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Abstract

This work focuses on solving super-linear stochastic differential equations (SDEs) involv-

ing different time scales numerically. Taking advantages of being explicit and easily imple-

mentable, a multiscale truncated Euler-Maruyama scheme is proposed for slow-fast SDEs

with local Lipschitz coefficients. By virtue of the averaging principle, the strong convergence

of its numerical solutions to the exact ones in pth moment is obtained. Furthermore, under

mild conditions on the coefficients, the corresponding strong error estimate is also provided.

Finally, two examples and some numerical simulations are given to verify the theoretical

results.
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1 Introduction

Stochastic modelling plays an essential role in many branches of science and industry. Espe-

cially, super-linear stochastic differential equations (SDEs) are usually used to describe real-world

systems in various applications, for examples, the stochastic Lotka-Volterra model in biology for

the population growth [33], the elasticity of volatility model arising in finance for the asset price

[26] and the stochastic Ginzburg-Landau equation stemming from statistical physics in the study

of phase transitions [24]. In many fields, various factors change at different rates: some vary

rapidly whereas others evolve slowly. As a result the separation of fast and slow time scales arises

in chemistry, fluid dynamics, biology, physics, finance and other fields [5, 14, 17, 25]. Stochastic
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systems with this characteristic are studied extensively [10, 36, 37, 48] and are often modeled

by the slow-fast SDEs (SFSDEs)
dxε(t) = b(xε(t), yε(t))dt+ σ(xε(t))dW 1(t),

dyε(t) =
1

ε
f(xε(t), yε(t))dt+

1√
ε
g(xε(t), yε(t))dW 2(t)

(1.1)

with initial value (xε(0), yε(0)) = (x0, y0) ∈ Rn1 × Rn2 . Here, coefficients

b : Rn1 × Rn2 → Rn1 , σ : Rn1 → Rn1×d1 ,

f : Rn1 × Rn2 → Rn2 , g : Rn1 × Rn2 → Rn2×d2

are continuous, while {W 1(t)}t≥0 and {W 2(t)}t≥0 represent mutually independent d1-dimensional

and d2-dimensional Brownian motions, respectively. The parameter ε > 0 represents the ratio

of nature time scales between xε(t) and yε(t). Especially, as ε ≪ 1, xε(t) and yε(t) are called

the slow component and fast component, respectively.

In various applications the time evolution of the slow component xε(t) is under the spotlight.

Due to the existence of super-linear coefficients and multiple time scales as well as the coupling

of fast and slow components, it is almost impossible to anticipate the dynamics of slow-fast

components directly by solving the full system. Therefore, numerical methods or approximation

techniques become efficient tools. Hence, our main aim is to construct an appropriate numerical

scheme to approximate the slow component.

The averaging principle is one of the key techniques in the theoretical analysis of SFSDEs.

It essentially describes the asymptotic behavior of the slow component as ε → 0. Precisely, let

the frozen equation described by

dyx,y0(t) = f(x, yx,y0(t))ds+ g(x, yx,y0(t))dW 2(t) (1.2)

with initial value yx(0) = y0, where x is regarded as a parameter. If the transition semigroup

of yx,y0(t) has a unique invariant probability measure µx , which is independent of y0 of course,

and the following integral

b̄(x) =

∫
Rn2

b(x, y)µx(dy). (1.3)

exists, the averaging principle reveals that under suitable assumptions on the coefficients the

slow component xε(t) converges to x̄(t), which is the solution of dx̄(t) = b̄(x̄(t))dt+ σ(x̄(t))dW 1(t),

x̄(0) = x0.
(1.4)

The averaging principle was originally developed by Khasminskii [23]. Subsequently, fruitful

results on the averaging principle have been developed in the linear framework [8, 13, 15, 16,

30, 45, 46]. Recently, growing interests have been drawn to the study of the averaging principle
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for SFSDEs with super-linear growth coefficients. Liu et al. [32] proved the strong convergence

of the averaging principle as the drift coefficients are locally Lipschitz continuous with respect

to the slow and fast variables. Hong et al. [19] gave the 1/6-order strong convergence rate for

a class of nonlinear stochastic partial differential equations (SPDEs). Shi et al. [41] obtained

the optimal convergence rate for SFSDEs driven by Lévy processes, which slow drift coefficient

satisfies the monotonicity condition and grows polynomially. Furthermore, the strong averaging

principles have been developed for various kinds of slow-fast stochastic systems, such as jump-

diffusion processes [11, 49], SPDEs [2, 4, 9], McKean-Vlasov SDEs [38], and so on.

The averaged equation derived from the averaging principle provides a substantial simpli-

fication of the original system. However, it is almost impossible to get the explicit form of

the invariant measure µx in the averaged equation (1.4) due to the complicated dynamics of the

frozen equation (1.2). Thus, the heterogeneous multiscale method (HMM) [6, 7] was proposed to

approximate the averaged equation numerically. This facilitated the development of the numer-

ical approximation theory for the SFSDEs. In 2003, Vanden-Eijnden [43] proposed a numerical

scheme for the deterministic multi-scale system without rigorous analysis. E et al. [8] provided

a thorough analysis of the convergence and efficiency of the HMM scheme for SFSDEs without

slow diffusion term, where the slow drift and fast diffusion coefficients are bounded and the fast

drift coefficient is a smooth function with bounded derivatives of any order. In 2006, Givon et

al. [13] developed the projective integration schemes for SFSDEs in which the slow drift and

diffusion coefficients satisfy the Lipschitz condition and the fast drift and diffusion coefficients

are bounded. In 2008, Givon et al. [12] went a further step to extend the projective integration

schemes for jump-diffusion systems. In 2010, Liu [29] established the HMM numerical theory

for the fully coupled SFSDEs, where the slow drift and diffusion coefficients are bounded, all

coefficients are smooth and have bounded derivatives with any order. Bréhier [2, 3] developed

the HMM scheme for the slow-fast parabolic stochastic partial differential equations. All of the

above studies was carried out under the linear growth condition, so the Euler-Maruyama (EM)

sheme is used as a macro solver to simulate the evolution of the slow component owing to its

simple algebraic structure and the cheap computational cost.

The super-linear growth coefficients of the slow-fast stochastic systems bring the super-linear

structure to the averaged equation. For an example, consider a SFSDE with a super-linear slow

drift 
dxε(t) =

(
− (xε(t))3 − yε(t)

)
dt+ xε(t)dW 1(t),

dyε(t) =
1

ε

(
xε(t)− yε(t)

)
dt+

1√
ε
dW 2(t)

(1.5)

with (xε(0), yε(0)) = (x0, y0). The corresponding frozen equation is described by

dyx(s) = (x− yx(s))ds+ dW 2(s). (1.6)

By solving the Fokker-Planck equation, the invariant probability density of (1.6) is µx(dy) =
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e−(y−x)2

√
π

dy. Then the averaged equation is described by

dx̄(t) =
(
− x̄3(t)− x̄(t)

)
dt+ x̄(t)dW 1(t). (1.7)

As pointed out by [21] the EM approximation error of the above equation diverges to infinity in

pth moment for any p ≥ 1. In fact, we implement the Projective Integration (PI) scheme with

the EM scheme as the macro-solver, as detailed in [13, (4.1)-(4.4)], to simulate the averaged

equation (1.7). However, the numerical solution generated by the PI scheme blows up quickly,

see Figure 1, differing from the dynamics of the underlying exact solution. Therefore, using the

EM scheme as a macro solver to simulate the averaged equation of SFSDE with super-linear

coefficients leads to the divergence possiblely. Although implicit numerical methods are feasible

as the macro solver for the super-linear averaged equation, their application may make the

algorithm and implementation more involved and expensive [8]. As a consequence, to construct

an appropriate explicit numerical scheme for super-linear SFSDEs to overcome the numerical

stiffness becomes an urgent target.

Figure 1: The sample paths of the PI numerical solution Z(t) on t ∈ [0, 3] with ∆1 = 2−6,

∆2 = 2−6 and M = 218.

Fortunately, great achievements have been made in the research of explicit numerical meth-

ods for super-linear SDEs, for examples, the tamed EM scheme [20, 22, 39, 40], the tamed

Milstein scheme [47], the stopped EM scheme [31], the truncated EM scheme [27, 28, 34] and

therein. So far the ability of these modified EM methods to approximate the solutions of super-

linear diffusion systems has been displayed comprehensively. Inspired by the above works, we

are devoted to constructing an explicit multiscale numerical method suitable for super-linear

SFSDEs.

In fact, HMM relies heavily on the structure of the averaged equation for the slow variable.

Thus we have to overcome two major obstacles: the unknown form and super-linear structure

of b̄(·). Borrowing the idea from [34], we design a truncation device to modify the super-linear

coefficient b of original slow system in advance, so as to achieve the modification of b̄. This

modification can avoid possible large excursion from the super-linearity of b̄(·). Then fitting into
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the framework of HMM, we construct an explicit multiscale numerical scheme involving three

subroutines as follows.

1. The truncated EM (TEM) scheme is selected as the macro solver to predict the macro

dynamics x̄(t) ≈ xε(t) in which the modified averaged coefficient is required to be estimated

at each macro time step.

2. An appropriate numerical scheme is chosen as the micro solver to solve the frozen equation

to produce the data used for approximating the modified averaged coefficient.

3. An estimator is established to obtain the desired approximation of the modified averaged

coefficient.

Following this line, we construct an easily implementable explicit multiscale numerical scheme

for a class of super-linear SFSDEs and obtain its strong convergence.

The rest of this paper is organized as follows. Section 2 gives some notations, hypotheses

and preliminaries. Section 3 proposes an explicit multiscale numerical method. Section 4 pro-

vides some important pre-estimates. Section 5 yields the strong convergence of MTEM scheme.

Section 6 focuses on the error analysis of the explicit MTEM scheme and presents an important

example. Section 7 shows two numerical examples and carries out some numerical experiments

to verify our theoretical results. Section 8 concludes this paper.

2 Preliminary

Throughout this paper, we use the following notations. Let (Ω,F ,P) be a complete prob-

ability space with a natural filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right

continuous and increasing while F0 contains all P-null sets), and E be the expectation corre-

sponding to P. Let | · | denote the Euclidean norm in Rn and the trace norm in Rn×d. If A is

a vector or matrix, we denote its transpose by AT . For a set D, let ID(x) = 1 if x ∈ D and

0 otherwise. We set inf ∅ = ∞, where ∅ is empty set. Moreover, for any a, b ∈ R, we define

a ∨ b = max{a, b} and a ∧ b = min{a, b}. We use C and Cl to denote the generic positive

constants, which may take different values at different appearances, where the subscript l in Cl

is used to to highlight that this constant depends on the l. In addition, C,Cl are independent of

parameters ∆1, ∆2, n and M that occur in the next section. In particular, CR usually denotes

some positive function increasing with respect to R.

Let P(Rn2) denote the family of all probability measures on Rn2 . For any p ≥ 1, let Pp(Rn2)

be the set in P(Rn2) with finite p-th moment, i.e.,

Pp(Rn2) :=
{
µ ∈ P(Rn2) :

∫
Rn2

|y|pµ(dy) < ∞
}
,

which is a Polish space under the Wasserstein distance

Wp(µ1, µ2) = inf
π∈C(µ1,µ2)

(∫
Rn2×Rn2

|y1 − y2|pπ(dy1,dy2)
) 1

p
,
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where C(µ1, µ2) stands for the set of all probability measures on Rn2 × Rn2 with marginals µ1

and µ2, respectively.

To state the main results, we impose some hypotheses on the coefficients b, σ of slow equation

and f and g of fast equation.

(S1) There exists a constant θ1 ≥ 1 such that for any R > 0, x1, x2 ∈ Rn1 with |x1| ∨ |x2| ≤ R

and y ∈ Rn2 ,

|b(x1, y)− b(x2, y)|+ |σ(x1)− σ(x2)| ≤ LR|x1 − x2|(1 + |y|θ1),

here LR is a positive constant dependent on R.

(S2 ) There exist constants θ2 > 0 and K1 > 0 such that for any x ∈ Rn1 and y1, y2 ∈ Rn2 .

|b(x, y1)− b(x, y2)| ≤ K1|y1 − y2|
(
1 + |x|θ2 + |y1|θ2 + |y2|θ2

)
.

(S3) There exists a constant K2 > 0 such that for any x ∈ Rn1 ,

|σ(x)| ≤ K2(1 + |x|).

(S4) There exist constants θ3, θ4 ≥ 1 and K3 > 0 such that for any x ∈ Rn1 , y ∈ Rn2 ,

|b(x, y)| ≤ K3(1 + |x|θ3 + |y|θ4).

(S5) There exist constants K4 > 0 and λ > 0 such that for any x ∈ Rn1 , y ∈ Rn2 ,

xT b(x, y) ≤ K4(1 + |x|2) + λ|y|2.

(F1) The functions f and g are globally Lipschitz continuous, namely, for any x1, x2 ∈ Rn1 and

y1, y2 ∈ Rn2 , there exists a positive constant L such that

|f(x1, y1)− f(x2, y2)| ∨ |g(x1, y1)− g(x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

(F2) There exists a constant β > 0 such that for any x ∈ Rn1 and y1, y2 ∈ Rn2 ,

2(y1 − y2)
T
(
f(x, y1)− f(x, y2)

)
+ |g(x, y1)− g(x, y2)|2 ≤ −β|y1 − y2|2.

(F3) For some fixed k ≥ 2, there exist constants αk > 0 and Lk > 0 such that for any x ∈ Rn1 ,

y ∈ Rn2 ,

yT f(x, y) +
k − 1

2
|g(x, y)|2 ≤ −αk|y|2 + Lk(1 + |x|2).

