
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1 

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

 Abstract— The paper demonstrates the robotic deployment of 
sensor nodes into precast concrete tunnel segments during 
manufacturing. Magnetic embeddable sensor nodes based on 
vibrating wire strain gauges were deployed on a steel precast 
segment mould using a six-axis collaborative robot at the lab scale. 
Robotic sensor deployment proved to be significantly more 
accurate and consistent than manual sensor deployment methods. 
On average, positional and angular errors in sensor placement 
were reduced by 85% when using robotic deployment. The strain 
transfer coefficients for robotically embedded sensors were 
evaluated using mechanical bending tests and a finite element 
model. Strain transfers across a population of 10 segments were 
found to be 0.93 ± 0.012 in the longitudinal direction, and 0.567 ± 
0.011 in the transversal direction. The repeatability of strain 
measurements within these segments was also confirmed, with 
low coefficient of variation values of 1% for longitudinal strains and 1.9% for transversal strains. The work presented 
in this paper underscores the measurement performance enhancements that can result from using robotics for sensor 
deployment in precast manufacturing environments. This could translate to a lower uncertainty and risk for civil asset 
managers and structural health monitoring practitioners. 
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I. INTRODUCTION 

ENSING and automation are increasingly being adopted 

for the manufacturing and monitoring of critical civil 

infrastructure, such as tunnels [1]. Tunnels are costly and 

require a meticulous approach to asset management across 

every phase of their lifecycle [2]. From the initial planning to 

the construction phase through to their operational years, 

tunnels must be continually monitored to ensure safety, 

durability, cost-efficiency and resilience. 

The field of Structural Health Monitoring (SHM) is now 

well-established in civil engineering, as evidenced by numerous 

studies outlining its successful deployment in tunnels [3]-[17]. 

In most of the mentioned studies, sensors are installed on-site 

after construction during the fit-out phase. However, there are 

cases where sensors are installed before construction to monitor 

the structure's behaviour during and after the build [18]-[20]. In 

these applications, the system is typically set up to capture the 

global behaviour of the entire structure or sections of the 

structure. The structural behaviour of individual elements such 

as precast segments linings, before they are incorporated into 

the structure, are not considered.  
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However, pre-construction flexural loads are generally 

more critical for steel fibre reinforced concrete (SFRC) tunnel 

segments design than construction and service loads. Unlike 

traditional reinforced concrete, SFRC presents very low 

resistance to tensile strains, more prevalent during the 

preconstruction phase, particularly during the handling and 

transportation of the segments before installation. 

To address the limitations of current sensor deployment 

practices, we propose automating sensor installation during the 

manufacturing of precast tunnel elements, rather than waiting 

until after construction. This approach not only makes it 

possible to capture the preconstruction segment behaviour but 

also leverages the repetitive nature of manufacturing precast 

tunnel segments, making them ideal candidates for robotic 

sensor integration. Precast manufacturing plants offer a 

controlled environment for sensor deployment, enabling a more 

comprehensive collection of real-time structural data of 

segments throughout their lifecycles. 

 

In this paper, we address the challenges of manual sensor 

deployment in segmental tunnels by introducing a robotic 

approach for instrumenting tunnel segments during the precast 
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manufacturing stage. Sensor nodes with Vibrating Wire Strain 

Gauges (VWSGs) are deployed using a six-axis robot onto an 

empty formwork. Once the concrete is poured, the sensors 

become embedded in the segments, resulting in lab-scale 

instrumented tunnel segments. We discuss the methodology, 

key design aspects of the sensors, their packaging, and the 

automation process, along with an analysis of placement errors 

and strain transfer. 

To the best of our knowledge, this paper presents the first 

demonstration of robotic deployment and characterization of 

embedded sensor nodes in a precast tunnel segment at the lab 

scale. This research has the potential not only to enhance safety, 

efficiency, and cost-effectiveness in tunnel construction, 

operation and maintenance but also paves a way for a broader 

adoption of automation in the construction industry.  

