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Abstract

How does the delay function affect its decay rate for a stable stochastic delay differential equation with an
unbounded delay? Under suitable Khasminskii-type conditions, an existence-and-uniqueness theorem for an
SDDE with a general unbounded time-varying delay will be firstly given. Its decay rate will be discussed
when the equation is stable. Given the unbounded delay function, it will be shown that the decay rate can
be directly expressed as a function of the delay.
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1. Introduction

Systems in many branches of sciences and industries depend not only on their current states, but also
on their past states. Stochastic delay differential equations (SDDEs) are widely used for modeling such
systems. Consider following SDDE defined on t ≥ t0 with time-varying delay δ(t):

dx(t) = f(x(t), x(t− δ(t)), t)dt+ g(x(t), x(t− δ(t)), t)dB(t), (1.1)

where f : Rn × Rn × R+ → Rn and g : Rn × Rn × R+ → Rn×m are Borel-measurable functions. Details on
equation (1.1) will be introduced in next section. In this article , we focus on the influence of δ(t) on the
stability and decay rate of the equation.

Among existing researches, three categories of delay functions have mostly been discussed. The first
category consists of bounded functions, including constant and differentiable time-varying delays. This
is the equation where many theories are initially developed. We can find plentiful results on asymptotic
stability of such equations, primarily based on Lyapunov methods and other analytical techniques. Here we
only mention two comprehensive books on theories for SDDEs, [1] and [2]. The second category comprises of
bounded but non-differentiable delay functions. After [3] initially proposed a new Lebesgue-measure based
argument, we have seen significant progresses on stability analyses for equations with such non-differentiable
delays([4],[5]). The third category is proportional, say δ(t) = qt with q ∈ (0, 1). Compared to exponential
decay rates for stable SDDEs with bounded delays, those equations with proportional delays only have
polynomial decay rates (see [6], [7], [8] and references therein).

Mathematically, δ(t) can be other unbounded functions than proportional ones. Now there comes a
question that what the decay rate will be when such an equation is stable? On such equations, [9] has
given results for a linear scalar SDDE based on related analyses for ordinary differential equations. To the
best of authors’ knowledge, there are no general results on decay rates for such equations with unbounded
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time-varying delays based on Lyapunov methods. This article aims to close the gap. Recent researches on
multi-dimensional SDDEs(e.g. [10], [11]) have primarily focused on the highly nonlinear characteristics of
the equation coefficients. We will focus on investigating the influence of unbounded time-varying delays on
the decay rate of the equation. Our main contributions include:

(1) proposing a framework for analyzing an SDDE with a general unbounded delay based on Lyapunov
argument and Khasminskii-type conditions;

(2) showing that the decay rate can be expressed as a function of the given unbounded delay.
This article is arranged as follows. Preliminaries and notations on the unbounded delay and the decay

rate will be introduced in section 2. In section 3, Khasminskii-type conditions are proposed to guarantee the
existence-and-uniqueness for the equation. Then its stability and decay rate are discussed. An illustrative
example will given in section 4 to verify our theories. The conclusion and comparison with proportional
delays are made in the last section.

2. Preliminaries and notations

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.
Let B(t) be an m-dimensional Brownian motion defined on the probability space. If A is a vector or matrix,
its transpose is denoted by AT . For an x ∈ Rn, |x| is its Euclidean norm. For a function ξ(t) defined on
[a, b], denote ∥ξ∥ = sup

t∈[a,b]

|ξ(t)|.

Consider an SDDE (1.1) satisfying following two assumptions.
Assumption 2.1. Both f and g satisfy the local Lipschitz condition: for any integer l ≥ 0, there exists a
constant Hl such that for any |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ l and t ≥ t0,

|f(x, y, t)− f(x̄, ȳ, t)|2
∨

|g(x, y, t)− g(x̄, ȳ, t)|2 ≤ Hl(|x− x̄|2 + |y − ȳ|2). (2.1)

Assumption 2.2. δ(t0) > 0. For any t ≥ t0, δ(t) is differentiable with 0 < δ′(t) ≤ δ̄ < 1.

On the base of Assumption 2.2, a suitable initial condition for equation(1.1) can be given as {x(t)|t0 −
δ(t0) ≤ t ≤ t0} = ξ(t) for some ξ(t) defined on [t0 − δ(t0), t0].

Define ψ(t) = t− δ(t) on [t0,+∞). Obviously, ψ(t) is strictly increasing and has its inverse w(t). Then
define w(n+1)(t) = w

(
w(n)(t)

)
for n ≥ 1.