Remark 2.1. Referring to [32, Theorem 2.2], system (1.1) admits a unique global solution

(xε(t), yε(t)) under (S1)-(S5) and (F1)-(F3). Obviously, (F1) guarantees that the frozen equa-

tion (1.2) has a unique global solution yx,y0(s), which is a time homogeneous Markov process.
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Lemma 2.1. If (F1)-(F3) hold with some k ≥ 2, then for any fixed x ∈ Rn1 , the transition

semigroup {Px
t }t≥0 of equation (1.2) has a unique invariant probability measure µx ∈ Pk(Rn2),

which satisfies that ∫
Rn2

|y|kµx(dy) ≤ C(1 + |x|k). (2.1)

Furthermore, for any x1, x2 ∈ Rn1 ,

W2(µ
x1 , µx2) ≤ C|x1 − x2|. (2.2)

Proof. For any fixed x ∈ Rn1 and y0 ∈ Rn2 , under (F3) it follows from [32, Lemma 3.6] that

sup
t≥0

E|yx,y0(t)|k ≤ C(1 + |x|k) < ∞,

which implies that δy0Px
t ∈ Pk(Rn2) ⊂ P2(Rn2). It is well known that for any µ1, µ2 ∈ P2(Rn2)

W2(µ1Px
t , µ2Px

t ) ≤
∫
Rn2×Rn2

W2(δy1Px
t , δy2Px

t )π(dy1, dy2)

≤
∫
Rn2×Rn2

(
E|yx,y1(t)− yx,y2(t)|2

) 1
2π(dy1, dy2),

here π ∈ C(µ1, µ2). Then under (F2), by virtue of [32, Lemma 3.7] we derive that

W2(µ1Px
t , µ2Px

t ) ≤ Ce−
βt
2

∫
Rn2×Rn2

|y1 − y2|π(dy1,dy2)

≤ Ce−
βt
2

(∫
Rn2×Rn2

|y1 − y2|2π(dy1,dy2)
) 1

2
.

Then due to the arbitrariness of π ∈ C(µ1, µ2), we have

W2(µ1Px
t , µ2Px

t ) ≤ Ce−
βt
2 W2(µ1, µ2),

which yields the uniqueness of invariant measure if it exists. Next we shall prove the existence

of invariant probability measure. In fact, it is sufficient to prove that for any fixed x ∈ Rn1

and y0 ∈ Rn2 , {δy0Px
t }s≥0 is a W2-Cauchy sequence due to the completeness of P2(Rn2) space,

where δy0 is the Dirac measure with mass at point y0 ∈ Rn2 . Using the Kolmogorov-Chapman

equation and [32, Lemma 3.7], one derives that for any t, s > 0,

W2(δy0Px
t , δy0Px

t+s) = W2(δy0Px
t , δy0Px

t Px
s ) ≤ Ce−

βt
2 W2(δy0 , δy0Px

s )

≤ Ce−
βt
2
(
|y0|2 + E|yx,y0(s)|2

) 1
2 ≤ Ce−

βs
2 (1 + |x|+ |y0|),

which implies that as t → ∞, {δy0Px
t }s≥0 is a W2-Cauchy sequence whose limit is denoted by

µx. Furthermore, in view of the continuity of W2-distance(see, [44, Corollary 6.1]) we derive for

any t > 0

W2(µ
xPx

t , µ
x) = lim

s→∞
W2(δy0Px

s+t, δyPx
s ) = 0,
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which implies that µx is indeed an invariant probability measure of yx(s). On the other hand,

it follows from [32, Proposition 3.8] that∫
Rn2

|y|kµx(dy) ≤ C(1 + |x|k).

In addition, using the continuity of W2 again yields that

W2
2(µ

x1 , µx2) = lim
t→∞

W2
2(δy0P

x1
t , δy0P

x2
t )

≤ lim
t→∞

E|yx1,y0(t)− yx2,y0(t)|2 ≤ C|x1 − x2|2,

where the last step follows from the [32, Lemma 3.10]. The proof is complete.

The averaged equation (1.4), obtained via the averaging principle, substantially reduces the

complexity of the original system (1.1). Therefore, a numerical approach for system (1.1) can

be developed by formulating a numerical method for the averaged equation (1.4). To facilitate

this, we cite some known results on the averaging principle firstly.

Lemma 2.2 ([32, Theorem 2.3]). If (S1)-(S5) and (F1)-(F3) hold with k > 4θ1 ∨ 2(θ2 + 1) ∨
2θ3 ∨ 2θ4, then for any 0 < p < k and T > 0,

lim
ε→0

E
(

sup
t∈[0,T ]

|xε(t)− x̄(t)|p
)
= 0,

where xε(t) and x̄(t) are the solutions of (1.1) and (1.4), respectively.

Lemma 2.3 ([32, Lemma 3.11]). If (S1)-(S3), (S5) and (F1)-(F3) hold with k ≥ 2∨θ1∨2θ2∨θ4,
then for any x0 ∈ Rn1 , the averaged equation (1.4) has a unique global solution x̄(t) satisfying

E
(

sup
0≤t≤T

|x̄(t)|p
)
≤ Cx0,T,p, ∀ p > 0, T > 0.

Remark 2.2. For any constant R > |x0|, define the stopping time

τR = inf{t ≥ 0 : |x̄(t)| ≥ R}.

Then it follows from Lemma 2.3 that

RpP(τR ≤ T ) ≤ E|x̄(T ∧ τR)|p ≤ E
(

sup
0≤t≤T

|x̄(t)|p
)
≤ Cx0,T,p,

which implies that

P(τR ≤ T ) ≤
Cx0,T,p

Rp
.

3 The construction of explicit multiscale scheme

With the help of the strong averaging principle, this section is devoted to constructing an

easily implementable multiscale numerical scheme for the slow component of original SFSDE

(1.1). One notices from (S4) that for any y ∈ Rn2 ,

|b(x, y)| ≤ K3(1 + |x|)(1 + |x|θ3−1) +K3|y|θ4 .
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Then for any u ≥ 1 and x ∈ Rn1 with |x| ≤ u

|b(x, y)| ≤ K3 sup
|x|≤u

φ(u)(1 + |x|) +K3|y|θ4 , (3.1)

where φ(u) = 1 + u(θ3∨θ4−1), and θ3, θ4 are given in (S4). Then for any step size ∆1 ∈ (0, 1],

define

x∗ =
(
|x| ∧ φ−1

(
K∆

− 1
2

1

)) x

|x|
, x ∈ Rn1 ,

where x/|x| = 0 ∈ Rn1 if x = 0, and K is a constant satisfying K ≥ 1 + φ(|x0| ∨ |y0|). Thus,

|x0| ∨ |y0| ≤ φ−1(K) ≤ φ−1(K∆− 1
2 ), ∀∆ ∈ (0, 1]. (3.2)

Furthermore, for any x ∈ Rn1 ,

|b(x∗, y)| ≤ C∆
− 1

2
1 (1 + |x∗|) +K3|y|θ4 . (3.3)

Moreover, under (S4), (F1)-(F3) with k ≥ 2 ∨ θ4 by the definition (1.3) we derive from the

above inequality and (2.1) that

|b̄(x∗)| =
∣∣∣ ∫

Rn2

b(x∗, y)µx∗
(dy)

∣∣∣ ≤ ∫
Rn2

|b(x∗, y)|µx∗
(dy)

≤ C∆
− 1

2
1 (1 + |x∗|) +K3

∫
Rn2

|y|θ4µx∗
(dy)

≤ C∆
− 1

2
1 (1 + |x∗|) + C(1 + |x∗|θ4−1)(1 + |x∗|)

≤ C∆
− 1

2
1 (1 + |x∗|), x ∈ Rn1 , (3.4)

where µx∗
is the unique invariant probability measure of the frozen equation (1.2) with the fixed

parameter x∗, and the last step used the increasing of φ.

Because the analytical form of b̄(x∗) is unobtainable, using the ergodicity of the frozen

equation (1.2), we approximate b̄(x∗) by the time average of b(x∗, ·) with respect to the numerical

solution of the frozen equation (1.2) with fixed parameter x∗. For convenience, for an integer

M > 0, we introduce an average function

BM (x, h) =
1

M

M∑
m=1

b(x, hm), ∀x ∈ Rn1 , (3.5)

where h = {hm}∞m=1 is an Rn2-valued sequence. Within the framework of HMM, we design an

easily implementable multiscale numerical scheme involving a macro solver and a micro solver

as well as an estimator. For clarity, we illustrate it as follows. Let ∆1 and ∆2 denote macro

time step size and micro time step size, respectively.

(1) Macro solver: For the knownXn, since the drift coefficient b̄ of the averaged equation may

be sup-linear, the truncated EM scheme is selected as macro solver to make a macro step

and get Xn+1. Then we have

Xn+1 = Xn +Bn∆1 + σ(Xn)∆W 1
n ,
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where Bn ia an approximation of b̄(X∗
n) that we obtain in third step, and n∆1(u) := ⌊u/∆1⌋

for any u ≥ 0 with ⌊t/δ⌋ the integer part of t/δ, and ∆W 1
n = W 1((n+ 1)∆1)−W 1(n∆1).

(2) Micro solver: To obtain Bn at each macro time step, for the known Xn ∈ Rn1 , use the EM

method to solve the frozen equation (1.2) with parameter x = X∗
n fixed. Therefore, the

micro solver is given by Y
X∗

n,y0
0 = y0,

Y
X∗

n,y0
m+1 = Y

X∗
n,y0

m + f(X∗
n, Y

X∗
n,y0

m )∆2 + g(X∗
n, Y

X∗
n,y0

m )∆W 2
n,m, m = 0, 1, · · ·,

where {W 2
n(·)}n≥0 is a mutually independent Brownian motion sequence and also inde-

pendent of W 1(t), and ∆W 2
n,m = W 2

n((m+ 1)∆2)−W 2
n(m∆2).

(3) Estimator: For the known Xn and Y X∗
n,y0 := {Y X∗

n,y0
m }m≥1, let

Bn = BM (X∗
n, Y

X∗
n,y0)

as an approximation of b̄(X∗
n), where BM (·, ·) is defined by (3.5) andM denotes the number

of micro time steps used for this approximation.

Overall, for any given ∆1,∆2 ∈ (0, 1] and integer M ≥ 1, define the multiscale TEM scheme

(MTEM) as follows: for any n ≥ 0,

X0 = x0, X∗
n =

(
|Xn| ∧ φ−1

(
K∆

− 1
2

1

)) Xn

|Xn|
, Y

X∗
n,y0

0 = y0, (3.6a)

Y
X∗

n,y0
m+1 = Y X∗

n,y0
m + f(X∗

n, Y
X∗

n,y0
m )∆2 + g(X∗

n, Y
X∗

n,y0
m )∆W 2

n,m, (3.6b)

m = 0, 1, · · ·,M − 1,

Xn+1 = Xn +BM (X∗
n, Y

X∗
n,y0)∆1 + σ(Xn)∆W 1

n . (3.6c)

By this scheme we define the continuous approximation processes

X(t) = Xn, t ∈ [n∆1, (n+ 1)∆1), (3.7)

X̄(t) = x0 +

∫ t

0
BM (X∗(s), Y X∗(s),y0)ds+

∫ t

0
σ(X(s))dW 1(s). (3.8)

Note that X̄(n∆1) = X(n∆1) = Xn, that is, X̄(t) and X(t) coincide with the discrete solution

at the grid points, respectively.

4 Some pre-estimates

In order to better study the strong convergence of the MTEM scheme, we need to study

some important properties of the averaged coefficient b̄(x) and its estimator BM (x, Y x,y0
n ) (de-

fined in later) in advance. In this section, we mainly provide some pre-estimates for b̄(x) and

BM (x, Y x,y0
n ).

By virtue of Lemma 2.1, we show that the drift term b̄ of the averaged equation (1.4) inherits

the local Lipschitz continuity.
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Lemma 4.1. Under (S1), (S2), (S4) and (F1)-(F3) with k ≥ 2 ∨ θ1 ∨ 2θ2 ∨ θ4, for any R > 0

and x1, x2 ∈ Rn1 with |x1| ∨ |x2| ≤ R, there exists a constant L̄R such that

|b̄(x1)− b̄(x2)| ≤ L̄R|x1 − x2|.

Proof. For any x1, x2 ∈ Rn1 , according to (1.3) we have

|b̄(x1)− b̄(x2)| =
∣∣∣ ∫

Rn1×Rn2

(b(x1, y1)− b(x2, y2))π(dy1,dy2)
∣∣∣

≤
∫
Rn1×Rn2

∣∣b(x1, y1)− b(x2, y2)|π(dy1, dy2)

≤
∫
Rn1×Rn2

∣∣b(x1, y1)− b(x2, y1)|π(dy1, dy2)

+

∫
Rn1×Rn2

∣∣b(x2, y1)− b(x2, y2)|π(dy1,dy2),

where π ∈ C(µx1 , µx2) is arbitrary. Then for any R > 0 and x1, x2 ∈ Rn1 with |x1| ∨ |x2| ≤ R,

by the Hölder inequality it follows from (S1) and (S2) that

|b̄(x1)− b̄(x2)| ≤ LR|x1 − x2|
∫
Rn2

(1 + |y1|θ1)µx1(dy1)

+K1

∫
Rn1×Rn2

|y1 − y2|
(
1 + |x2|θ2 + |y1|θ2 + |y2|θ2

)
π(dy1,dy2)

≤ LR|x1 − x2|
∫
Rn2

(1 + |y1|θ1)µx1(dy1) +K1

(∫
Rn1×Rn2

|y1 − y2|2π(dy1,dy2)
) 1

2

×
(∫

Rn1×Rn2

(
1 + |x2|2θ2 + |y1|2θ2 + |y2|2θ2

)
π(dy1,dy2)

) 1
2
.

Then due to the arbitrariness of π ∈ C(µx1 , µx2), under (F1)-(F3) with k ≥ θ1 ∨ 2θ2, applying

Lemma 2.1 yields that for any x1, x2 ∈ Rn1 with |x1| ∨ |x2| ≤ R,

|b̄(x1)− b̄(x2)| ≤ CR|x1 − x2|(1 + |x1|θ1) + CW2(µ
x1 , µx2)(1 + |x1|θ2 + |x2|θ2)

≤ CR|x1 − x2|+ CRW2(µ
x1 , µx2) ≤ CR|x1 − x2|,

which implies the desired result.

Next we reveal that the modified coefficient b̄(x∗) preserves the Khasminskii-like condition

for all ∆1 ∈ (0, 1], which is used to obtain the moment bound of the auxiliary process Z̄(t).