A.  BACKGROUND 

1) Automation in the precast concrete industry 

Despite its increasing adoption in other manufacturing 

industries, such as aeronautics, automobiles, and food, the use 

of robots in construction and civil engineering is still in its early 

stages [21]-[22]. Possible reasons for this may include a lack of 

adapted robotic solutions or resistance to innovation. The 

construction industry has seen limited development of robotic 

applications since the 1970s, with descriptions of various 

applications available in [23]-[26]. 

Precast manufacturing is one exception. The production of 

concrete precast elements occurs in a more controlled 

environment compared to on-site operations. The extensive use 

of machinery for crucial operations like lifting, transporting, 

and concrete mixing not only enhances safety but also 

optimizes production efficiencies. This manufacturing 

environment is well-suited for integrating robotics into the 

process. 

Two general production methods are typically employed for 

fabricating precast elements. The first method, known as the 

static mode, employs stationary moulds throughout the process 

[24]. The second method uses mobile moulds mounted on 

carousel palettes [24]. In both processes, the prefabrication 

steps are similar. The first step involves preparing the mould 

(cleaning, applying demoulding production, installing 

reinforcement, and other accessories). The next step is the 

casting and curing of concrete, and the final step is 

transportation to a storage facility before delivery [24]. 

Robotics have been previously used for shuttering, 

deshuttering, or for plotting motives on a horizontal surface that 

would then be used as guides to place shutter profiles [27], [28]. 

 
2) Instrumented segmental tunnels 

While the use of robotics for civil asset inspection is 

becoming increasingly common [29]-[35], the application of 

robotics to deploy fixed sensors on concrete structures is not as 

prevalent [36]. The deployment of sensors in tunnel segments, 

as seen in [12], [37]-[40], is achieved manually. 

Sensors based on fibre-optic and, most commonly, vibrating 

wire physical principles have been widely used to measure 

various parameters, including structural deformations, 

cracking, and, most commonly, strains. The assessment of 

instrumented segments involves comparing strain or 

displacement generated from a compression or a three-point-

bending test with analytical or numerical models to validate 

design assumptions or better understand specific cases. 

 
3) Vibrating wire strain gauge (VWSG) 

VWSGs are commonly used sensors in civil infrastructures, 

especially for embedding into concrete. The operation principle 

of a VWSG, shown in Fig. 1, is based on the principle of a 

vibrating wire whose resonating frequency, obtained through 

electromagnetic pulses sent by a coil attached to the sensor, can 

be correlated to the strain as show in Equation (1), where ε is 

the strain, K the strain factor, and f the resonant frequency. 

𝜀 = 𝐾. 𝑓2 (1) 

VWSGs are widely available and present excellent features, 

such as durability and high accuracy, making them attractive 

strain sensors for concrete applications.  

II. METHODOLOGY 

A. Sensor node components and packaging design 

For this work, we have developed an embeddable VWSG 

sensing node. The design is compatible with a fully wireless 

system; however, in this work we used a wired system for 

interrogation. 

The VWSGs used (Geokon 4202) are usually recommended 

for lab-based applications on micro concrete (aggregate size 

less than 10 mm) and mortar. The sensors provide strain 

measurements and are equipped with a thermistor that collects 

temperature data for temperature compensation. 

As shown in Fig. 2, our sensing node consisted of the 

VWSG, an addressable board for processing, an Arduino Nano 

microcontroller for signal interpretation via Modbus, 

communication, and storage. Power and communications were 

delivered via a wired connection between the microcontroller 

and a laptop in this work, but the system is also compatible with 

a battery-operated setup. 

This sensing node needed to be embedded within robust, 

waterproof packaging and be compatible with the robotic pick-

and-place (PnP) process. For this we designed the 3D-printed 

sensor enclosure shown in Fig. 3. Production need not 

necessarily rely on 3D printing, but it is a suitable choice for 

lab-based work during the design stage. The interrogating 

electronics sat within the box, at its base, with the VWSG fitted 

across two protrusions. The base of the box was equipped with 

neodymium magnets, allowing the sensor node to be fixed 

securely to the steel formwork and remain in place during 

concrete vibration. 

