered structure far away from the defect, in agreement491

with our analysis above.492

Fig. 4. The energy-minimising profile for u with a fixed Q-field on the left. This Q-field has a
+1 central point defect. We use a = −0.1, c = 0.1, λ2 = 30, q = 2π, B0 = 10−3. The colour bar
of left plot is the order parameter

√
Tr(Q2)/2 and the white lines define the nematic director. We

use the same color bar for u as before.

4.3. Structural transitions for smectics on square domains. We consider493

qualitative properties of energy minimisers of (2.17) on 2D square domains: Ω =494

[−λ, λ]2. By rescaling the system according to x̄ = x
λ , Ē = E

K , λ̄2 = 2Cλ2

K , ā = a
2C ,495

c̄ = c
2C , q̄2 = Kq2

2C , B̄0 = 2B0C
K2 , Ā = A

2C where the unit of B0 is Nm2, the unit of K is496

N, the unit of λ is m, and the unit of q is m−1. Then the non-dimensionalised energy497

is given by498

(4.5)

Ē(Q, u) =

∫
[−1,1]2

(
λ̄2
( ā
2
u2 +

c̄

4
u4
)
+

B̄0

λ̄2

∣∣∣∣D2u+ λ̄2q̄2
(
Q

s+
+

I2
2

)
u

∣∣∣∣2
+

1

2
|∇Q|2 + λ̄2

(
Ā

2
trQ2 +

(trQ2)2

8

))
dx̄.

499

In the following, we drop all the bars, and the E-L equations of (4.5) are500

(4.6)

∆Q =λ2

(
AQ+

tr(Q2)Q

2

)
+ 2B0q

2/s+ ·
(
u ·D2u− tr(u ·D2u)

2
I2

)
+ 2λ2B0q

4 Q

s2+
u2,

∆2u =− λ4

(
a

2B0
u+

c

2B0
u3

)
− λ2D2u :

(
q2
(
Q

s+
+

I2
2

))
− λ2∇ ·

(
∇ ·
(
q2
(
Q

s+
+

I2
2

)
u

))
− λ4

∣∣∣∣q2(Q

s+
+

I2
2

)∣∣∣∣2 u.
501

Regarding the boundary conditions, we assume Dirichlet tangent boundary conditions502

for the nematic director i.e. the director, n = ±(1, 0) on the horizontal edges and503
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n = ±(0, 1) on the vertical edges, and the density is naturally distributed, i.e.,504

(4.7)

Q =

(
s+L(x)/2 0

0 −s+L(x)/2

)
on y = {1,−1},

Q =

(
−s+L(y)/2 0

0 s+L(y)/2

)
on x = {1,−1},(

D2u+ λ2q2
(

Q
s+

+ I2
2

)
u
)
· ν⃗ = 0,

[
∇ ·
(
D2u+ λ2q2

(
Q
s+

+ I2
2

)
u
)]

· ν⃗ = 0, on ∂Ω,

505

where506

(4.8) L(x) =


x+1
ϵ0

,−1 ⩽ x ⩽ −1 + ϵ0,

1, |x| ⩽ 1− ϵ0,
1−x
ϵ0

, 1− ϵ0 ⩽ x ⩽ 1,

507

is a trapezoidal function with a small enough ϵ0, to avoid the mismatch in the bound-508

ary conditions, at the square vertices [34, 46, 54].509

4.3.1. Large domain size limit. In the λ → ∞ limit or in the Oseen-Frank510

limit, we can assume that the interior profile is almost a minimiser of fbn in (2.17)511

with no defects [35]. In the Oseen-Frank limit, the interior profile is512

(4.9) Q ≡ s+

(
n0 × n0 −

I

2

)
,513

where n0 = (cos θ, sin θ) and θ is a solution of the Laplace equation, subject to Dirich-514

let conditions compatible with (4.7); the condition on θ originates from the nematic515

elastic energy. However, numerical results show that n0 is often constant away from516

the square edges, particularly for large λ [30]. Analogous to the discussion in Section517

4.1, we assume a constant n0 or θ in (4.9) and assume a periodic structure for518