Lemma 4.2. If (S4), (S5) and (F1)-(F3) hold with k ≥ 2 ∨ θ4, then for any x ∈ Rn1 , ∆1 ∈
(0, 1],

xT b̄(x∗) ≤ C(1 + |x|2), x ∈ Rn1 .

Proof. For x ∈ Rn1 with |x| ≤ φ−1(K∆
−1/2
1 ), x = x∗. Using (S5) implies that

xT b̄(x∗) = xT
∫
Rn2

b(x, y)µx(dy) ≤ K4(1 + |x|2) + λ

∫
Rn2

|y|2µx(dy).

11



Using the Hölder inequality and Lemma 2.1, we yield that

xT b̄(x∗) ≤ C(1 + |x|2). (4.1)

On the other hand, for any x ∈ Rn1 with |x| > φ−1
(
K∆

−1/2
1

)
, it follows from the definition of

x∗ that x =
(
|x|/φ−1(K∆

−1/2
1 )

)
x∗. This, together with (4.1), implies that

xT b̄(x∗) =
|x|

φ−1(K∆
− 1

2
1 )

(x∗)T b̄(x∗) ≤ |x|

φ−1(K∆
− 1

2
1 )

C(1 + |x∗|2)

≤ C|x|
((

φ−1(K)
)−1

+ |x|
)
,

where the last inequality used the increasing of φ−1. Thus the desired assertion follows.

For any fixed x ∈ Rn1 , y0 ∈ Rn2 , and integer n ≥ 0, define an auxiliary process yx,y0n (t)

described by

dyx,y0n (t) = f(x, yx,y0n (t))dt+ g(x, yx,y0n (t))dW 2
n(t) (4.2)

on t ≥ 0 with initial value yx,y0n (0) = y0. Thanks to the weak uniqueness of the solution of the

frozen equation (1.2), for any t ≥ 0, the distribution of yx,y0n (t) coincides with that of yx,y0(t) for

any n ≥ 0. Consequently, according to Lemma 2.1, µx is also the unique invariant probability

measure of transition semigroup of yx,y0n (t) for any n ≥ 0. Then use the EM scheme for (4.2) Y x,y0
n,0 = y0,

Y x,y0
n,m+1 = Y x,y0

n,m + f(x, Y x,y0
n,m )∆2 + g(x, Y x,y0

n,m )∆W 2
n,m, m = 0, 1, · · ·.

(4.3)

Furthermore, define

Y x,y0
n (t) = Y x,y0

n,m , t ∈ [m∆2, (m+ 1)∆2),

Ȳ x,y0
n (t) = y0 +

∫ t

0
f(x, Y x,y0

n (s))ds+

∫ t

0
g(x, Y x,y0

n (s))dW 2
n(s). (4.4)

Let Y x,y0
n denote the discrete EM solution sequence generated by (4.3). Then, one observes that

Y X∗
n,y0 = Y

X∗
n,y0

n a.s. Thus,

BM (X∗
n, Y

X∗
n,y0) = BM (X∗

n, Y
X∗

n,y0
n ) a.s. (4.5)

Next, we first give several properties of Y x,y0
n in order for the estimation of BM (x, Y x,y0

n ).

Lemma 4.3 ([35, Lemmas 3.7]). If (F1) and (F3) hold with some k ≥ 2, then there exists a

∆̂2 ∈ (0, 1] such that for any x ∈ Rn1 , y0 ∈ Rn2 , integer n ≥ 0 and ∆2 ∈ (0, ∆̂2],

sup
m≥0

E|Y x,y0
n,m |k ≤ C(1 + |y0|k + |x|k),

and

sup
t≥0

E|Ȳ x,y0
n (t)− Y x,y0

n (t)|k ≤ C(1 + |y0|k + |x|k)∆
k
2
2 .
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Lemma 4.4 ([35, Lemmas 3.8]). Under (F1) and (F2), there exists a constant ∆̄2 ∈ (0, 1] such

that for any ∆2 ∈ (0, ∆̄2), y1, y2 ∈ Rn2 , x ∈ Rn1 , integers n ≥ 0 and m ≥ 0,

E|Y x,y1
n,m − Y x,y2

n,m |2 ≤ C|y1 − y2|2e
−βm∆2

4 .

The results of the above two lemmas can be obtained by the same way as [35, Lemmas 3.7,

3.8]. To avoid duplication we omit the detailed proofs.

Lemma 4.5. If (F1)-(F3) hold with some k ≥ 2, then for any fixed x ∈ Rn1 , y0 ∈ Rn2 ,

integer n ≥ 0 and ∆2 ∈ (0, ∆̄2], Y
x,y0
n determined by (4.3) admits a unique invariant measure

µx,∆2 ∈ Pk(Rn2), which is independent of y0 and n, and satisfies∫
Rn2

|y|kµx,∆2(dy) ≤ C(1 + |x|k).

Proof. Since the EM numerical solutions Y x,y0
n , n = 1, · · · ,∞ are i.i.d and have Markov prop-

erty, for any ∆2 ∈ (0, 1)], we use Px,∆2

m∆2
to denote the same discrete Markov semigroup of Y x,y0

n .

Under (F1)-(F3), with the help of Lemmas 4.3-4.4, proceeding a similar argument to [1, Theo-

rem 3,1] we derive that for any y0 ∈ Rn2 and integer n ≥ 0, Y x,y0
n has a unique invariant measure

µx,∆2 , which is independent of y0 and n. Furthermore, applying Lemma 4.3 yields that∫
Rn2

(|y|k ∧N)µx,∆2(dy) =

∫
Rn2

E(|Y x,y
n,m|k ∧N)µx,∆2(dy)

≤
∫
Rn2

(E|Y x,y
n,m|k ∧N)µx,∆2(dy)

≤
∫
Rn2

(
|y|ke−

qαkm∆2
8 ∧N

)
µx,∆2(dy) + C(1 + |x|k),

where the identity is due to the invariance of invariant measure µx,∆2 and the first inequality

holds by Jensen’s inequality since x 7→ N ∧x, x ∈ R is a concave function. Then, taking m → ∞
and using the dominated convergence theorem, we deduce that∫

Rn2

(|y|k ∧N)µx,∆2(dy) ≤ C(1 + |x|k).

Letting N → ∞ and applying the monotone convergence theorem, we get∫
Rn2

|y|kµx,∆2(dy) ≤ C(1 + |x|k).

The proof is complete.

Lemma 4.6. If (F1)-(F3) hold with some k ≥ 2, then for any fixed x ∈ Rn1 , y0 ∈ Rn2 , integer

n ≥ 0 and ∆2 ∈ (0, ∆̂2],

sup
m≥0

E
∣∣Y x,y0

n,m − yx,y0n (m∆2)
∣∣2 ≤ C(1 + |x|2)∆2.

Proof. In view of (4.2) and (4.4), define v̄x,y0n (t) := Ȳ x,y0
n (t)− yx,y0n (t) described by

dv̄x,y0n (t) =
(
f(x, Y x,y0

n (t))−f(x, yx,y0n (t))
)
dt+

(
g(x, Y x,y0

n (t))− g(x, yx,y0n (t))
)
dW 2

n(t).
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Using the Itô formula we arrive at

E
(
e

βt
4 |v̄x,y0n (t)|2

)
≤E

∫ t

0

[
β

4
e

βs
4

∣∣v̄x,y0n (s)
∣∣2 + e

βs
4

(
2(v̄x,y0n (s))T

[
f(x, Y x,y0

n (s))

− f(x, yx,y0n (s))
]
+
∣∣g(x, Y x,y0

n (s))− g(x, yx,y0n (s))
∣∣2)]ds. (4.6)

Invoking (F1), (F2) and the Young inequality yields that

2(v̄x,y0n (s))T
[
f(x, Y x,y0

n (s))− f(x, yx,y0n (s))
]
+
∣∣g(x, Y x,y0

n (s))− g(x, yx,y0n (s))
∣∣2

≤2(v̄x,y0n (s))T
[
f(x, Ȳ x,y0

n (s))− f(x, yx,y0n (s))
]
+
∣∣g(x, Ȳ x,y0

n (s))− g(x, yx,y0n (s))
∣∣2

+ 2(v̄x,y0n (s))T
[
f(x, Y x,y0

n (s))− f(x, Ȳ x,y0
n (s))

]
+
∣∣g(x, Y x,y0

n (s))− g(x, Ȳ x,y0
n (s))

∣∣2
+ 2
∣∣g(x, Ȳ x,y0

n (s))− g(x, yx,y0n (s))
∣∣∣∣g(x, Y x,y0

n (s))− g(x, Ȳ x,y0
n (s))

∣∣
≤− β|v̄x,y0n (s)|2 + |v̄x,y0n (s)||Y x,y0

n (s)− Ȳ x,y0
n (s)|+ C|Y x,y0

n (s)− Ȳ x,y0
n (s)|2

≤− β

2
|v̄x,y0n (s)|2 + C|Y x,y0

n (s)− Ȳ x,y0
n (s)|2.

Then inserting the above inequality into (4.6) and using (F1) and (F3), we derive from the

result of lemma 4.3 that

e
βt
4 E|v̄x,y0n (t)|2 ≤ C

∫ t

0
e

βs
4 E|Y x,y0

n (s)− Ȳ x,y0
n (s)|2ds ≤ C(1 + |x|2)∆2e

βt
4 ,

which yields the desired result.

Taking Lemma 4.6 into consideration, we deduce the convergence rate between numerical

invariant measure µx,∆2 and underlying invariant measure µx in W2-distance.

Lemma 4.7. Under (F1)-(F3) with some k ≥ 2, for any fixed x ∈ Rn1 and ∆2 ∈ (0, ∆̄2],

W2(µ
x, µx,∆2) ≤ C(1 + |x|)∆

1
2
2 .

Proof. From the proofs of Lemmas 2.1 and 4.5, we know that

lim
m→∞

W2(δ0Px
m∆2

, µx) = 0

and

lim
m→∞

W2(δ0Px,∆2

m∆2
, µx,∆2) = 0.

The above inequalities together with Lemma 4.6 derive that

W2(µ
x, µx,∆2) ≤ lim

m→∞
W2(µ

x, δ0Px
m∆2

) + lim
m→∞

W2(δ0Px
m∆2

, δ0Px,∆2

m∆2
) + lim

m→∞
W2(δ0Px,∆2

m∆2
, µx,∆2)

≤ lim
m→∞

(
E|yx,0n (m∆2)− Y x,0

n,m|2
) 1

2 ≤ C(1 + |x|)∆
1
2 .
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Now we turn to analyze the property of the estimator BM (x, Y x,y0
n ).

Lemma 4.8. If (S5), (F1) and (F3) hold, then for any 2 ≤ q ≤ k, x ∈ Rn1 , y0 ∈ Rn2 ,

∆2 ∈ (0, ∆̂2], integers n ≥ 0 and M ≥ 1,

E
∣∣xTBM (x∗, Y x∗,y0

n )
∣∣ q2 ≤ C(1 + |x|q + |y0|q).

Proof. For any x ∈ Rn1 with |x| ≤ φ−1(K∆
−1/2
1 ), x = x∗. Making use of (S5) and the

elementary inequality yields that

E
∣∣xTBM (x∗, Y x∗,y0

n )
∣∣ q2 = E

∣∣∣ 1
M

M∑
m=1

xT b(x, Y x,y0
n,m )

∣∣∣ q2 ≤ E
[
K4(1 + |x|2) + λ

M

M∑
m=1

|Y x,y0
n,m |2

] q
2

≤ C(1 + |x|q) + C

M

M∑
m=1

E|Y x,y0
n,m |q.

Then by (F1) and (F3), applying Lemma 4.3 and the Hölder inequality implies that for any

∆2 ∈ (0, ∆̂2],

E
∣∣xTBM (x∗, Y x∗,y0

n )
∣∣ q2 ≤ C(1 + |x|q) + C

M

M∑
m=1

(
E|Y x,y0

n,m |k
) q

k ≤ C(1 + |x|q + |y0|q). (4.7)

On the other hand, for x ∈ Rn1 with |x| > φ−1(K∆
−1/2
1 ), x = |x|x∗/φ−1(K∆

−1/2
1 ). One

observes that

xTBM (x∗, Y x∗,y0
n ) =

|x|

φ−1(K∆
− 1

2
1 )

(x∗)TBM (x∗, Y x∗,y0
n ).

Due to (4.7) and (3.2), we obtain that

E
∣∣xTBM (x∗, Y x∗,y0

n )
∣∣ q2 ≤ |x|

q
2(

φ−1
(
K∆

− 1
2

1

)) q
2

C(1 + |x∗|q + |y0|q) ≤ C(1 + |x|q + |y0|q).

Thus the desired assertion follows.

The error between b̄(x) and BM (x, Y x,y0
n ) is the key to obtain the convergence of the MTEM

scheme numerical solution. By introducing an auxiliary function b̄∆2(·) defined in the below we

use |b̄(x)− b̄∆2(x)|2 and E|b̄∆2(x)−BM (x, Y x,y0
n )|2 to estimate E|b̄(x)−BM (x, Y x,y0

n )|2. In fact,

under (S4) and (F1)-(F3) with k ≥ θ4, by virtue of Lemma 4.5, for any fixed x ∈ Rn1 and

∆2 ∈ (0, ∆̄2], ∫
Rn2

|b(x, y)|µx,∆2 ≤ K3

∫
Rn2

(1 + |x|θ3 + |y|θ4)µx,∆2(dy)

≤ C(1 + |x|θ3∨θ4) < ∞, (4.8)

which implies that b(x, ·) is integrable with respect to µx,∆2 . Thus we define

b̄∆2(x) =

∫
Rn2

b(x, y)µx,∆2(dy). (4.9)

Next we estimate |b̄(x)− b̄∆2(x)|2 and E|b̄∆2(x)−BM (x, Y x,y0
n )|2, respectively.
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Lemma 4.9. Under (S2), (S4) and (F1)-(F3) with k ≥ 2 ∨ 2θ2 ∨ θ4, for any x ∈ Rn1 and

∆2 ∈ (0, ∆̄2],

|b̄(x)− b̄∆2(x)| ≤ C(1 + |x|θ2+1)∆2.