B. Robotic deployment of wireless node 

To our knowledge, accepted methodologies for evaluating 

the precision and accuracy of robotic PnP operations in a 

construction context do not yet exist. Benchmarking 

frameworks exist in other sectors however, notably in the food 

industry [41]-[42]. The cited frameworks introduce four 

pertinent evaluation metrics for PnP: 

- The success rate, calculated as the ratio of successful PnP 

instances to the total attempts made. 

- The mean picks per hour. 

- The successful task executions over total attempts, serving as 

an approximation of the probability of achieving successful task 

execution in a single attempt. 
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- The average duration and standard deviation of duration for 

successful PnP cycles. 

While these metrics are apt for comprehensively assessing 

PnP systems in scenarios such as accurate fruit placement 

within bins, they are population statistics that are not exhaustive 

when it comes to assessing the placement precision of each item 

individually. As such, we extended this framework in this work. 
1) Geometric error evaluation 

Our objective was to achieve precise, accurate sensor node 

deployment while minimizing geometric deviations. To assess 

deployment accuracy, sensor nodes were robotically placed 

onto the steel segment formwork. A camera setup recorded the 

final position of the sensor enclosure showing its relative 

location in position ΔX, ΔY, and angle Δϴ compared to an ideal 

target location. This was repeated over 100 iterations, allowing 

us to statistically evaluate the translation and rotational errors.  

Fig. 4 presents the experimental layout of the robotic 

deployment of the sensors. On one side, the robotic arm 

(equipped with an adapted gripper) picked up the wireless node 

from a designated point and placed it on the other side on a steel 

plate with a clearly distinguishable printed target (identically 

shaped to the box). This process was repeated 100 times for the 

following scenarios to provide comparison: 

- Robotic PnP with magnet (RWM) 

- Robotic PnP without magnet (RWOM) 

- Manual PnP with magnet (MWM) 

- Manual PnP without magnet (MWOM) 

The robotic PnP process took 585 seconds to complete at a 

maximum speed of 1 m/s of the UR for each scenario while the 

manual process took 610 seconds.  

At the end of each process of individual PnP, a high-

resolution picture of the box was taken showing its position 

relative to the printed target. The picture was stored for further 

analysis. A series of image processing techniques were then 

applied to automatically calculate the spatial deviation of the 

box from its desired location:  

i. Firstly, the captured images were converted to 

greyscale with pixel intensities ranging from 0 

(black) to 255 (white). 

ii. The Otsu thresholding method, an image processing 

algorithm, was then applied to produce a binary 

image, segmenting the box from the background. 

iii. A bounding box was then mapped to the extremities 

of the contours of the segmented box. The centre of 

both boxes was taken as the intersection of the 

horizontal and vertical axis. 

iv. The coordinates of this centre point were then 

subtracted from the coordinates of the centre of the 

target, resulting in ΔX and ΔY. The angle of rotation 

was calculated using simple trigonometry. 

While our final application involves curved elements 

(precast tunnel segment formwork), for simplicity, a flat 

metallic surface was used to perform the assessment of 

repeatability in this work. Results obtained in this manner can 

be transposed to curved surfaces, given the large size (and 

hence low curvature) of real segment moulds. 
2) Geometrical error impact on strain error  

There is an intrinsic relationship between geometrical and 

strain errors. Translational errors’ impacts on expected strain 

will depend on the segment’s geometry and its final loading, but 

these will be, relative to the segment’s size, very small, and so 

of secondary importance to errors in placement angle. For a 

unitary strain, the change in the angular deviation (Δϴ) leads to 

a change in the value of strain as expressed in Equation (2). The 

strain relative change expressed in percentage is shown in 

Equation (3). 

 

𝜀′ =
𝜀

2
(1 + cos 2Δ𝜃) (2) 

 
Fig. 1. Schematic representation a vibrating wire strain gauge. 