(4.10) u = A0 cos(k · x)519

with unknown A0 and k, where A0 is the amplitude of the layers, |k|
2π (if |k| ̸= 0) is520

the wave number of layers, and k
|k| is the layer normal.521

By substituting (4.10) and (4.9), we have that the leading order terms in (4.5),522

in the λ → ∞ limit are:523

(4.11)

λ2

∫
Ω

(
au2

2
+

cu4

4
+

B0

λ4

∣∣∣∣D2u+ λ2q2
(
Q

s+
+

I2
2

)
u

∣∣∣∣2 + A

2
trQ2 +

(trQ2)2

8

)
dx

= λ2

(
aA2

0 +
3cA4

0

8
+ 2B0A

2
0

∣∣∣∣q2n0 × n0 −
k× k

λ2

∣∣∣∣2 + Constant+O

(
1

|k|

))
.

524

The leading order energy in (4.11) is minimised by525

(4.12) k = qλn0, A0 =

√
−4a

3c
,526

since the constant can be set to zero by adding a suitable constant to fbn in (4.11).527

These relations contain useful information: (i) the layer normal is aligned with n0;528
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(ii) the number of layers is proportional to λ and the (iii) layer thickness, l is inversely529

proportional to q, in the λ → ∞ limit. Further, the amplitude of the layer oscillations,530

A0, depends on the parameters of fbs as expected, at least for energy minimisers in531

the λ → ∞ limit. In the first and second pairs of plots in Figure 5, we fix n0 =532

(
√
2/2,

√
2/2) in (4.9), and numerically calculate the minimiser of u in (4.11), without533

assuming the periodic profile of u in (4.10). In the numerical results, the wave number534

is proportional to λ; the layer normal follows the director n0; the amplitude of u is535

close to A0 in (4.12). More specifically, the numerically computed number of layers for536

λ2 = 50 is 20, which is equal to the predicted value |k|∗2
√
2

2π = 20 (where |k|
2π denotes the537

number of layers in a unit length, and 2
√
2 is the square diagonal length) in (4.12), and538

the amplitude is 1.1432, close to the predicted value A0 =
√

−4a
3c ≈ 1.1547 in (4.12).539

For λ2 = 150, the number of layers is 35 and the predicted value is |k|∗2
√
2

2π = 34.6410540

in (4.12). The numerically calculated amplitude is 1.1403, while the predicted value541

is A0 =
√

−4a
3c ≈ 1.1547 in (4.12). In the third pair plotted in Figure 5, the director542

field is compatible with the boundary condition (4.7). The number of layers along543

the diagonal is also 35, and the numerically calculated amplitude is 1.1474, both of544

which are also close to the predicted values.545

Fig. 5. The distribution of layers, u, is calculated by minimising (4.5) with fixed Q-field. In the
left two plots, Q11 = 0,Q12 =

s+
2
, i.e. the nematic director is uniformly aligned along the line y = x.

This is not compatible with the boundary conditions in (4.7). In the right plot, Q11 = s+ cos(2θ)/2,
Q12 = s+ sin(2θ)/2, θ is a solution of the Laplace equation, compatible with the boundary conditions
in (4.7). The parameters are a = −5, c = 5, B0 = 10−3, q = 2π, A = −0.8359.

4.3.2. Small domain size limit. There is a unique global minimiser of the LdG546

energy on square domains, in the λ → 0 limit, known as the Well Order Reconstruction547

Solution (WORS) [16, 46, 55] with two crossed line defects along the square diagonals.548

In this subsection, we show that in the λ → 0 limit, the stable smectic critical points549

of (2.17) have the WORS as their Q-profile, i.e. Q → QWORS and u does not have550

a layer structure. In the λ → 0 limit, we take a regular perturbation expansion of Q551

and u in powers of λ as shown below:552

(4.13) Q = Q0 + λQ1 + λ2Q2 + · · · , u = u0 + λu1 + λ2u2 + · · ·553

where (Q0, u0) is the solution of the following partial differential equation:554

(4.14)

{
∆Q0 = 2B0 · q2/s+ ·

(
u0 ·D2u0 − tr(u0·D2u0)

2 I2

)
∆2u0 = 0

,555
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subject to the boundary condition:556

(4.15)



Q0 =

(
s+L(x)/2 0

0 −s+L(x)/2

)
on y = {1,−1},

Q0 =

(
−s+L(y)/2 0

0 s+L(y)/2

)
on x = {1,−1}

D2u0 · ν⃗ = 0,
[
∇ ·D2u0

]
· ν⃗ = 0, on ∂Ω.