Proof. Under (S4), (F1)-(F3) with k ≥ 2 ∨ θ4, in view of (1.3) and (4.9), using (S2) and the

Hölder inequality yields that

|b̄(x)− b̄∆2(x)| =
∣∣∣ ∫

Rn2×Rn2

(
b(x, y1)− b(x, y2)

)
π(dy1, dy2)

∣∣∣
≤
∫
Rn2×Rn2

∣∣b(x, y1)− b(x, y2)
∣∣π(dy1,dy2)

≤ C
(∫

Rn2×Rn2

|y1 − y2|2π(dy1,dy2)
) 1

2

×
(∫

Rn2×Rn2

(1 + |x|2θ2 + |y1|2θ2 + |y2|2θ2)π(dy2, dy2)
) 1

2
,

where π ∈ C(µx, µx,∆2) is arbitrary. Thus, we derive that

|b̄(x)− b̄∆2(x)| ≤ CW2(µ
x, µx,∆2)×

(
1 + |x|2θ2 +

∫
Rn2

|y1|2θ2µx(dy1) +

∫
Rn2

|y2|2θ2µx,∆2(dy2)
) 1

2
.

Then due to (F1)-(F3) with k ≥ 2 ∨ 2θ2, applying Lemmas 2.1, 4.5 and 4.7 implies that

|b̄(x)− b̄∆2(x)| ≤ C(1 + |x|θ2+1)∆
1
2
2 .

The proof is complete.

Before the estimation of E|b̄∆2(x)−BM (x, Y x,y0
n )|2, we prepare a useful result.

Lemma 4.10. Under (S2), (S4) and (F1)-(F3) with k ≥ 2 ∨ 2θ2 ∨ θ4, for any x ∈ Rn1 , y ∈ Rn2 ,

∆2 ∈ (0, ∆̄2] and integers n ≥ 0, M ≥ 1,

|b̄∆2(x)− Eb(x, Y x,y
n,m)| ≤ C(1 + |x|θ2+1 + |y|θ2+1)e

−βm∆2
8 .

Proof. Under (S4) and (F1)-(F3) with k ≥ 2 ∨ θ4, according to (4.9) and the invariance of

invariant measure µx,∆2 , we have

b̄∆2(x) = lim
k→∞

∫
Rn2

b(x, z)I{|z|≤k}µ
x,∆2(dz)

≤ lim
k→∞

∫
Rn2

E
(
b(x, Y x,z

n,m)I{|Y x,z
n,m|≤k}

)
µx,∆2(dz). (4.10)

Obviously, lim
k→∞

b(x, Y x,z
n,m)I{|Y x,z

n,m|≤k} = b(x, Y x,z
n,m), a.s. for any z ∈ Rn2 . In addition, by (S4)

and (F1)-(F3) with k ≥ 2 ∨ θ4, using Lemma 4.5 yields that∫
Rn2

E|b(x, Y x,z
n,m)|µx,∆2(dz) ≤ C

(
1 + |x|θ3 +

∫
Rn2

E|Y x,z
n,m|θ4µx,∆2(dz)

)
≤ C

(
1 + |x|θ3∨θ4 +

∫
Rn2

|z|θ4µx,∆2(dz)
)

≤ C(1 + |x|θ3∨θ4) < ∞.
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Then applying the dominated convergence theorem for (4.10) we derive that

b̄∆2(x) =

∫
Rn2

Eb(x, Y x,z
n,m)µx,∆2(dz).

As a result, we have

|b̄∆2(x)− Eb(x, Y x,y
n,m)| =

∣∣∣Eb(x, Y x,y
n,m)−

∫
Rn2

Eb(x, Y x,z
n,m)µx,∆2(dz)

∣∣∣
≤
∫
Rn2

E
∣∣b(x, Y x,y

n,m)− b(x, Y x,z
n,m)

∣∣µx,∆2(dz).

Further using (S2) and the Hölder inequality gives that

|b̄∆2(x)− Eb(x, Y x,y
n,m)|

≤K1

∫
Rn2

E
(
|Y x,y

n,m − Y x,z
n,m|(1 + |x|θ2 + |Y x,y

n,m|θ2 + |Y x,z
n,m|θ2)

)
µx,∆2(dz)

≤C

∫
Rn2

[(
E|Y x,y

n,m − Y x,z
n,m|2

) 1
2
(
E(1 + |x|2θ2 + |Y x,y

n,m|2θ2 + |Y x,z
n,m|2θ2)

) 1
2

]
µx,∆2(dz).

Under (F1)-(F3) with k ≥ 2 ∨ 2θ2, utilizing Lemmas 4.3 and 4.4 we get

|b̄∆2(x)− Eb(x, Y x,y
n,m)| ≤ Ce

−βm∆2
8

∫
Rn2

|y − z|(1 + |x|θ2 + |y|θ2 + |z|θ2)µx,∆2(dz)

≤ Ce
−βm∆2

8

∫
Rn2

(1 + |x|θ2+1 + |y|θ2+1 + |z|θ2+1)µx,∆2(dz)

≤ C(1 + |x|θ2+1 + |y|θ2+1)e
−βm∆2

8 .

The proof is complete.

Lemma 4.11. Under (S2), (S4) and (F1)-(F3) with k ≥ 2θ2 ∨ 2θ4 ∨ (θ2 + θ4 + 1), for any

x ∈ Rn1 , y0 ∈ Rn2 , ∆2 ∈ (0, ∆̄2] and integers n ≥ 0, M ≥ 1,

E|b̄∆2(x)−BM (x, Y x,y0
n )|2 ≤ C(1 + |x|2θ3∨2θ4∨(θ2+θ3∨θ4+1) + |y0|2θ3∨2θ4∨(θ2+θ3∨θ4+1))

1

M∆2
.

Proof. In light of (3.5), we derive that for any x ∈ Rn1 ,

E
∣∣∣b̄∆2(x)−BM (x, Y x,y0

n )
∣∣∣2 = 1

M2

M∑
m,l=1

EUm,l =
1

M2

M∑
m=1

EUm,m +
2

M2

M∑
l=1

M∑
m=l+1

EUm,l, (4.11)

where

Um,l =
(
b̄∆2(x)− b

(
x, Y x,y0

n,m

))(
b̄∆2(x)− b

(
x, Y x,y0

n,l

))
.

By (S4), (F1) and (F3) with k ≥ 2θ4, invoking Lemma 4.3 and the Hölder inequality, we obtain

that

E
∣∣b(x, Y x,y0

n,m )
∣∣2 ≤ CE

(
1 + |x|2θ3 + |Y x,y0

n,m |2θ4
)
≤ C(1 + |x|2θ3) + C

(
E|Y x,y0

n,m |k
) 2θ4

k

≤ C(1 + |x|2(θ3∨θ4) + |y0|2(θ3∨θ4)).
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Then using the elementary inequality along with the above inequality and (4.8), for any m, l ≥ 1,

we yield that for any x ∈ Rn1 ,

E|Um,l| ≤ E
∣∣b(x, Y x,y0

n,m )
∣∣2 + E

∣∣b(x, Y x,y0
n,l )

∣∣2 + 2E|b̄∆2(x)|2

≤ C(1 + |x|2(θ3∨θ4) + |y0|2(θ3∨θ4)) < ∞, (4.12)

which implies that |Um,l| is integrable with respect to P. To compute precisely, let G2
n,l denote

the σ-algebra generated by {
W 2

n(s)−W 2
n(l∆2), s ≥ l∆2

}
.

Obviously, F2
n,l and G2

n,l are mutually independent. Since Y x,y0
n,l is F2

n,l-measurable and indepen-

dent of G2
n,l, using the result of [42, p.221], we derive that for any x ∈ Rn1 and 1 ≤ l < m ≤ M ,

EUm,l =E
[(
b̄∆2(x)− b(x, Y x,y0

n,l )
)
× E

((
b̄∆2(x)− b(x, Y x,y0

n,m )
)∣∣∣F2

n,l

)]
≤E
[∣∣b̄∆2(x)− b(x, Y x,y0

n,l )
∣∣× ∣∣∣b̄∆2(x)− Eb

(
x, Y x,z

n,m−l

)∣∣∣
z=Y

x,y0
n,l

]
. (4.13)

For any x ∈ Rn1 and y ∈ Rn2 , it follows from (S4) and (4.8) that

|b̄∆2(x)− b(x, y)| = |b̄∆2(x)|+ |b(x, y)| ≤ C(1 + |x|θ3∨θ4 + |y|θ4). (4.14)

Owing to (S2), (S4) and (F1)-(F3) with k ≥ 2 ∨ 2θ2 ∨ θ4, using Lemma 4.10 derives that∣∣∣b̄∆2(x)− Eb
(
x, Y x,z

n,m−l)
∣∣∣ ≤ Ce−

β(m−l)∆2
8

(
1 + |x|θ2+1 + |z|θ2+1

)
.

Using (4.14) and substituting the above inequality into (4.13) lead to that for any x ∈ Rn1 ,

EUm,l ≤ Ce−
β(m−l)∆2

8 E
[(
1 + |x|θ3∨θ4 + |Y x,y0

n,l |θ4
)

×
(
1 + |x|θ2+1 + |Y x,y0

n,l |θ2+1
)]

≤ Ce−
β(m−l)∆2

8 E
[(
1 + |x|θ2+θ3∨θ4+1 + (1 + |x|θ3∨θ4)|Y x,y0

n,l |θ2+1

+ (1 + |x|θ2+1)|Y x,y0
n,l |θ4 + |Y x,y0

n,l |θ2+θ4+1
)]
.

Due to k ≥ θ2 + θ4 + 1, using Lemma 4.3 we deduce that for any 1 ≤ l < m ≤ M ,

EUm,l ≤ Ce−
β(m−l)∆2

8
(
1 + |x|θ2+θ3∨θ4+1 + |y0|θ2+θ3∨θ4+1

)
. (4.15)

Hence, inserting (4.12) and (4.15) into (4.11) yields that

E
∣∣∣b̄∆2(x)−BM (x, Y x,y0

n )
∣∣∣2 ≤ C(1 + |x|2(θ3∨θ4) + |y0|2(θ3∨θ4))

M

+
C(1 + |x|θ2+θ3∨θ4+1 + |y0|θ2+θ3∨θ4+1)

M2

M∑
l=1

M∑
m=l+1

e−
β(m−l)∆2

8

≤ C(1 + |x|2(θ3∨θ4) + |y0|2(θ3∨θ4))
M

+
C(1 + |x|θ2+θ3∨θ4+1 + |y0|θ2+θ3∨θ4+1)

M(eβ∆2/8 − 1)

≤ C
(
1 + |x|2θ3∨2θ4∨(θ2+θ3∨θ4+1) + |y0|2θ3∨2θ4∨(θ2+θ3∨θ4+1)

)( 1

M
+

1

M∆2

)
≤ C

(
1 + |x|2θ3∨2θ4∨(θ2+θ3∨θ4+1) + |y0|2θ3∨2θ4∨(θ2+θ3∨θ4+1)

) 1

M∆2
,
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where the second to last inequality used the fact ex − 1 ≥ x,∀x ≥ 0. The proof is complete.

Combining Lemmas 4.9 and 4.11, we obtain the estimate of E|b̄(x)−BM (x, Y x
n )|2 directly.

Lemma 4.12. Under (S2), (S4) and (F1)-(F3) with k ≥ 2θ2 ∨ 2θ4 ∨ (θ2 + θ4 + 1), for any

x ∈ Rn1 , y0 ∈ Rn2 , ∆2 ∈ (0, ∆̄2] and integers n ≥ 0, M ≥ 1,

E
∣∣∣b̄(x)−BM (x, Y x,y0

n )
∣∣∣2 ≤ C

(
1 + |x|2(θ2+1)∨2θ3∨2θ4 + |y0|2(θ2+1)∨2θ3∨2θ4)(∆2 +

1

M∆2

)
.

5 Strong convergence in pth moment

With the help of the averaging principle, this section aims to prove the strong convergence

between the slow component xε(t) of original system (1.1) and the MTEM scheme numerical

solution X(t) in pth moment.

Lemma 5.1. If (S3)-(S5), (F1) and (F3) hold with k ≥ 2θ4, then for any x0 ∈ Rn1 , y0 ∈ Rn2 ,

0 < p ≤ k/θ4, T > 0 and M ≥ 1,

sup
∆1∈(0,1],∆2∈(0,∆̂2]

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ Cx0,y0,T,p,

and

E
(

sup
0≤t≤T

|X̄(t)−X(t)|p
)
≤ Cx0,y0,T,p∆

p
2
1 .

Proof. For 2 ≤ p ≤ k/θ4, using the Itô formula, we deduce from (3.8) that for any t ≥ 0,

|X̄(t)|p ≤|x0|p + p

∫ t

0
|X̄(s)|p−2

[
X̄T (s)B

(
X∗(s), Y X∗(s),y0

)
+

p− 1

2
|σ(X(s))|2

]
ds+ p

∫ t

0
|X̄(s)|p−2X̄T (s)σ(X(s))dW 1(s),

where we write BM (·, ·) as B(·, ·) for short. Utilizing the Burkholder-Davis-Gundy inequality

[33, p.40, Theorem7.2], the Young inequality and the Hölder inequality implies that for any

19



T > 0,

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ |x0|p + pE

∫ T

0
|X̄(t)|p−2

[∣∣∣X̄T (t)B
(
X∗(t), Y X∗(t),y0

)∣∣∣+ p− 1

2
|σ(X(t))|2

]
dt

+ 4
√
2pE

(∫ T

0
|X̄(t)|2p−2|σ(X(t))|2dt

) 1
2

≤ |x0|p + C

∫ T

0
E|X̄(t)|pdt+ C

∫ T

0
E
∣∣∣X̄T (t)B

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2dt
+ C

∫ T

0
E|σ(X(t))|pdt+ 4

√
2pE

[
sup

t∈[0,T ]
|X̄(t)|p−1

(∫ T

0

∣∣σ(X(t))
∣∣2dt) 1

2
]

≤ |x0|p + C

∫ T

0
E|X̄(t)|pdt+ C

∫ T

0
E
∣∣∣XT (t)B

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2dt
+ C

∫ T

0
E
∣∣∣(X̄(t)−X(t))TB

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2dt
+ C

∫ T

0
E|σ(X(t))|pdt+ 1

2
E
(

sup
t∈[0,T ]

|X̄(t)|p
)
.