 

 
Fig. 2. Pinout of vibrating wire strain gauge (VWSG) interrogation 
system 

 

 
Fig. 3. VWSG box 
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∆𝜀

𝜀
(%) =  

𝜀′ − 𝜀

𝜀
. 100 

(3) 

C. Smart segment  

1) Smart segment 

In this work, we used the early design geometry of the 

Lower Thames Crossing (LTC) project [43] to inform the 

design of our lab-scale segment geometries and concrete mixes. 

The full-scale segment was downsized by a factor of five 

(applied to both the segment thickness and length), taking into 

account factors such as: (i) the loads imposed during casting, 

transport, and testing stages; (ii) the actual aggregate size; and 

(iii) the dimensions of the sensors to be embedded [44]. 

To mimic the LTC project’s mix design, the lab-scale 

segment was made from steel fibre reinforced concrete (SFRC), 

the composition of which is presented in TABLE I. The average 

SFRC compression obtained by testing 28 days cured 100 mm 

cubes [45] was 40.3 MPa. The average maximum flexural 

strength obtained testing 500 mm x 100 mm x 100 mm beams 

[46] was 4.39 MPa. 

Sensor nodes were embedded placed in segments using 

robotic PnP to deploy them on the empty formwork (see Fig. 5) 

before concrete was poured and cured for 28 days. Each 

segment mould measured 1080 x 245 x 110 mm and included 

an instrumented and a non-instrumented segment.  

 
2) Preliminary tests on straight beam 

Before characterising the smart segment, we performed a 

preliminary evaluation on 100 x 100 x 500 mm beams made 

from the same type of concrete as the smart segment, as it is an 

easier system to analyse.  

The experimental layout included the following 

components: 

- The instrumented beam, featuring two vibrating wire 

strain gauges. One VWSG was embedded within the 

beam, while the second was surface-mounted at the 

bottom. 

- An ad hoc data acquisition system, as previously 

presented in Fig. 2 was utilized to interrogate the 

sensors during the bending test and transmit data to an 

independent computer. 

- A universal test machine was employed to execute a 

customized flexural test. Additionally, two linear 

variable differential transformers (LVDTs) were 

positioned at the midspan to measure the average 

displacement. 

The test procedure involved the application of a gradual 

concentrated load at the midspan, ranging from 0.5–2.5kN 

initially, followed by 0.5–3.5kN. This sequence was repeated 

ten times. The objective was to analyse the preliminary results 

obtained from the simplified model and gain insight into the 

expected outcomes for lab-scale tunnel segments. Furthermore, 

the surface mounted VWSG and the LVDT measurements at 

midspan serve as reference values to validate the performance 

of other sensors within smart segments. 
3) Smart segment characterisation 

The characterisation consisted of evaluating the 

repeatability of strain measurement across ten smart segments. 

This was done through statistical evaluation of the strain 

 
Fig. 4. Schematic layout of the PnP of the box. On the top left is the photo captured after robotically placing the box. The rest of the figure shows 
the 6-axis universal robot with a 10 kg payload (UR-10), the table on which the robotic PnP is performed, and the position of the box before 
picking. 
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transfer: this is defined as the percentage of strain transferred 

from the material (concrete) to the sensors. 

The process starts with the casting of two segments, with 

one incorporating VWSGs through robotic deployment, while 

the other remains uninstrumented. The accurate placement of 

sensor boxes is ensured by marking specific locations on the 

formwork to maintain consistency across the smart segments. 

Smart segments consisted of a curved beam with a 900 mm 

span equipped with embedded and surface-mounted 

instrumentation. As with the straight beam, the test was a load-

controlled three-point bending with its setup illustrated in Fig. 

6. 

After both segments reach maturity (28 days of curing), a 3-

point bending failure test is conducted on the plain segment, and 

the resulting value is recorded. A cyclical three-point bending 

test was later performed on the instrumented segment, with 

loading capped at 50% of the average failure loads from the 

plain segment test. Throughout this phase, loads, displacements 

at midspan, and strain values were recorded. 