557

558

Proposition 4.1. The solutions of (4.14) with boundary conditions (4.15) are559

(4.16)

Q0(x, y) =

(
Q0(x, y) 0

0 −Q0(x, y)

)
,

u0(x, y) = k1x+ k2y + k3, ki ∈ R, i = 1, 2, 3,

560

where561

(4.17)

Q0(x, y) =
∑
k odd

4s+ sin
(
kπϵ0
2

)
k2π2ϵ0

sin

(
kπ(x+ 1)

2

) sinh
(

kπ(1−y)
2

)
+ sinh

(
kπ(1+y)

2

)
sinh(kπ)

−
∑
k odd

4s+ sin
(
kπϵ0
2

)
k2π2ϵ0

sin

(
kπ(y + 1)

2

) sinh
(

kπ(1−x)
2

)
+ sinh

(
kπ(1+x)

2

)
sinh(kπ)

.

562

Proof. Since the boundary-value problem for u0 is not dependent on Q0, we note563

that u0 is actually the critical point of the following energy functional,564

(4.18) E0(u) =

∫
[−1,1]2

|D2u|2dx,565

with natural boundary conditions. E0(u) is convex on u, and thus all the critical566

points are the global minimiser, i.e. E0(u0) = 0. Consequently, u0 satisfies Dxxu0 =567

Dyyu0 = Dxyu0 ≡ 0, so that u0 is a linear function,568

(4.19) u0 = k1x+ k2y + k3, ki ∈ R, i = 1, 2, 3.569

Given a linear u0, the partial differential equation of Q0 simplifies to570

(4.20)



∆Q0 = 0,

Q0 =

(
s+L(x)/2 0

0 −s+L(x)/2

)
on y = {1,−1},

Q0 =

(
−s+L(y)/2 0

0 s+L(y)/2

)
on x = {1,−1},

571

which can be solved by the separation of variables. A standard computation for the572

WORS profile as in [56] yields the results in (4.17).573

Remark 4.2. Clearly, the solution of (4.14) with the boundary condition (4.15)574

is not unique because all linear functions, u0 are compatible with the leading order575

problem (4.14). The implication supports our physical intuition that small domains576

cannot accommodate layer structures. One can directly check that the eigenvector of577

Q0 is either horizontal or vertical, and Q0(x, x) = Q0(x,−x) = 0, which means Q0578

has two line defects along the diagonals of square (also see Figure 6).579
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Next, we solve for Q1, Q2, u1, u2 to examine the effects of small perturbations, for580

small but non-zero λ. Up to O(λ), the governing partial differential equations for Q1581

and u1 are582

(4.21)

{
∆2u1 = 0,

∆Q1 = 0
583

with the boundary conditions584

(4.22)

{
Q1 = 0, on ∂Ω,

D2u1 · ν⃗ = 0,
[
∇ ·D2u1

]
· ν⃗ = 0, on ∂Ω.

585

which only has the trivial solution, i.e. Q1 ≡ 0 and linear u1. Up to O(λ2), the586

governing partial differential equations for Q2 and u2 are587

(4.23)


∆Q2 = A ·Q0 +

tr(Q2
0)Q0

2

+2B0 · q2/s+ ·
(
u0 ·D2u2 − tr(u0·D2u2)

2 I2

)
+ 2B0 · q4 · Q0

s2+
u2
0,

∆2u2 = −∇ ·
(
∇ ·
(
q2
(

Q0

s+
+ I2

2

)
u0

))
,

588

with the boundary conditions589

(4.24){
Q2 = 0, on ∂Ω,(
D2u2 + q2

(
Q0

s+
+ I2

2

)
u0

)
· ν⃗ = 0,

[
∇ ·
(
D2u2 + q2

(
Q0

s+
+ I2

2

)
u0

)]
· ν⃗ = 0, on ∂Ω.