Then it follows from (S3) that

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ |x0|p + C

∫ T

0
E
(

sup
0≤s≤t

|X̄(s)|p
)
dt+ C

∫ T

0
E
∣∣∣XT (t)B

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2dt
+ C

∫ T

0
E
∣∣∣(X̄(t)−X(t))TB

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2dt. (5.1)

For any t ≥ 0, one observes that Y X∗(t),y0 = Y
X∗

n∆1
(t)

,y0
= Y

X∗
n∆1

(t)
,y0

n1(t)
. Due to the independence

of Y x,y0
n∆1

(t) and Xn∆1
(t), for any t ≥ 0 and 2 ≤ p ≤ k/θ4, under (S5), (F1) and (F3), we obtain

from (4.5) and the result of Lemma 4.8 that

E
∣∣∣XT (t)B

(
X∗(t), Y X∗(t),y0

)∣∣∣ p2 = E
∣∣∣XT

n∆1
(t)B

(
X∗

n∆1
(t), Y

X∗
n∆1

(t)
,y0
)∣∣∣ p2

=E
[
E
(∣∣∣XT

n∆1
(t)B

(
X∗

n∆1
(t), Y

X∗
n∆1

(t)
,y0

n∆1
(t)

)∣∣∣ p2 ∣∣∣Xn∆1
(t)

)]
≤ E

(
E
∣∣xTB(x∗, Y x∗,y0

n∆1
(t)

)∣∣ p2 ∣∣
x=Xn∆1

(t)

)
≤C(1 + |y0|p + E|Xn∆1

(t)|p) ≤ C(1 + |y0|p) + CE
(

sup
0≤s≤t

|X̄(s)|p
)
. (5.2)

Under (S4), we derive from (3.3) and (4.5) that

E
∣∣∣B(X∗(t), Y X∗(t),y0

)∣∣∣p = E
∣∣∣B(X∗

n∆1
(t), Y

X∗
n∆1

(t)
,y0

n∆1

)∣∣∣p ≤ 1

M

M∑
m=1

E
∣∣∣b(X∗

n∆1
(t), Y

X∗
n∆1

(t)
,y0

n∆1
(t),m

)∣∣∣p
≤ 1

M

M∑
m=1

E
[(

C∆
− 1

2
1 (1 + |X∗

n∆1
(t)|) +K3

∣∣∣Y X∗
n∆1

(t)
,y0

n∆1
(t),m

∣∣∣θ4)]p
≤ C∆

− p
2

1 E
(
1 + |X∗

n∆1
(t)|
)p

+
C

M

M∑
m=1

E
∣∣∣Y X∗

n∆1
(t)

,y0

n∆1
(t),m

∣∣∣pθ4 . (5.3)

Owing to (F1) and (F3) with pθ4 ≤ k, using the Young inequality and Lemma 4.3 yields that

E
∣∣∣Y X∗

n∆1
(t)

,y0

n∆1
(t),m

∣∣∣pθ4 = E
(
E
(∣∣∣Y X∗

n∆1
(t)

,y0

n∆1
(t),m

∣∣∣pθ4 |X∗
n∆1

(t)

))
= E

(
E|Y x,y0

n∆1
(t),m|pθ4 |x=X∗

n∆1
(t)

)
≤ C(1 + |y0|pθ4 + E|X∗

n∆1
(t)|

pθ4).
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Thanks to (3.2) , we derive that

E
∣∣∣Y X∗

n∆1
(t)

,y0

n∆1
(t),m

∣∣∣pθ4 ≤ C∆
− p

2
1 .

Inserting the above inequality into (5.3) implies that

E
∣∣∣B(X∗(t), Y X∗(t),y0

)∣∣∣p ≤ C∆
− p

2
1 E

(
1 + |X∗

n∆1
(t)|
)p ≤ C∆

− p
2

1 E
(
1 + |X(t)|

)p
. (5.4)

This, together with (3.8), implies that for any t ≥ 0,

E|X̄(t)−X(t)|p ≤2p−1
(
E
∣∣∣ ∫ t

n∆1
(t)∆1

B
(
X∗(s), Y X∗(s),y0

)
ds
∣∣∣p + E

∣∣∣ ∫ t

n∆1
(t)∆1

σ(X(s))dW 1(s)
∣∣∣p)

≤C
(
∆p−1

1

∫ t

n∆1
(t)∆1

E
∣∣∣B(X∗(s), Y X∗(s),y0

)∣∣∣pds+∆
p−2
2

1

∫ t

n∆1
(t)∆1

E|σ(X(s))|pds
)

≤C∆
p
2
1 E
(
1 + |X(t)|

)p
. (5.5)

Invoking the Hölder inequality, (5.4) and (5.5) we obtain

E
(∣∣X̄(t)−X(t)

∣∣ p2 ∣∣∣B(X∗(t), Y X∗(t),y0
)∣∣∣ p2) ≤

(
E
∣∣X̄(t)−X(t)

∣∣p) 1
2
(
E
∣∣∣B(X∗(t), Y X∗(t),y0

)∣∣∣p) 1
2

≤CE
(
1 + |X(t)|

)p ≤ Cp + CpE
(

sup
0≤s≤t

|X̄(s)|p
)
.

(5.6)

Inserting (5.2) and (5.6) into (5.1) yields that

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ |x0|p + Cp(1 + |y0|p) + Cp

∫ T

0
E
(

sup
0≤s≤t

|X̄(s)|p
)
dt.

A direct application of Gronwall’s inequality derives that

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ Cx0,y0,T,p. (5.7)

Then the second assertion holds directly by substituting (5.7) into (5.5). The case 0 < p < 2

follows directly by using the Hölder inequality. The proof is complete.

Remark 5.1. For any R > |x0|, define the stopping time

ρ̄∆1,R = inf{t ≥ 0 : |X̄(t)| ≥ R}. (5.8)

It follows from Lemma 5.1 that for any T > 0,

P
(
ρ̄∆1,R ≤ T

)
≤

Cx0,y0,T,p

Rp
.

To prove the strong convergence of the MTEM scheme (3.6), we introduce an auxiliary TEM

numerical scheme for the averaged equation (1.4)Z0 = x0,

Zn+1 = Zn + b̄(Z∗
n)∆1 + σ(Zn)∆W 1

n ,
(5.9)
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and the corresponding continuous-time processes

Z(t) = Zn, t ∈ [n∆1, (n+ 1)∆1),

and

Z̄(t) = x0 +

∫ t

0
b̄(Z∗(s))ds+

∫ t

0
σ(Z(s))dW 1(s). (5.10)

One observes that Z̄(n∆1) = Z(n∆1) = Zn. In what follows, we analyze the strong error

E
(
sup0≤t≤T |x̄(t) − Z̄(t)|2

)
and E

(
sup0≤t≤T |Z̄(t) −X(t)|2

)
, respectively. To proceed we give

the bound of the pth moment of Z̄(t).

Lemma 5.2. If (S3)-(S5) and (F1)-(F3) hold with k ≥ 2 ∨ θ4, then for any x0 ∈ Rn1 , p > 0

and T > 0,

sup
∆1∈(0,1]

E
(

sup
0≤t≤T

|Z̄(t)|p
)
≤ Cx0,T,p,

and

sup
0≤t≤T

E|Z̄(t)− Z(t)|2 ≤ Cx0,T,p∆1.

Proof. The case that 0 < p < 2 follows directly from the case p ≥ 2 by using Lyapunov’s

inequality. Thus we are only going to deal with the case p ≥ 2. Applying the Itô formula

and Burkholder-Davis-Gundy inequality [33, p.40, Theorem7.2], under (S5) and (F1)-(F3), we

derive from the result of Lemma 4.2 that for p ≥ 2 and T > 0,

E
(

sup
0≤t≤T

|Z̄(t)|p
)
≤ |x0|p +

pC

2
E
∫ T

0

∣∣Z̄(t)
∣∣p−2(

1 + |Z(t)|2
)
dt

+ pE
∫ T

0
|Z̄(t)|p−2|Z̄(t)− Z(t)||b̄(Z∗(t)|dt

+ 4
√
2pE

(∫ T

0

∣∣Z̄(t)
∣∣2p−2∣∣σ(Z(t))|2dt

) 1
2
.

Then by the Young inequality we obtain that for any T > 0,

E
(

sup
0≤t≤T

|Z̄(t)|p
)
≤ |x0|p + C

∫ T

0
E
(

sup
0≤s≤t

|Z̄(s)|p
)
dt+ C

∫ T

0
E
(
|Z̄(t)− Z(t)|

p
2 |b̄(Z∗(t))|

p
2

)
dt

+
1

2
E
(

sup
0≤t≤T

|Z̄(t)|p
)
+ CE

(∫ t

0
|σ(Z(t))|2dt

) p
2
. (5.11)

For any t ≥ 0, due to (S4), (F1)-(F3) with k ≥ θ4, (3.4) hold. Then using (3.4) and (S3) yields

that

E
∣∣Z̄(t)− Z(t)

∣∣p = E
∣∣Z̄(t)− Zn∆1

(t)

∣∣p
≤2p−1

(
E
∣∣∣ ∫ t

n∆1
(t)∆1

b̄(Z∗(s))ds
∣∣∣p + E

∣∣∣ ∫ t

n∆1
(t)∆1

σ(Z(s))dW 1(s)
∣∣∣p)

≤2p−1
(
∆p

1E|b̄(Z
∗
n∆1

(t))|
p +∆

p
2
1 E|σ(Zn∆1

(t))|p
)

≤C∆
p
2
1

(
1 + E|Zn∆1

(t)|p
)
≤ C∆

p
2
1 (1 + E|Z(t)|p). (5.12)
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Then utilizing (3.4) again and the Hölder inequality implies that

E
(
|Z̄(t)− Z(t)|

p
2 |b̄(Z∗(t))|

p
2

)
≤
(
E|Z̄(t)− Z(t)|p

) 1
2
(
E|b̄(Z(t))|p

) 1
2

≤ C∆
p
4
1

(
1 + E|Z(t)|p

) 1
2∆

− p
4

1

(
1 + E|Z(t)|p

) 1
2

≤ C + E
(

sup
0≤s≤t

|Z̄(s)|p
)
. (5.13)

Applying (S3) and the Hölder inequality we get

E
(∫ T

0

∣∣σ(Z(t))|2dt
) p

2 ≤ CT,p + CT,p

∫ T

0
E
(

sup
0≤s≤t

|Z̄(s)|p
)
dt. (5.14)

Hence, substituting (5.13) and (5.14) into (5.11) yields that

E
(

sup
0≤t≤T

|Z̄(t)|p
)
≤ |x0|p + CT,p + CT,p

∫ T

0
E
(

sup
0≤s≤t

|Z̄(s)|p
)
dt.

An application of the Gronwall inequality gives that

E
(

sup
0≤t≤T

|Z̄(t)|p
)
≤ Cx0,T,p.

Then inserting the above inequality into (5.12) implies that the another desired assertion holds.

The proof is complete.

Remark 5.2. From Lemma 5.2, for any constant R > |x0|, define a stopping time

ρ∆1,R := inf{t ≥ 0 : |Z̄(t)| ≥ R}. (5.15)

By a similar argument as Remark 2.2, for any T > 0, we have

P(ρ∆1,R ≤ T ) ≤ Cx0,T,p/R
p.

Lemma 5.3. If (S1)-(S5) and (F1)-(F3) hold with k > 2 ∨ θ1 ∨ 2θ2 ∨ θ4, then for any T > 0,

lim
∆1→0

E
(

sup
0≤t≤T

|x̄(t)− Z̄(t)|2
)
= 0.

Proof. Fix any constant R > |x0|. Define the truncated functions

b̄R(x) = b̄
(
(|x| ∧R)

x

|x|

)
, σR(x) = σ

(
(|x| ∧R)

x

|x|

)
.

Consider the SDE

dū(t) = b̄R(ū(t))dt+ σR(ū(t))dW
1(t) (5.16)

with initial value ū(0) = x0. Under (S1), (S2) and (F1)-(F3) with k ≥ θ1 ∨ 2θ2, one observes

from (S1) and the result of Lemma 4.1 that both b̄R(x) and σR(x) are global Lipschitz contin-

uous. Thus equation (5.16) has a unique global solution ū(t) on t ≥ 0. Let Ū(t) denote the

continuous extension of the EM numerical solution of (5.16). It is well known [18, 24] that

E
(

sup
t∈[0,T ]

|ū(t)− Ū(t)|2
)
≤ CT∆1, ∀ T > 0.
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On the other hand, choose a constant ∆̄1 ∈ (0, 1] small sufficiently such that

φ−1(K(∆̄1)
−1/2) ≥ R. One observes that for any ∆1 ∈ (0, ∆̄1]

b̄R(x) = b̄(x) = b̄(x∗), ∀ x ∈ Rn1 with |x| ≤ R.

Then it is straightforward to see that that for any t ≥ 0

x̄(t ∧ τR) = ū(t ∧ τR), Z̄(t ∧ ρ∆1,R) = Ū(t ∧ ρ∆1,R), a.s.,

where τR and ρ∆1,R are defined in Remarks 2.2 and 5.2, respectively. Under (S1)-(S5) and

(F1)-(F3) with k ≥ θ1 ∨ 2θ2 ∨ θ4, by virtue of Lemmas 2.3 and 5.2, the remainder of the proof

follows in a similar manner to that of [34, Theorem 3.5]. To avoid duplication we omit the

details.

Then we turn to prove the strong convergence of the auxiliary process Z̄(t) and the MTEM

numerical solution X(t). By virtue of Lemma 5.1, we only need to prove strong convergence of

Z̄(t) and X̄(t).

Lemma 5.4. If (S1)-(S5) and (F1)-(F3) hold with k > θ1 ∨ 2θ2 ∨ 2θ4 ∨ (θ2 + θ4 + 1), for any

T > 0 and ∆1 ∈ (0, 1],

lim
∆2→0

lim
M∆2→∞

E
(

sup
0≤t≤T

|Z̄(t)− X̄(t)|2
)
= 0.