The experimental layout included the following 

components: 

- The instrumented beam, featuring two embedded 

VWSGs, located slightly above the centre of gravity. 

- An ad hoc data acquisition system, as described 

earlier, to interrogate the sensors. 

- A universal test machine was employed to execute a 

customized flexural test.  

Additionally, two LVDTs were positioned at the midspan to 

measure the average displacement. 

The test procedure involved the application of a gradual and 

sequential concentrated load at the midspan, ranging from 0.5–

5.5 kN. Similar to the straight beam, the load was sequentially 

increased and decreased in a cyclical manner, obtaining a total 

of 10 cycles per beam tested. 

In parallel to the fabrication and testing of the lab-scale 

segments, and in order to later determine strain transfers, the 

development of a numerical model was conducted to mimic the 

loading conditions on the instrumented segment. In this study 

the use of a finite element model (FEM) was preferred to an 

analytical model obtained by approximating the curved beam 

with an equivalent straight beam. The later approach does not 

fully capture the structural behaviour due to the curvature. 

Finally, the repeatability of the smart segment with 

robotically deployed sensors was assessed in two steps: 

1. Plot scatterplot of peak values of measured strains 

versus calculated strains using the FEM. The strain 

transfer which is the ratio between the latter and the 

former is determined for each instrumented segment. 

2. The repeatability of strain transfers across the 10 

segments is evaluated using statistical metrics, 

including the coefficient of variation and the Intraclass 

Correlation Coefficient (ICC) of the strain transfer for 

robotically deployed VWSGs. The ICC, commonly 

utilized in reliability studies, serves as a robust means 

to gauge the consistency and agreement among 

repeated measurements, offering an objective 

indicator of the repeatability of strain measurements. 

 
Fig. 5. Sensor node being placed in the formwork with a universal 

robot UR10 

 

 
 
Fig. 6. Smart segment three-point bending test layout. 
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TABLE I 
STEEL FIBRE REINFORCED CONCRETE MIX COMPOSITION PER 

CUBIC METRE OF CONCRETE 

Components Quantity  Unit 

Cement (CEM II 32.5R) 350 [kg] 

Water 158 [l] 

Coarse aggregate (10 mm) 1200 [l] 

Sand 600 [kg] 

Fibres 40 [kg] 

Superplasticiser 1.4 [l] 
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III. RESULTS 

A. Robotic PnP evaluation 

1) Geometric errors 

TABLE II presents the results of the geometric and strain 

errors of robotic and manual PnP. Similarly, Fig. 7 shows the 

distributions of geometric errors across manually and 

robotically deployed sensor nodes, with and without the use of 

magnetic attachment. The graphs display a consistent trend 

across the three geometric parameters: the deployment of 

sensors via robotics significantly reduced dispersion when 

compared to manual deployment. Additionally, the introduction 

of magnets enhanced precision, yielding a more tightly 

clustered distribution in both manual and robotic contexts. Both 

the linear (ΔX ,ΔY) and angular deviations (Δθ) follow Normal 

distributions in all scenarios, except for ΔY in RWM (Robot 

With Magnet), which follows a Gamma distribution. This right-

skewed behaviour suggests a systematic effect of the magnet on 

robotic motion, warranting further investigation. 

 

 

 
 

  
Fig. 7. Statistical distributions of geometric errors ΔX, ΔY, and Δϴ for the manual and robotic scenarios. The density is expressed as the 

relative frequency of observations (∆X, ∆X, and Δϴ) adjusted so that the total area under the histogram sums to 1. 
 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2025.3559405

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



 
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH                      7 

 

While the impact of the magnetic box sensor enclosure is 

less debatable, we should be aware of the limitations of this 

study when it comes to comparing manual to robotic 

deployment. The manual placement was done by the authors, 

who are subject to bias in favour of showing that the robotic 

placement process is superior. The distributions for manual 

placements do at least fit to Gaussian probability density 

functions, which can give us some indication that they are not 

subject to significant bias; nevertheless, future work should aim 

to repeat the manual placement method, ideally using a broader 

population of more independent subjects (e.g., precast factory 

employees). 