Lemma 2.3. Let Assumption 2.2 hold. The sequence {w(n)(t0)}n≥1 is increasing to ∞ monotonously.
Proof. Assumption 2.2 gives 1 − δ̄ ≤ ψ′(t) < 1, so that w(t) is increasing and w′(t) ∈ (1, (1 − δ̄)−1]. By
ψ(t) < t, we have t = w(ψ(t)) < w(t), which then proves w(n+1)(t) > w(n)(t) for any n ≥ 1.

By Lagrange’s theorem, there is κn ∈ (w(n−1)(t0), w
(n)(t0)) such that

w(n+1)(t0)− w(n)(t0) = w′(κn)(w
(n)(t0)− w(n−1)(t0)) > w(n)(t0)− w(n−1)(t0)

and subsequently, w(n)(t0) > n(w(t0)− t0) + t0 giving lim
n→∞

w(n)(t0) = ∞.

Given the delay function δ(t), define

vδ(t) = exp

{ˆ t

t0

1

δ(s)
ds

}
. (2.2)

Lemma 2.4. On vδ(t), we have two useful properties:
(1) For any t > t0,

e ≤ vδ(t)

vδ(t− δ(t))
≤ exp{(1− δ̄)−1}. (2.3)
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(2) For any constant a > 0 and t > t0,
ˆ t

t0

(
vδ(s)

)a
ds ≤ 1

a
δ(t)

[(
vδ(t)

)a − 1
]

(2.4)

Proof. (1) From the definition of vδ(t), we see vδ(t)
vδ(t−δ(t)) = exp

{´ t
t−δ(t)

1
δ(s)ds

}
. Because δ(t) is increasing

on t, it will be true that
´ t
t−δ(t)

1
δ(s)ds ≤ δ(t)

δ(t−δ(t)) . By the Lagrange theorem again, there exists a κt lying
between δ(t) and t− δ(t), such that

δ(t) = δ(t− δ(t)) + δ′(κt)δ(t) ≤ δ(t− δ(t)) + δ̄ · δ(t),

which then derives δ(t) ≤ 1
1−δ̄ δ(t− δ(t)) and subsequently, (2.3) holds.

(2) Obviously, we have d
dt

(
vδ(t)

)
= δ−1(t)vδ(t), so that

ˆ t

t0

(
vδ(s)

)a
ds =

ˆ t

t0

δ(s)

a
d
((
vδ(s)

)a) ≤ δ(t)

a

((
vδ(t)

)a − (
vδ(t0)

)a)
. (2.5)

While we see vδ(t0) = 1, (2.4) is then held.

In this article, we will show that, under suitable conditions, equation (1.1) will be stable with decay rate
vδ(t) as defined in (2.2). Due to the page limit, we only focus on its moment decay rate.

Definition 2.5. The equation (1.1) is stable in the p-th moment sense with decay rate vδ(t), if there exists
a positive number ε0 > 0 such that

lim sup
t→∞

ln (E|x(t)|p)
ln vδ(t)

≤ −ε0. (2.6)

On the existence and uniqueness of the solution for equation (1.1), besides Assumption 2.1, we should
impose additional conditions.

Denote by C2,1(Rn × [t0,∞);R+) the family of all continuous non-negative functions V (x, t) defined on
Rn × [t0,∞) such that they are continuously differentiable twice in x and once in t. Given such a V (x, t),
define LV : Rn × Rn × [t0,∞) → R by

LV (x, y, t) = Vt(x, t) + V Tx (x, t)f(x, y, t) +
1

2
trace[gT (x, y, t)Vxx(x, t)g(x, y, t)],

where

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) =

(∂V (x, t)

∂x1
, · · · , ∂V (x, t)

∂xn

)T
, and Vxx(x, t) =

(∂2V (x, t)

∂xi∂xj

)
n×n

.

3. Khasminskii-type conditions for stability

Assumption 3.1. There exists a function V (x, t) ∈ C2,1(Rn × R+;R+), with

lim
k→∞

(
inf

|x|≥k,t≥t0
V (x, t)

)
= ∞, (3.1)

and a positive constant λ0 such that for any (x, y, t),

LV (x, y, , t) ≤ λ0[1 + V (x, t) + V (y, t− δ(t))]. (3.2)
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Theorem 3.2. Let Assumptions 2.1 and 3.1 hold. For any given initial data ξ, there exists a unique global
solution x(t) to (1.1). Moreover, for any t ≥ t0, it holds that

EV (x(t), t) <∞. (3.3)

Proof. On the base of Assumption 2.1, for any given initial data ξ, there is a maximal local solution x(t) for
equation (1.1) on t ∈ [t0, σ∞), where σ∞ is the explosion time. Let k0 > 0 be sufficiently large for ∥ξ∥ < k0.
For each integer k ≥ k0, define stopping time τk = inf{t ∈ [t0, σ∞) : |x(t)| ≥ k}. Clearly, {τk} is increasing
and define τ∞ = lim

k→∞
τk a.s.. Note that if we can show τ∞ = ∞ a.s., then σ∞ = ∞ a.s.. We will get this by

showing that for any n, τ∞ > w(n)(t0) a.s.
By the Itô formula and Assumption 3.1, we can show that, for any k ≥ k0 and t ≥ t0,

EV (x(τk ∧ t), τk ∧ t)

≤EV (x(t0), t0) + λ0(t− t0) + λ0E
ˆ τk∧t

t0

V
(
x(s− δ(s)), s− δ(s))

)
ds+ λ0E

ˆ τk∧t

t0

V (x(s), s)ds.