590

The differential equation for Q2 can be numerically solved using the finite difference591

method, but the boundary-value problem for u2 is difficult to solve because of the592

complex boundary condition, which involves the second and third derivatives. Fortu-593

nately, the solution of (4.23) with the boundary condition (4.24) is a critical point of594

the following functional595

(4.25) Ẽ(u2) =

∫
[−1,1]2

∣∣∣∣D2u2 + q2
(
Q0

s+
+

I2
2

)
u0

∣∣∣∣2 dx,596

without any boundary anchoring. By minimizing the above energy, we can numerically597

calculate u2, which exhibits some oscillation along the directors of WORS, as shown598

in Figure 6(a). For λ2 = 0.01, the density distribution, u, is no longer a linear function599

and tends to demonstrate a layer structure.600

4.3.3. Modest domain size. In this section, we numerically study the stable601

smectic critical points of (4.5) with modest λ, which complements the λ → 0 and λ →602

∞ problems. Unless otherwise specified in the figure caption, the default parameter603

values are: a = −5, c = 5, B0 = 10−3, q = 2π (corresponding to a molecular length of604

approximately 10−7 m), and A = −0.8359 (which is calculated from the parameters605

in [16, 17, 54]). For the fixed value of temperature as coded in the values of a and606

A, as the domain size increases from λ2 = 1 to λ2 = 30, three stable smectic states607

are shown in Figure 7. These states are the minimisers of (4.5) and have the lowest608

energy according to our numerical calculations. We can recognise the Q-profiles from609

the LdG studies: the WORS with two line defects on diagonals, the BD with two610

line defects localised near opposite edges, and the D state with the nematic director611
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(a)

(b) (c)

Difference

Fig. 6. (a) From the left to the right are the profiles of Q0 = QWORS , u0 ≡ 1, Q2 and u2

solved from (4.23), and Q0 +0.01Q2, u0 +0.01u2 for λ2 = 0.01. (b) The full numerical solution for
λ2=0.01. (c) The plot of the difference between Q0+0.01Q2, u0+0.01u2 and the numerical solution

(Qλ=0.1, uλ=0.1) for λ2 = 0.01, i.e.
√

Tr(Q0 + 0.01Q2 −Qλ=0.1)2/2 and u0 + 0.01u2 − uλ=0.1.
The parameters are a = −5, c = 5, B0 = 10−3, q = 2π, and A = −0.8359.

Increasing domain size

Fig. 7. From small λ to large λ, the nematic director of minimisers of (4.5) exhibit the WORS,
BD and D profiles respectively. The colour bar is the same as in Figure 4.

along a square diagonal and with no interior defects [16, 54]. The corresponding u612

profiles have layer normal along the director of Q profiles. The BD-like and D-like613

smectic states can be observed in experiments in [14]. We note that the BD-like614

state, which is unstable in the rLdG theory for nematic phase, gains stability in the615

mLdG framework, at least for some values of λ. The WORS-like state is hard to616

achieve practically because of the small domain constraint, which could correspond617

to nanoscale domains.618

To further explore the interplay between the positional order and orientational619

order, we track the solution branches, with small and large λ, as temperature de-620

creases. In Figure 8(a), for small λ2 = 4.38, the stable state is the nematic WORS621

(where u ≡ 0) for high temperatures. As the temperature decreases, the BD-state622

appears gradually and separates the cross-line defects into two distinct line defects,623

localised near a pair of opposite square edges. We speculate that the stability of the624

BD-like smectic state is enhanced by the positional order parameter u, to avoid more625

dislocations in the WORS-like smectic state. In Figure 8(b), for a large domain cap-626

tured by λ2 = 30, the nematic D state crystallizes into the smectic D-like state, which627

reflects the memory of the director in the N-S phase transition.628

In the LdG theory for nematics, we can find at least six different (meta)stable629

critical points of the LdG (rLdG) energy on square domains with tangent boundary630

conditions, when λ is large enough. There are two D states, for which the nematic631

director aligns along one of the square diagonals and four R states, for which the632

director rotates by π radians between two opposite square edges. The profiles of D633
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(a)