Proof. Define ē(t) = Z̄(t)− X̄(t) for any t ≥ 0 and β∆1,R = ρ̄∆1,R ∧ ρ∆1,R for any R > 0, where

ρ̄∆1,R and ρ∆1,R are given by (5.8) and (5.15), respectively. Due to k > 2θ4, let 2 < p ≤ k/θ4.

Fix T > 0. For any δ > 0, using the Young inequality yields that

E
(

sup
0≤t≤T

|ē(t)|2
)
= E

(
sup

0≤t≤T
|ē(t)|2I{β∆1,R

>T}

)
+ E

(
sup

0≤t≤T
|ē(t)|2I{β∆1,R

≤T}

)
≤E
(

sup
0≤t≤T

|ē(t)|2I{β∆1,R
>T}

)
+

2δ

p
E
(

sup
0≤t≤T

|ē(t)|p
)
+

p− 2

pδ
2

p−2

P(β∆1,R ≤ T ).

Owing to (S3)-(S5) and (F1)-(F3), it follows from the results of Lemmas 5.1 and 5.2 that

E
(

sup
0≤t≤T

|ē(t)|p
)
≤ 2p−1E

(
sup

0≤t≤T
|Z̄(t)|p

)
+ 2p−1E

(
sup

0≤t≤T
|X̄(t)|p

)
≤ Cx0,y0,T,p.

Furthermore, both Remarks 5.2 and 5.1 imply that

P(β∆1,R ≤ T ) ≤ P(ρ∆1,R ≤ T ) + P(ρ̄∆1,R ≤ T ) ≤
Cx0,y0,T,p

Rp
.

Consequently we have

E
(

sup
0≤t≤T

|ē(t)|2
)
≤ E

(
sup

0≤t≤T
|ē(t)|2I{β∆1,R

>T}

)
+

Cx0,y0,T,pδ

p
+

Cx0,y0,T,p(p− 2)

pδ
2

p−2Rp
.
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Now, for any ϵ > 0, choose δ > 0 small sufficiently such that Cx0,y0,T,pδ/p ≤ ϵ/3. Then for this

δ, choose R > 0 large enough such that Cx0,y0,T,p(p−2)/(pδ
2

p−2Rp) ≤ ϵ/3. Hence, for the desired

assertion it is sufficient to prove

E
(

sup
0≤t≤T

|e(t)|2I{β∆1,R
>T}

)
≤ ϵ

3
. (5.17)

From (3.8) and (5.10) we derive that

ē(t ∧ β∆1,R) =

∫ t∧β∆1,R

0

(
b̄(Z∗(s))−BM

(
X∗(s), Y X∗(s),y0

))
ds

+

∫ t∧β∆1,R

0

(
σ(Z(s))− σ(X(s))

)
dW 1(s).

Recalling the definition of the stopping time β∆1,R, it is straightforward to see that

Z∗(s) = Z(s), X∗(s) = X(s), ∀s ∈ [0, t ∧ β∆1,R].

Then we have

ē(t ∧ β∆1,R) =

∫ t∧β∆1,R

0

(
b̄(Z(s))−BM

(
X(s), Y X(s),y0

))
ds

+

∫ t∧β∆1,R

0

(
σ(Z(s))− σ(X(s))

)
dW 1(s).

Using the Hölder inequality, the Burkholder-Davis-Gundy inequality [33, p.40, Theorem 7.2]

and the elementary inequality, we arrive at

E
(

sup
0≤t≤T

|ē(t ∧ β∆1,R)|2
)
≤2T

∫ T

0
E
(∣∣∣b̄(Z(s))−BM

(
X(s), Y X(s),y0

)∣∣∣2I{s≤β∆1,R
}

)
ds

+ 8

∫ T

0
E|σ(Z(s ∧ β∆1,R))− σ(X(s ∧ β∆1,R))|2ds

≤4T

∫ T

0
E
(∣∣∣b̄(X(s))−BM

(
X(s), Y X(s),y0

)∣∣∣2I{s≤β∆1,R
}

)
ds

+ 4T

∫ T

0
E|b̄(Z(s ∧ β∆1,R))− b̄(X(s ∧ β∆1,R))|2ds

+ 8

∫ T

0
E|σ(Z(s ∧ β∆1,R))− σ(X(s ∧ β∆1,R))|2ds. (5.18)

For any 0 ≤ s ≤ T , one observes that for any ω ∈ {ω ∈ Ω : s ≤ β∆1,R}, |X(s)| ≤ R. Using this

fact and (4.5) implies that

E
(∣∣∣b̄(X(s))−BM

(
X(s), Y X(s),y0

)∣∣∣2I{s≤β∆1,R
}

)
≤E
(∣∣∣b̄(X(s))−BM

(
X(s), Y X(s),y0

)∣∣∣2I{|X(s)|≤R}

)
=E
(∣∣∣b̄(Xn∆1

(s))−BM

(
Xn∆1

(s), Y
Xn∆1

(s),y0

n∆1
(s)

)∣∣∣2I{|Xn∆1
(s)|≤R}

)
=E

(
E
[(∣∣∣b̄(Xn∆1

(s))−BM

(
Xn∆1

(s), Y
Xn∆1

(s),y0

n∆1
(s)

)∣∣∣2I{|Xn∆1
(s)|≤R}

)∣∣∣Xn∆1
(s)

])
=E
(
E
∣∣∣b̄(x)−BM

(
x, Y x,y0

n∆1
(s)

)∣∣∣2
x=Xn∆1

(s)

I{|Xn∆1
(s)|≤R}

)
.
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By (S2), (S4) and (F1)-(F3) with k ≥ 2θ2 ∨ 2θ4 ∨ (θ2 + θ4 + 1), it follows from the result of

Lemma 4.12 that

E
(∣∣∣b̄(X(s))−BM

(
X(s), Y X(s),y0

)∣∣∣2I{s≤β∆1,R
}

)
=CE

[(
1 + |Xn∆1

(s)|2(θ2+1)∨2θ3∨2θ4 + |y0|2(θ2+1)∨2θ3∨2θ4)I{|Xn∆1
(s)|≤R}

](
∆2 +

1

M
+

1

M∆2

)
≤Cy0,R

(
∆2 +

1

M
+

1

M∆2

)
. (5.19)

Under (S1), (S2), (S4) and (F1)-(F3) with k ≥ θ1 ∨ 2θ2 ∨ θ4, applying Lemma 4.1 yields that

E
∣∣b̄(Z(s ∧ β∆1,))− b̄(X(s ∧ β∆1,R))

∣∣2 ∨ E|σ(Z(s ∧ β∆1,R))− σ(X(s ∧ β∆1,R))|2

≤(L̄2
R ∨ L2

R)E|ē(s ∧ β∆1,R)|2 ≤ (L̄2
R ∨ L2

R)E
(

sup
0≤r≤s

|ē(s ∧ β∆1,R)|2
)
. (5.20)

Inserting (5.19) and (5.20) into (5.18) we derive that

E
(

sup
0≤t≤T

|ē(t ∧ β∆1,R)|2
)
≤ 4T 2Cy0,R

(
∆2+

1

M
+

1

M∆2

)
+ (8 + 4T )(L̄2

R ∨ L2
R)

∫ T

0
E
(

sup
0≤r≤s

|ē(s ∧ β∆1,R)|2
)
ds.

An application of the Gronwall inequality implies that

E
(

sup
0≤t≤T

|ē(t ∧ β∆1,R)|2
)
≤ CR,y0

(
∆2 +

1

M∆2

)
.

For the given R, choose ∆2 ∈ (0, ∆̂2] small sufficiently such that Cy0,R∆2 ≤ ϵ/9. For the fixed

∆2, choose M large sufficiently such that Cy0,R/(M∆2) ≤ ϵ/9. Therefore, we have

E
(

sup
0≤t≤T

|ē(t ∧ β∆1,R)|2
)
≤ ϵ

9
+

2Cy0,R

M∆2
≤ ϵ

3
,

which implies that the required assertion (5.17) holds. The proof is complete.

Obviously, combing the second result of Lemma 5.1, Lemmas 5.3 and 5.4 derives the strong

convergence between x̄(t) and X(t).

Theorem 5.1. If (S1)-(S5) and (F1)-(F3) hold with k > θ1 ∨ 2θ2 ∨ 2θ4 ∨ (θ2 + θ4 + 1), then

for any x0 ∈ Rn1 , y0 ∈ Rn2 , 0 < p < k/θ4 and T > 0

lim
∆1,∆2→0

lim
M∆2→∞

E
(

sup
0≤t≤T

|x̄(t)−X(t)|p
)
= 0. (5.21)

Proof. For any T > 0, combining Lemmas 5.1, 5.3 and 5.4 implies that the desired assertion

holds for p = 2. Obviously, (5.21) holds for 0 < p < 2 due to the Hölder inequality. Next, we

consider the case 2 < p < k/θ4. Choose a constant q̄ such that p < q̄ < k/θ4. Utilizing the

Hölder inequality, Lemmas 2.3 and 5.1 we derive that

E
(

sup
0≤t≤T

|x̄(t)−X(t)|p
)
= E

(
sup

0≤t≤T

∣∣x̄(t)−X(t)
∣∣ 2(q̄−p)

q̄−2
∣∣x̄(t)−X(t)

∣∣p− 2(q̄−p)
q̄−2

)
≤
[
E
(

sup
0≤t≤T

∣∣x̄(t)−X(t)
∣∣2)] q̄−p

q̄−2
[
E
(

sup
0≤t≤T

|x̄(t)−X(t)|q̄
)] p−2

q̄−2

≤ CT

[
E
(

sup
0≤t≤T

|x̄(t)−X(t)|2
)] q̄−p

q̄−2
.
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This, together with the case of p = 2, implies the required assertion. The proof is complete.

Theorem 5.2. If (S1)-(S5) and (F1)-(F3) hold with k > 4θ1 ∨ 2(θ2 + 1) ∨ 2θ3 ∨ 2θ4, then for

any x0 ∈ Rn1 , y0 ∈ Rn2 , 0 < p < k/θ4 and T > 0,

lim
ε→0

lim
∆1,∆2→0

lim
M∆2→∞

E
(

sup
0≤t≤T

|xε(t)−X(t)|p
)
= 0.

Proof. For any 0 < p < k/θ4, using the elementary inequality, by virtue of Lemmas 2.2 and

Theorem 5.1, yields that

lim
ε→0

lim
∆1,∆2→0

lim
M∆2→∞

E
(

sup
0≤t≤T

|xε(t)−X(t)|p
)

≤2p lim
ε→0

E|xε(t)− x̄(t)|p + 2p lim
∆1,∆2→0

lim
M∆2→∞

E
(

sup
0≤t≤T

|x̄(t)−X(t)|p
)
= 0.

The proof is complete.

6 Strong error

This section focuses on the strong error estimate of the MTEM scheme. To obtain the rates

of convergence we need somewhat stronger conditions compared with the convergence alone,

which are stated as follows.

(S1’) For any x1, x2 ∈ Rn1 and y ∈ Rn2 , there exist constants θ1 ≥ 1 and K > 0 such that

|b(x1, y)− b(x2, y)|+ |σ(x1)− σ(x2)| ≤ K|x1 − x2|(1 + |x1|θ1 + |x2|θ1 + |y|θ1).

(S4’) For any x1, x2 ∈ Rn1 and y1, y2 ∈ Rn2 , there is a constant K5 > 0 such that

2(x1 − x2)
T (b(x1, y1)− b(x2, y2)) + |σ(x1)− σ(x2)|2 ≤ K5

(
|x1 − x2|2 + |y1 − y2|2

)
.

Remark 6.1. It follows from (S1’) and (S2) that for any (x, y) ∈ Rn1 × Rn2 ,

|b(x, y)| ≤ |b(x, y)− b(x, 0)|+ |b(x, 0)− b(0, 0)|+ |b(0, 0)|

≤ K1|y|(1 + |x|θ2 + |y|θ2) +K|x|
(
1 + |x|θ1

)
+ |b(0, 0)|

≤ C(1 + |x|(θ1∨θ2)+1 + |y|θ2+1),

namely, combining (S1’) and (S2) leads to (S4) with θ3 = θ1 ∨ θ2 + 1 and θ4 = θ2 + 1.

Remark 6.2. According to Remark 6.1, choose φ(u) = 1 + uθ1∨θ2 . Then we have

|b(x, y)| ≤ C sup
|x|≤u

φ(u)(1 + |x|) + |y|θ2+1, ∀ u ≥ 1, |x| ≤ u.

Using the similar techniques to that of Lemma 4.1, we derive that the averaged coefficient b̄

keeps the property of polynomial growth. To avoid duplication we omit the proof.
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Lemma 6.1. If (S1’), (S2) and (F1)-(F3) hold with k ≥ 2 ∨ θ1 ∨ 2θ2, then for any x1, x2 ∈ Rn1 ,

there is a constant L̄ > 0 such that∣∣b̄(x1)− b̄(x2)
∣∣ ≤ L̄|x1 − x2|(1 + |x1|θ1∨θ2 + |x2|θ1∨θ2).

Lemma 6.2. If (S1’), (S2), (S4’) and (F1)-(F3) hold with k ≥ 2 ∨ (θ2 + 1), then for any

x1, x2 ∈ Rn1 ,

2(x1 − x2)
T
(
b̄(x1)− b̄(x2)

)
+ |σ(x1)− σ(x2)|2 ≤ C|x1 − x2|2.

Proof. Due to (S1’), (S2) and (F1)-(F3) with k ≥ θ2 + 1, it follows from the definition of b̄(x)

and (S4’) that

2(x1 − x2)
T (b̄(x1)− b̄(x2)) + |σ(x1)− σ(x2)|2

=

∫
Rn2×Rn2

[
2(x1 − x2)

T
(
b(x1, y1)− b(x2, y2)

)
+ |σ(x1)− σ(x2)|2

]
π(dy1 × dy2)

≤K5|x1 − x2|2 +K5

∫
Rn1×Rn2

|y1 − y2|2π(dy1, dy2),

here π ∈ C(µx1 , µx2) is arbitrary. Then owing to the arbitrariness of π ∈ C(µx1 , µx2),

2(x1 − x2)
T (b̄(x1)− b̄(x2)) + |σ(x1)− σ(x2)|2 ≤ K5|x1 − x2|2 +K5W2

2(µ
x1 , µx2).