The examination of theoretical strain losses across the four 

scenarios reveals a consistent trend: robotic magnetic 

deployment has the potential to reduce errors and the variability 

in those errors when compared to manual and non-magnetic 

placement. These results collectively emphasize the potential of 

robotics to add robustness and consistency to sensor 

deployment in a precast manufacturing context. 

B. Smart segment 

1) Prismatic smart beam 

The VWSG strains presented a noticeable drift over time, a 

consequence of machine drift that was corrected for. Fig. 8. 

shows the strain time series on a typical smart segment where 

the repetitive pattern during the load controlled three-point 

bending tests is reflected in the measurement. 

The simple prismatic beam finite element (FE) model of the 

beam was loaded with identical loads as the one during the test. 

Once built, the model was iteratively calibrated (changing 

values of E the Young’s modulus and ν Poisson’s ratio) until 

the calculated displacements were close to the measured ones. 

After this exercise, the respective values of E and ν were 

estimated to be 30 GPa and 0.2, sensible values that agree with 

the low-load linear portion of concrete’s mechanical response. 

A comparison between strain values measured during the 

test and the ones obtained with the FE model can shed more 

preliminary insights. Such comparison can be done by 

evaluating the strain transfer, the relation between the actual 

strain in the concrete and the strain measured by the sensor. 

Based on the FE model and the strain results, we can estimate 

the strain transfer coefficient for the sensors in the straight 

beam. The strain transfer— the ratio of theoretical strain to the 

measured strain at the measurement position—for the 

embedded and surface mounted VWSG sensors was 0.53 and 

0.71, respectively.  

2) Smart tunnel segment (curved beam) 

This part of the study aimed to analyse the repeatability of 

strain measurements in smart segments under varying loading 

conditions. This investigation is crucial for assessing the 

reliability of strain measurement techniques in tunnel smart 

segments.  

Data was collected from ten different smart segments, each 

subjected to the same loading scenarios. Drift-corrected strain 

measurements (Fig. 9) were recorded for the two different strain 

gauges, and calculated strains were derived from load 

measurements. The calculated strains were obtained using an 

FE model of the three point-bending test that mimicked the 

actual test, the FE model is shown in Fig. 10. 

Fig. 11 presents a scatterplot illustrating the strain 

measurements against the corresponding strain calculations 

obtained through numerical modelling. The gradient of the 

regression line, which intersects the origin, is the strain transfer 

coefficient. A value of 1.0 would indicate an exact match 

between measured and predicted strains; therefore, the closer 

this value is to 1, the better. Notably, the average strain transfer 

coefficients for the longitudinal and transversal VWSGs across 

all 10 experiments stand at 0.93 ± 0.012 and 0.567 ± 0.011 

respectively, with errors quoted as the standard deviation across 

the sample. The value 0.93 is relatively close with the difference 

explained by differences in real behaviour of the concrete 

versus idealised behaviour in the model. Assessing the 

repeatability of this measurement across all ten smart segments, 

the coefficient of variation unveils consistently stable strain 

measurements, with values of 1% for the longitudinal VWSG 

and 1.9% for the transverse VWSG. 

The observed strain transfer values slope in both VWSGs 

indicate a consistent and reliable relationship between 

calculated and measured strains. This suggests that the 

calculated strains based on load measurements provide an 

accurate estimate of the actual strains experienced by the smart 

segments. We posit that the variability in the values of the strain 

transfer in both VWSGs can be attributed to the position 

variations in the casting of the segments in the lab, rather than 

translational or geometrical errors in the sensor placement (as 

our results in TABLE II show that the strain errors resulting 

from robotic placement are likely 1%). Future work should 

therefore seek to re-assess strain transfer for real smart 

segments cast in a factory, as these will undoubtedly be more 

repeatable than those cast manually in a lab. It is however, also 

 
Fig. 8. Drift corrected strains timeseries from 3-point bending test 

on prismatic straight beam 

 

 