(b)

Decreasing temperature

Fig. 8. (a) The structural transition from the WORS-type to the BD-type smectic with
decreasing temperature for λ2 = 4.38, and the rescaled temperature-dependent parameters are
a = 1,−0.2,−2,−5, A = −0.4286,−0.5916,−0.7544,−0.8359 from left to right respectively. (b)
Depicts the structural transition between the D-type smectic and the crystallised D-type smectic with
decreasing temperature for λ2 = 30, with the same re-scaled temperature-dependent parameters as
in (a). Colour bar as in Figure 4.

and R are unique in nematics, once we take symmetry into account [16, 54]. However,634

in the mLdG model, we can find multiple (meta)stable D-like and R-like states with635

subtle differences in the corresponding u profiles (see Figure 9(a)). This could sug-636

gest a frustrated energy landscape, implying the existence of numerous similar energy637

minimisers that differ slightly in their structural details. Intuitively, the u-dependent638

energy densities fbs(u) and fint(Q, u) are highly nonlinear with respect to u and in-639

volve the L2-norm of the second derivative of u, which contributes to a frustrated640

energy landscape. In contrast, the Q-dependent fLdG(Q) involves only the L2-norm641

of the first derivative of Q, resulting in a smoother energy landscape [16]. We first642

choose relatively large values for |a|, c, and B0 to ensure that the frustrated fbs(u) and643

fint(Q, u) dominates. By using the saddle dynamics [57], we search for the transition644

pathway between the R1 and R2 states, via an index-1 transition state R3, in Figure645

9(b). In such a frustrated energy landscape, it is difficult for an R-like state to break646

the energy barrier and reach the lower energy D-like states, because the local minima647

around it are similar R-like states, as shown in Figure 9(d). One strategy to alleviate648

the frustration is to reduce the parameters |a|, c, B0 i.e. make the nematic or LdG649

energy dominant. By reducing |a|, c, and B0 in the same ratio, the Euler-Lagrange650

equation for u in (2.14) remains unchanged, and the minimizer profiles are not sig-651

nificantly altered. In Figure 9(c) and Figure 9(e), with reduced parameters |a|, c, B0,652

the energy landscape is smoother and we find a transition pathway between R-like653

and D-like states via an index-1 J-like state. This transition pathway is analogous to654

its purely rLdG counterpart in [16, 34].655

5. Conclusion and discussion. We model smectic configurations in the mLdG656

framework, which is essentially the LdG framework for nematic liquid crystals aug-657

mented by a positional/smectic order parameter, u, and coupling between the ne-658

matic and smectic order parameters. This model was proposed in [1] with multiple659

phenomenological parameters: a, c, B0 and q. We do various formal calculations to660

give some physical interpretation of these coefficients, e.g., a should depend on the661

temperature to capture the N-S phase transition and for sufficiently large domains,662

the amplitude of the density fluctuations depends on a and c, the number of layers is663

proportional to characteristic geometric parameters, the layer normal is aligned along664

the nematic director and q is inversely proportional to the smectic layer thickness and665
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Fig. 9. (a) R and D type mLdG energy minima for λ2 = 30. The domain enclosed by red lines
demonstrates the difference between the two R states and two D states, respectively. (b) A frustrated
transition pathway with λ2 = 30, B0 = 10−3, a = −5, c = 5. R1 and R2 are energy minima, and R3
is an index-1 transition state. R3-R1 (R2) is the slight pointwise difference between the R3 and R1
(R2). (c) The transition pathway between locally stable R state and more stable D state via index-1
transition state J with λ2 = 30, B0 = 10−5, a = −0.05, c = 0.05, and the y-axis is the scaled energy,
Escaled = eE−E(R), for better visualization. The schematics in (d) and (e) represent the frustrated
energy landscape in (b) and the smooth energy landscape in (c), respectively.

can be interpreted as the layer wave number, at least for mLdG energy minimisers.666