Under (F1)-(F3), we deduce from (2.2) that

2(x1 − x2)
T (b̄(x1)− b̄(x2)) + |σ(x1)− σ(x2)|2 ≤ C|x1 − x2|2.

The proof is complete.

According to Remark 6.1 and Lemma 4.12, we give the bound of E
∣∣b̄(x)−BM (x, Y x,y0

n )
∣∣2.

Lemma 6.3. If (S1’), (S2) and (F1)-(F3) with k ≥ 2(θ2 + 1) hold, then for any x ∈ Rn1 ,

y0 ∈ Rn2 , ∆2 ∈ (0, ∆̄2], and integers n ≥ 0, M ≥ 1,

E
∣∣b̄(x)−BM (x, Y x,y0

n )
∣∣2 ≤ C

(
1 + |x|2(θ2+1)+|y0|2(θ2+1)

)(
∆2 +

1

M∆2

)
.

By the same proof techniques as the strong convergence of the MTEM scheme in Section 5,

we give the error estimates of E|x̄(T )− Z̄(T )|2 and E|Z̄(T )−X(T )|2, respectively.

Lemma 6.4. If (S1’), (S2), (S3), (S4’), (S5) and (F1)-(F3) hold with k ≥ 2 ∨ θ1 ∨ 2θ2, then

for any x0 ∈ Rn1 , T > 0 and ∆1 ∈ (0, 1],

E|x̄(T )− Z̄(T )|2 ≤ CT,x0∆1.

Proof. Let e(t) = x̄(t)− Z̄(t) for any t ≥ 0. Define the stopping time

θ∆1 = ρ
∆1,φ−1(K∆

−1/2
1 )

∧ τ
φ−1(K∆

−1/2
1 )

.
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Choosing p ≥ 2(θ1 ∨ θ2 + 1) and then using the Young inequality for p > 2, we derive that for

any T > 0,

E|e(T )|2 = E
(
|e(T )|2I{θ∆1

>T}
)
+ E

(
|e(T )|2I{θ∆1

≤T}
)

≤ E
(
|e(T )|2I{θ∆1

>T}
)
+

2∆1E|e(T )|p

p
+

(p− 2)P(θ∆1 ≤ T )

p∆
2

p−2

1

. (6.1)

Under (S1’), (S2), (S3), (S5) and (F1)-(F3) with k ≥ θ1 ∨ 2θ2, it follows from the results of

Lemmas 2.3 and 5.2 that

E|e(T )|p ≤ C
(
E|x̄(T )|p + E|Z̄(T )|p

)
≤ Cx0,T,p.

Furthermore, by Remarks 2.2 and 5.2 we deduce that

P(θ∆1 ≤ T ) ≤ P(τ
φ−1(K∆

−1/2
1 )

≤ T ) + P(ρ
∆1,φ−1(K∆

−1/2
1 )

≤ T )

≤
Cx0,T,p(

φ−1(K∆
−1/2
1 )

)p .
Then inserting the above two inequalities into (6.1) and using p ≥ 2(θ1 ∨ θ2 + 1) yield that

E|e(T )|2 ≤ Cx0,T,p∆1 + E|e(T ∧ θ∆1)|2.

Thus for the desired result it is sufficient to prove

E|e(T ∧ θ∆1)|2 ≤ Cx0,T,p∆1.

Recalling the definition of the stopping time θ∆1 , one observes that Z∗(t) = Z(t), 0 ≤ t ≤
T ∧ θ∆1 . Thus using the Itô formula for (1.4) and (5.10) yields that

E|e(T ∧ θ∆1)|2 =E
∫ T∧θ∆1

0

[
2eT (t)

(
b̄(x̄(t))− b̄(Z(t))

)
+ |σ(x̄(t))− σ(Z(t))|2

]
dt

≤E
∫ T∧θ∆1

0

[
2eT (t)

(
b̄(x̄(t))− b̄(Z̄(t))

)
+ |σ(x̄(t))− σ(Z̄(t))|2

]
dt

+ 2E
∫ T∧θ∆1

0
eT (t)

(
b̄(Z̄(t))− b̄(Z(t))

)
dt+ E

∫ T∧θ∆1

0
|σ(Z̄(t))− σ(Z(t))|2dt

+ 2E
∫ T∧θ∆1

0
|σ(x̄(t))− σ(Z̄(t))||σ(Z̄(t))− σ(Z(t))|dt.

Under (S4’) and (F1)-(F3) with k ≥ θ2 + 1, utilizing the Lemma 6.2 and the Young inequality

we derive that

E|e(T ∧ θ∆1)|2 ≤ CE
∫ T∧θ∆1

0
|e(t)|2dt+ J1 + J2, (6.2)

where

J1 = CE
∫ T∧θ∆1

0

(
|b̄(Z̄(t))− b̄(Z(t))|2 + |σ(Z̄(t))− σ(Z(t))|2

)
dt,

J2 = CE
∫ T∧θ∆1

0
|σ(x̄(t))− σ(Z̄(t))||σ(Z̄(t))− σ(Z(t))|dt.
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Due to (S1’), (S2), (S3), (S5) and (F1)-(F3) with k ≥ θ1 ∨ 2θ2 ∨ θ4, it follows from the results

of Lemmas 5.2 and 6.1 that

J1 ≤ C

∫ T

0
E
[
|Z̄(t)− Z(t)|2(1 + |Z̄(t)|2(θ1∨θ2) + |Z(t)|2(θ1∨θ2))

]
dt

≤ C

∫ T

0

(
E|Z̄(t)− Z(t)|4

) 1
2
[
E
(
1 + |Z̄(t)|4(θ1∨θ2) + |Z(t)|4(θ1∨θ2)

)] 1
2
dt ≤ Cx0,T,p∆1. (6.3)

In addition, using the Young inequality and the Hölder inequality yields that

J2 ≤ CE
∫ T∧θ∆1

0
|e(t)||Z̄(t)− Z(t)|(1 + |x̄(t)|2θ1 + |Z̄(t)|2θ1 + |Z(t)|2θ1)dt

≤ C

∫ T

0

(
E|Z̄(t)− Z(t)|4

) 1
2

[
E
(
1 + |x̄(t)|8θ1 + |Z̄(t)|8θ1 + |Z(t)|8θ1

)] 1
2
dt

+ C

∫ T

0
E|e(t ∧ θ∆1)|2dt.

Similarly to (6.3), applying Lemmas 2.3 and 5.2 we show that

J2 ≤ Cx0,T,p∆1 + C

∫ T

0
E|e(t ∧ θ∆1)|2dt. (6.4)

Inserting (6.3) and (6.4) into (6.2) and then using Gronwall’s inequality derive that

E|e(T ∧ θ∆1)|2 ≤ Cx0,T,p∆1,

which implies the desired result. The proof is complete.

Lemma 6.5. If (S1’), (S2), (S3), (S4’), (S5) and (F1)-(F3) with k ≥ [2(2θ1+1)∨2(θ1∨ θ2+

1)](θ2 + 1) hold, then for any x0 ∈ Rn1, y0 ∈ Rn2, T > 0, ∆1 ∈ (0, 1], ∆2 ∈ (0, ∆̄2] and M ≥ 1,

E|Z̄(T )− X̄(T )|2 ≤ Cx0,y0,T

(
∆1 +∆2 +

1

M∆2

)
.

Proof. Define the stopping time

θ̄∆1 = ρ̄
∆1,φ−1(K∆

−1/2
1 )

∧ ρ
∆1,φ−1(K∆

−1/2
1 )

,

where ρ̄
∆1,φ−1(K∆

−1/2
1 )

and ρ
∆1,φ−1(K∆

−1/2
1 )

are given by (5.8) and (5.15). Due to k ≥ [2(2θ1 +

1) ∨ 2(θ1 ∨ θ2 + 1)](θ2 + 1), we can choose a constant p such that

2 < 2(θ1 ∨ θ2 + 1) ∨ 2(2θ1 + 1) ≤ p ≤ k/(θ2 + 1).

By (S1’), (S2), (S3), (S5) and (F1)-(F3), using Lemmas 5.1 and 5.2 as well as the Hölder

inequality yields that

sup
∆1∈(0,1]

E
(

sup
0≤t≤T

|Z̄(t)|p
)
∨ sup

∆1∈(0,1],∆2∈(0,∆̂2]

E
(

sup
t∈[0,T ]

|X̄(t)|p
)
≤ Cx0,y0,T,p. (6.5)
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Then applying the Young inequality, for any δ > 0 we obtain that

E|ē(T )|2 = E
(
|ē(T )|2I{θ̄∆1

>T}
)
+ E

(
|ē(T )|2I{θ̄∆1

≤T}
)

≤E
(
|ē(T )|2I{θ̄∆1

>T}
)
+

2∆1

p
E|ē(T )|p + p− 2

p∆
2

p−2

1

P(θ̄∆1 ≤ T ). (6.6)

It follows from (6.5) that

E|ē(T )|p ≤ 2p−1E|Z̄(T )|p + 2p−1E|X̄(t)|p ≤ Cx0,y0,T,p.

Furthermore, by the Markov inequality and (6.5) we derive that

P
(
ρ̄
∆1,φ−1(K∆

−1/2
1 )

≤ T
)
≤ P

(
|X̄(T ∧ ρ̄

∆1,φ−1(K∆
−1/2
1 )

)| ≥ φ−1(K∆
−1/2
1 )

)
≤

E
∣∣∣X̄(T ∧ ρ̄

∆1,φ−1(K∆
−1/2
1 )

)
∣∣∣p(

φ−1(K∆
−1/2
1 )

)p ≤
Cx0,y0,T,p(

φ−1(K∆
−1/2
1 )

)p .
Then combining the above inequality and Remark 5.2 gives that

P(θ̄∆1 ≤ T ) ≤ P(ρ
∆1,φ−1(K∆

−1/2
1 )

≤ T ) + P(ρ̄
∆1,φ−1(K∆

−1/2
1 )

≤ T ) ≤
Cx0,y0,T,p

(φ−1(K∆
− 1

2
1 ))p

.

Due to p ≥ 2(θ1 ∨ θ2 + 1), inserting the above inequality into (6.6) shows that

E|ē(T )|2 ≤ E
(
|ē(T )|2I{θ̄∆1

>T}
)
+

Cx0,y0,T,p∆1

p
+

Cx0,y0,T,p

p∆
2

p−2 (φ−1(K∆
− 1

2
1 ))p

≤ E
(
|ē(T )|2I{θ̄∆1

>T}
)
+ Cx0,y0,T,p∆1.

Hence for the desired result it remains to prove that

E
(
|ē(T )|2I{θ̄∆1

>T}
)
≤ Cx0,y0,T,p∆1.

Obviously, X∗(t) = X(t) and Z∗(t) = Z(t) for any 0 ≤ t ≤ T ∧ θ̄∆1 . Using the Itô formula for

(3.8) and (5.10) and the Young inequality, under (S4’) and (F1)-(F3), by Lemma 6.2 we arrive

at that for any T > 0,

E|ē(T ∧ θ̄∆1)|2 = E
∫ T∧θ̄∆1

0

[
2ēT (t)

(
b̄(Z(t))−BM

(
X(t), Y X(t),y0

))
+ |σ(Z(t))− σ(X(t))|2

]
dt

≤ E
∫ T∧θ̄∆1

0

[
2ēT (t)

(
b̄(Z̄(t))− b̄(X̄(t))

)
+ |σ(Z̄(t))− σ(X̄(t))|2

]
dt

+

∫ T

0
CE|ē(t ∧ θ̄∆1)|2dt+ I1 + I2 + I3 + I4

≤
∫ T

0
CE|ē(t ∧ θ̄∆1)|2dt+ I1 + I2 + I3 + I4, (6.7)
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where

I1 =

∫ T

0
E
∣∣∣b̄(X(t))−BM

(
X(t), Y X(t),y0

)∣∣∣2dt,
I2 = C

∫ T

0
E
(
|b̄(X̄(t))− b̄(X(t))|2 + |σ(X̄(t))− σ(X(t))|2

)
dt,

I3 = C

∫ T

0
E
(
|b̄(Z(t))− b̄(Z̄(t))|2 + |σ(Z(t))− σ(Z̄(t))|2

)
dt,

I4 = CE
∫ T∧θ̄∆1

0
|σ(Z̄(t))− σ(X̄(t))|

(
|σ(X̄(t))− σ(X(t))|+ |σ(Z(t))− σ(Z̄(t))|

)
dt.

In addition, owing to (S1’), (S2) and (F1)-(F3) with k ≥ 2(θ2 +1), applying (4.5) and Lemma

6.3 implies that for any 0 ≤ t ≤ T ,

E
∣∣∣b̄(X(t))−BM

(
X(t), Y X(t),y0

)∣∣∣2 = E
∣∣∣b̄(Xn∆1

(t))−BM

(
Xn∆1

(t), Y
Xn∆1

(t),y0
)∣∣∣2

= E
[
E
(∣∣∣b̄(Xn∆1

(t))−BM

(
Xn∆1

(t), Y
Xn∆1

(t),y0

n∆1
(t)

)∣∣∣2∣∣∣Xn∆1
(t)

)]
= E

(
E
∣∣∣b̄(x)−BM

(
x, Y x,y0

n∆1
(t)

)∣∣∣2∣∣∣
x=Xn∆1

(t)

)
≤ C

(
∆2 +

1

M∆2

)(
1 + |y0|2(θ2+1) + E|Xn∆1

(t)|2(θ2+1)
)
.