TABLE II 
GEOMETRIC AND STRAIN ERRORS OF ROBOTIC PNP VS 

MANUAL PNP 

Scenario  (∆X) [mm]  (∆Y) [mm] Δϴ [deg] Strain error 

[%] 

MWOM 0.68 ± 2.76 0.44 ± 4.34 1.44 ± 7.45 1.72± 2.53 

MWM 0.94 ± 1.91 0.29 ± 2.41 1.08 ± 4.41 0.62± 0.99 

RWOM 4.50 ± 0.44 2.86 ± 0.86 -0.30 ± 1.01 0.23± 0.70 

RWM 2.39 ± 2.89 -0.027 ± 0.63 0.098 ± 0.99 0.14± 0.41 
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possible that the sensors or actual position of the transversal 

sensors (VWSG2) has shifted during vibration of the concrete 

in the segment. Future work could therefore look to assess the 

final location of sensors after casting, through x-ray imaging or 

destructive testing. 

The Intraclass Correlation Coefficient (ICC) was also 

utilized to assess the agreement between measurements of peak 

strains (VWSGs 1 and 2). The ICC a statistical metric used to 

assess the proportion of total variance in a dataset that is 

attributed to the variability between different groups or 

categories, indicating the degree of agreement or consistency 

among these groups. The average ICC values across the 10 

smart segments is 0.795 for VWSG 1 and 0.396 for VWSG 2. 

This confirms the previous observation found using the 

coefficient of variation as a repeatability metric. 

The significantly lower strain-transfer coefficient for the 

lateral VWSG (when compared to the longitudinal) is most 

likely due to the sensor's final position shifting after concrete 

casting and vibration. Unlike the longitudinal sensor, which 

was directly on top of the electronic box (proving more 

stability), the lateral sensor was positioned at the end of a 

cantilever, making it more prone to movement, despite 

precautions taken, during casting. Additionally, because we had 

curved beam, the transversal strain is affected by second order 

factors not entirely taken into account in the theoretical model. 

While these two observations guarantee further investigation, 

the value (superior to 0.50) remains adequate and the dispersion 

across the tested segments shows a consistent pattern of lower 

errors. 

IV. CONCLUSION 

This paper demonstrates an automated sensor deployment 

process for lab-scale precast tunnel segments, specifically 

employing a collaborative robotic arm for VWSG sensor 

deployment.  Robotic sensor deployment exhibited 

significantly improved accuracy and consistency compared to 

manual methods. Strain errors originating from angular 

geometric variations were minimized to less than 1% through 

robotic deployment, further bolstered by the inclusion of 

magnets in sensor packaging, which notably enhanced 

precision. 

Our study also unveiled consistent strain transfer 

coefficients for embedded sensors in smart segments, with 

average values of 0.93 for longitudinal strain and 0.567 for 

transversal strain. Moreover, we confirmed the repeatability of 

strain measurements within these segments, demonstrating 

coefficient of variation values of 1% for longitudinal sensors 

and 1.9% for transversal sensors. High interclass correlation 

coefficients of 0.795 for longitudinal sensors and 0.396 for 

transversal sensors further affirmed the reliability of the robotic 

technology employed. 

These findings, derived from a controlled lab-scale 

environment, highlighted the effectiveness of using robotic 

technology for sensor deployment. This approach not only 

demonstrated potential in the improvement of productivity but 

also showed enhanced reliability of manufacturing smart tunnel 

segments. Additionally, the research made a strong case for the 

early adoption the SHM in precast elements, as it enabled the 

monitoring of pre-construction structural behaviour, crucial in 

the design SFRC tunnel segments increasingly used in new 

tunnel projects. Future works involve implementing a study on 

a full-scale smart segment to assess the repeatability of the 

robotic process in strain transfers across a larger sample of 

segments, thereby further advancing understanding in this area. 
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Fig. 9. Strains time series captured from longitudinal and 
transversal VWSG. 

 
Fig. 10. FE model of a Curved beam showing the longitudinal strains 
generated with Abaqus. 

 
Fig. 11. Strain transfer determination. 
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