The smectic layer thickness is often related to typical molecular lengths - the length of667

the long axis of a rod-like liquid crystal molecule. Our work allows for a more direct668

and meaningful comparison with experimental parameters.669

More precisely, we first prove the existence and regularity of a minimiser of the670

mLdG energy in suitable admissible spaces, for three different types of experimentally671

relevant boundary conditions. Then, we prove that the mLdG energy can model the672

I-N-S phase transition with respect to temperature. We then investigate structural673

phase transitions on square domains (with edge length λ) subject to tangent boundary674

conditions for the nematic Q-tensor. Our primary findings are as follows: (a) in675

the λ → 0 limit or for (very) small square domains, the mLdG energy minimiser is676

essentially the nematic WORS without a layer structure; (b) in the λ → ∞ limit or677

for large square domains, the number of layers increases assuming that B0 and q are678

independent of temperature and λ; (c) for a finite but non-zero λ, the mLdG energy679

minimisers favor the WORS or BD profiles for small square domains, but prefer to680

bend the D profiles for large square domains, which is in agreement with experimental681

results in [14]. We find multiple (meta)stable states without interior defects and the682

transition pathways between them, for large square domains which demonstrates a683

frustrated energy landscape.684

There are several extensions of this work. We plan to generalise our work on685

square domains to arbitrary 2D polygons, in parallel to the work on polygons in686
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the rLdG/nematic framework carried out in [29], along with generalisations to 3D687

geometries e.g., cuboid [42] and spherical shells [14]. Further, there are limitations of688

the mLdG model, e.g., the Isotropic-Smectic phase transition [25, 26] is outside the689

scope of the mLdG model. We also plan to develop variants of the mLdG model that690

can capture multiple phase transitions.691

Acknowledgements. BS would like to thank the University of Strathclyde for692
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Appendix: Numerical method. A (meta)stable state can be found by the694

gradient descent method, and a transition state can be found by the saddle dynamic695

[57]. For the confinement problem in Section 4, we use finite difference methods for696

spatial discretization with mesh size δx. The discretization of the gradient flow of697

(2.17) is,698

(5.1)

Qn+1 −Qn

∆tn
= −K∆δxQn −A ·Qn − C · tr(Q2

n)Qn

− 2B0 · q2/s+ ·
(
un ·D2

δxun − tr(u ·D2
δxun)

2
I2

)
− 2 ·B0 · q4 ·

Qn

s2+
u2
n,

un+1 − un

∆tn
= −2B0∆

2
δxun+1 − aun − cu3

n − 2B0 ·D2
δxun :

(
q2 ·

(
Qn

s+
+

I2
2

))
− 2B0 · ∇δx ·

(
∇δx ·

(
q2 ·

(
Qn

s+
+

I2
2

)
un

))
− 2B0 ·

∣∣∣∣q2 · (Qn

s+
+

I2
2

)∣∣∣∣2 un,

699

where ∆2
δx,∆δx,∇δx, D2

δx are the discretization of ∆2,∆,∇, D2, and ∆tn is the700

Barzilai-Borwein (BB) step size [58] at the n-th iteration. In (5.1), we discretize701

the fourth-order operator ∆2 implicitly to ensure the stability of the BB step size.702

In Section 3, we study the phase transition problem with periodic boundary con-703

ditions, and we use the spectral method [52] for spatial discretization,704

(5.2) Q(x) =

N/2∑
k=−N/2

Q̃ke
2πikx/h, Q ∈ VQ, u(x) =

{∑N/2
k=−N/2 ũke

2πikx/h, u ∈ Vu,∑N+1
k=1 ũk sin (2kπx/h) , u ∈ V,

705

where N is an even integer, and we choose N = 32. Recall that V = Vu ∩W 1,2
0,Ω, so706

we use the sine spectral method to discretize u ∈ V . By substituting (5.2) in (3.2),707

we obtain a discretized form of the energy,708

(5.3) E(Q̃k, ũk) ≈ E(Q, u).709

This results in a function of 2(N+1) variables, and we directly search for the minimum710

by using the gradient descent method for finite-dimensional functions.711
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