Furthermore, due to p > 2(θ2 + 1), utilizing (6.5) and the Hölder inequality we deduce that

I1 ≤ C
(
∆2 +

1

M∆2

)∫ T

0

(
1 + |y0|2(θ2+1) + E|Xn∆1

(t)|2(θ2+1)
)
dt

≤ Cy0

(
∆2 +

1

M∆2

)∫ T

0

(
1 +

(
E|Xn∆1

(t)|p
) 2(θ2+1)

p
)
dt

≤ Cy0,T

(
∆2 +

1

M∆2

)
. (6.8)

Under (S1’), (S2) and (F1)-(F3) with k ≥ θ1 ∨ 2θ2, by Lemma 6.1 and the Hölder inequality

we derive that

I2 + I3 ≤ C

∫ T

0
E
(
|X̄(t)−X(t)|2

(
1 + |X(t)|2(θ1∨θ2) + |X̄(t)|2(θ1∨θ2)

))
dt

+ C

∫ T

0
E
(
|Z(t)− Z̄(t)|2

(
1 + |Z(t)|2(θ1∨θ2) + |Z̄(t)|2(θ1∨θ2)

))
dt

≤ C

∫ T

0

(
E|X̄(t)−X(t)|p

) 2
p
(
E
(
1 + |X(t)|

2p(θ1∨θ2)
p−2 + |X̄(t)|

2p(θ1∨θ2)
p−2

)) p−2
p
dt

+ C

∫ T

0

(
E|Z(t)− Z̄(t)|p

) 2
p
(
E
(
1 + |Z(t)|

2p(θ1∨θ2)
p−2 + |Z̄(t)|

2p(θ1∨θ2)
p−2

)) p−2
p
dt.

Thanks to 2(θ1 ∨ θ2 + 1) ≤ p ≤ k/(θ2 + 1), we have 2p(θ1 ∨ θ2)/(p− 2) ≤ p ≤ k/(θ2 + 1). Then

applying Lemmas 5.1 and 5.2 and the Hölder inequality yields that

I2 + I3 ≤ C

∫ T

0

(
E|X̄(t)−X(t)|p

) 2
p
(
E(1 + |X(t)|p + |X̄(t)|p)

) p−2
p
dt

+ C

∫ T

0

(
E|Z(t)− Z̄(t)|p

) 2
p
(
E(1 + |Z(t)|p + |Z̄(t)|p)

) p−2
p
dt ≤ Cx0,y0,T,p∆1. (6.9)
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In view of (S1’), together with using the Young inequality and the Hölder inequality, we also

obtain that

I4 ≤ CE
∫ T∧θ̄∆1

0
|ē(t)|

(
|X̄(t)−X(t)|+ |Z(t)− Z̄(t)|

)
×
(
1 + |X(t)|2θ1 + |X̄(t)|2θ1 + |Z̄(t)|2θ1 + |Z(t)|2θ1

)
dt

≤ C

∫ T

0
E|ē(t ∧ θ̄∆1)|2dt+ C

∫ T

0

[
E
(
|X̄(t)−X(t)|p + |Z(t)− Z̄(t)|p

)] 2
p

×
[
E
(
1 + |X(t)|

4pθ1
p−2 + |X̄(t)|

4pθ1
p−2 + |Z(t)|

4pθ1
p−2 + |Z̄(t)|

4pθ1
p−2
)] p−2

p
dt.

Similarly, owing to 2(2θ1 + 1) ≤ p ≤ k/(θ2 + 1), 4pθ1/(p − 2) ≤ p ≤ k/(θ2 + 1). By means of

Lemmas 5.1 and 5.2 and using the Hölder inequality we deduce that

I4 ≤ C

∫ T

0
E|ē(t ∧ θ̄∆1)|2dt+ C

∫ T

0

[
E
(
|X̄(t)−X(t)|p + |Z(t)− Z̄(t)|p

)] 2
p

×
[
E
(
1 + |X(t)|p + |X̄(t)|p + |Z(t)|p + |Z̄(t)|p

)] p−2
p
dt

≤ C

∫ T

0
E|ē(t ∧ θ̄∆1)|2dt+ Cx0,y0,T,p∆1. (6.10)

Then inserting (6.8)-(6.10) into (6.7) implies that

E|ē∆1(T ∧ β∆1)|2 ≤ C

∫ T

0
E|ē(t ∧ β∆1)|2dt+ Cx0,y0,T,p

(
∆1 +∆2 +

1

M∆2

)
.

Using the Gronwall inequality shows that

E|ē∆1(T ∧ β∆1)|2 ≤ Cx0,y0,T,p

(
∆1 +∆2 +

1

M∆2

)
,

which implies the desired result. The proof is complete.

Combining Lemmas 5.1, 6.4 and 6.5, the error estimate of the MTEM scheme is yielded

directly.

Theorem 6.1. If (S1’), (S2), (S3), (S4’), (S5) and (F1)-(F3) hold with k ≥ [2(2θ1 + 1) ∨
2(θ1 ∨ θ2 + 1)](θ2 + 1), then for any x0 ∈ Rn1 , y0 ∈ Rn2 , T > 0, ∆1 ∈ (0, ∆̄1], ∆2 ∈ (0, ∆̄2] and

M ≥ 1,

E|x̄(T )−X(T )|2 ≤ Cx0,y0,T

(
∆1 +∆2 +

1

M∆2

)
.

Theorem 6.1 gives the strong error estimate between the exact solution of the averaged

equation (1.4) and the numerical solution generated by MTEM scheme. The determination of

the strong convergence rate of the averaging principle further allows us to ascertain the strong

error estimate between the slow component of the original system and the MTEM numerical

solution. An important case is presented here to illustrate this. Let us assume that the slow
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drift term b = b1 + b2 and satisfies that

(B1) There exist constants C1 > 0, α > 0 and θ ≥ 2 such that for any x ∈ Rn1 ,

xT b1(x) ≤ −α|x|θ + C1(1 + |x|2).

(B2) There exists a constants L > 0 such that for any x, xi ∈ Rn1 and yi ∈ Rn2 , i = 1, 2,

|b1(x)| ≤ L(1 + |x|θ−1),

|b2(x1, y1)− b2(x2, y2)|+ |σ(x1)− σ(x2)| ≤ L(|x1 − x2|+ |y1 − y2|),

where the constant θ is given in (B1).

(B3) There exists a constant K > 0 such that for any x1, x2 ∈ Rn1 ,

(x1 − x2)
T (b1(x1)− b1(x2)) ≤ K|x1 − x2|2.

Meanwhile, Assumptions (F1)-(F3) are preserved without modification. Subsequently, the sub-

sequent strong averaging principle can be inferred from [19, Theorem 2.2].

Lemma 6.6 ([19, Theorem 2.2]). Suppose that (B1)-(B3) and (F1)-(F3) hold. Then for any

(x0, y0) ∈ Rn1 × Rn2 and T > 0,

E
(

sup
t∈[0,T ]

|xε(t)− x̄(t)|2
)
≤ Cε

1
3 .

Theorem 6.2. Suppose that (B1)-(B3) and (F1)-(F3) hold with k ≥ 4(2θ− 1). Then for any

T > 0, ∆ ∈ (0, 1], ∆2 ∈ (0, ∆̄2] and M > 1,

E|xε(T )−X(T )|2 ≤ CT

(
ε

1
3 +∆1 +∆2 +

1

M∆2

)
.

7 Numerical examples

This section gives two examples and carries out some numerical experiments by the MTEM

scheme to verify the theoretical results.

Example 7.1. Recall the SFSDE (1.5). The exact solution of the averaged equation with initial

value x̄(0) = x0 has the closed form (see, e.g., [21, 24])

x̄(t) =
x0 exp(−3

2 t+W 1(t))√
1 + 2x20

∫ t
0 exp(−3s+ 2W 1(s))ds

.

It can be verified that (S1’), (S2), (S3), (S4’), (S5) and (F1)-(F3) hold with θ1 = 2, θ2 = 1

and any k ≥ 2. According to Remark 6.2, we can choose φ(u) = 1 + u2, ∀ u ≥ 1. For the fixed

∆1,∆2 ∈ (0, 1] and integer M ≥ 1, define the MTEM scheme for (1.5): for any n ≥ 0,

X0 = x0, X
∗
n =

(
|Xn| ∧

(
2∆

− 1
2

1 − 1
) 1

2

)
Xn
|Xn| , Y

X∗
n

0 = y0,

Y
X∗

n
m+1 = Y

X∗
n

m + (X∗
n − Y

X∗
n

m )∆2 +∆W 2
n,m, m = 0, 1, . . . ,M − 1,

BM (X∗
n, Y

X∗
n) = −

(
X∗

n

)3 − 1

M

M∑
m=1

Y X∗
n

m ,

Xn+1 = Xn +BM (X∗
n, Y

X∗
n)∆1 +Xn∆W 1

n .

(7.1)
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Figure 2 predicts the numerical solution generated by the MTEM scheme and the exact solution

of the averaged equation (1.7). Comparing Figure 1 and 2 one observes that the truncation

device in the MTEM scheme effectively suppresses the explosive divergence phenomenon of the

PI iteration process. Correcting the grid points by using the truncation mapping, the MTEM

numerical solution rapidly converges to the exact solution of the averaged equation after going

through the initial transient oscillation phase.

Figure 2: The sample paths of the MTEM numerical solution X(t) on t ∈ [0, 3] with ∆1 = 2−6,

∆2 = 2−6 and M = 218.

Owing to Theorem 2.2, one notices that xε(t) converges to x̄(t) as ε → 0. Next we pay

attention to the strong convergence between x̄(t) and the numerical solution X(t) by the MTEM

scheme (7.1) as ∆1,∆2 → 0 and M∆2 → ∞ revealed by Theorem 6.1. To verify this result, we

carry out some numerical experiments by the MTEM scheme. Provided that we want to bound

the error by O(2−q)(q > 0), the optimal parameters are derived by Theorem 6.1 as follows:

∆1 = O(2−q), ∆2 = O(2−q), M = O(22q).

In the numerical calculations, using 500 sample points we compute the sample mean square of

the error (SMSE)

E|x̄(t)−X(t)|2 ≈ 1

500

500∑
j=1

|x̄(j)(n∆1)−X(j)
n |2, (7.2)

where x̄(j)(n∆1) and X
(j)
n are sequences of independent copies of x̄(n∆1) and Xn, respectively.

Note that for the fixed n and j, x̄(j)(n∆1) and X
(j)
n are generated by a same Brownian motion.

Then we carry out numerical experiments by implementing (7.1) using MATLAB. In Figure 3,

the blue solid line depicts the SMSE for q = 2, 3, 4, 5, 6, 7 with 500 sample points. The red dotted

line plots the reference line with the slope -1. In addition, we plot 10 groups of sample paths of

x̄(t) and X(t) for t ∈ [0, 5] with (∆1,∆2,M) = (2−8, 2−6, 212). The Figure 4 only depicts four

groups of them.
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Figure 3: The SMSE for q = 2, 3, 4, 5, 6, 7 with 500 sample points. The red dashed line is the

reference with slope -1.
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Figure 4: Four pairs of sample paths of x̄(t) and X(t) for t ∈ [0, 5] with (∆1,∆2,M) =

(2−8, 2−6, 212).

Example 7.2. Consider the following SFSDE
dxε(t) =

[
xε(t)− xε(t)(yε(t))2 + yε(t)

]
dt+ xε(t)dW 1(t),

dyε(t) =
1

ε
(xε(t)− 4yε(t))dt+

1√
ε
(xε(t) + yε(t))dW 2(t)

(7.3)

with the initial value (x0, y0) = (1, 1). Assume that

b(x, y) = x− xy2 + y, σ(x) = x, f(x, y) = x− 4y, g(x, y) = x+ y. (7.4)

It can be verified that (S1)-(S5) and (F1)-(F3) hold with θ1 = θ2 = 2, θ3 = θ4 = 2 and

6 < k < 9. Then using lemma 2.2 yields that the strong convergence between xε(t) and

the averaged equation x̄(t) in pth (0 < p < k) moment. Although the averaged equation

provides a substantial simplification for SFSDE (7.3), the closed form of the averaged equation

is unavailable. Then classical numerical approximation techniques can’t be used directly. This

is where MTEM scheme defined by (3.6) comes in.

First, by (3.1) we take φ(u) = 1+u2, u ≥ 1. Then for any ∆1 ∈ (0, 1],∆2 ∈ (0, 1] and integer
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M > 0, define the MTEM scheme for (7.3): for any n ≥ 0,

X0 = 1, X∗
n =

(
|Xn| ∧

(
2∆

− 1
2

1 − 1
) 1

2

)
Xn
|Xn| , Y

X∗
n

0 = 1,

Y
X∗

n
m+1 = Y

X∗
n

m + (X∗
n − 4Y

X∗
n

m )∆2 + Y
X∗

n
m ∆W 2

n,m, m = 0, 1, . . . ,M − 1,

BM (X∗
n, Y

X∗
n) = X∗

n +
1

M

M∑
m=1

(
−X∗

n

(
Y X∗

n
m

)2
+ Y X∗

n
m

)
,

Xn+1 = Xn +BM (X∗
n, Y

X∗
n)∆1 +Xn∆W 1

n .

Therefore, by Theorem 5.2, using this scheme we can approximate the slow component of SFSDE

(7.3) in the pth (0 < p < k/2) moment. In order to test the efficiency of the scheme, we

carry out numerical experiments by implementing (7.5) using MATLAB. Let (∆1,∆2,M) =

(2−10, 2−8, 216). The Figure 5 depicts the five sample paths of |X(t)| and sample mean value

of 100 sample points in different time interval [0, T ], where T = 5 (left), T = 10 (middle) and

T = 20(right), respectively.

Figure 5: Five sample paths and sample mean value of |X(t)| for 100 sample points in different

time intervals

8 Concluding remarks

In this paper, we have developed an explicit numerical scheme tailored for a category of

super-linear SFSDEs wherein the slow drift coefficient exhibits polynomial growth. An explicit

multiscale numerical scheme, termed MTEM, has been proposed through the application of a

truncation mechanism. The strong convergence of the numerical solutions yielded by the MTEM

scheme has been rigorously established. Furthermore, the convergence rate has been determined

under weakly restrictive conditions. The construction of an explicit scheme to approximate the

dynamical behaviors of the exact solutions for more generic SFSDEs featuring a super-linear

fast component remains an intriguing topic for future investigation. This direction will inform

our subsequent research endeavors.

37



References

[1] J. Bao, J. Shao, C. Yuan, Approximation of invariant measures for regime-switching diffu-

sions, Potential Anal., 44 (2016), pp. 707-727.
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