Firstly, let us restrict t ∈ [t0, w(t0)]. By Assumption 3.1, we get

EV (x(τk ∧ t), τk ∧ t) ≤ H1 + λ0E
ˆ τk∧t

t0

V (x(s), s)ds = H1 + λ0E
ˆ t

t0

V (x(τk ∧ s), τk ∧ s)ds (3.4)

where H1 = EV (x(t0), t0) + λ0(w(t0) − t0) +
λ0

1−δ̄

´ t0
t0−δ(t0) V (ξ(s), s)ds < ∞. And then by the Gronwall

inequality, we have
EV (x(τk ∧ t), τk ∧ t) ≤ H1 exp (λ0(w(t0)− t0)).

Denote µk = inf
|x|≥k,t≥t0

V (x, t). By (3.1), we see lim
k→∞

µk = ∞. Obviously, we have

µkP(τk ≤ w(t0)) ≤ H1 exp (λ0(w(t0)− t0)).

Letting k → ∞, we hence obtain that P(τ∞ ≤ w(t0)) = 0, namely P(τ∞ > w(t0)) = 1 and then (3.3) holds
for t ∈ [t0, w(t0)].

Secondly, for t ∈ [w(t0), w
(2)(t0)], it follows from (3.4) that

EV (x(τk ∧ t), τk ∧ t) ≤ H2 + λ0E
ˆ t

t0

V (x(τk ∧ s), τk ∧ s)ds (3.5)

where
H2 = H1 + λ0(w

(2)(t0)− w(t0)) +
λ0

1− δ̄

ˆ w(t0)

t0

EV (x(s), s)ds <∞.

We then show that for any t ∈ [w(t0), w
(2)(t0)], EV (x(τk ∧ t), τk ∧ t) ≤ H2 exp (λ0(w

(2)(t0)− t0)). Now
using the same argument as in the first step, we have P(τ∞ > w(2)(t0)) = 1 and (3.3) holds for any
t ∈ [w(t0), w

(2)(t0)].
Finally, repeating this procedure and noticing that for any l ≥ 1,

ˆ w(l+1)(t0)

w(l)(t0)

V (x(s− δ(s)), s− δ(s))ds ≤ 1

1− δ̄

ˆ w(l)(t0)

w(l−1)(t0)

V (x(s), s))ds,

we can show that, for any n, P(τ∞ > w(n)(t0)) = 1, and the assertion (3.3) holds for any t ∈ [t0, w
(n)(t0)].

By Lemma 2.3, w(n)(t) → ∞ as n→ ∞, we then prove the theorem.

Theorem 3.3. If there exists a function V (x, t), α0 ≥ 0 and four positive constants c0, p, α1 and α2 with
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α2 < α1(1− δ̄), such that V (x, t) ≥ c0|x|p and for any (x, y, t),

LV (x, y, t) ≤ α0 − α1V (x, t) + α2V (y, t− δ(t)), (3.6)

we will have

(1) The solution x(t) obeys

lim sup
t→∞

E|x(t)|p

δ(t)
≤ α0

c0ε0
(3.7)

(2) If, in addition, α0 = 0, then the solution has the properties that

lim sup
t→∞

lnE|x(t)|p

ln vδ(t)
≤ −ε0, (3.8)

where ε0 is the unique positive root for following equation on u

α1 −
u

δ(t0)
− α2

1− δ̄
exp

(
u

1− δ̄

)
= 0. (3.9)

Proof. Denote h(u) = α1 − (δ(t0))
−1u − α2(1 − δ̄)−1 exp

(
(1− δ̄)−1u

)
. Obviously, h(u) is continuous and

strictly decreasing satisfying h(0) = α1 − α2(1− δ̄)−1 > 0 and lim
u→+∞

h(u) = −∞, which shows that such ε0
exists and is unique.

For any 0 < ε < ε0, h(ε) > 0 holds obviously. Applying the generalized Itô formula on [vδ(t)]εV (x(t), t)
and with the aid of the stopping time sequence {τk} defined in the proof of Theorem 3.2, we have

E([vδ(τk ∧ t)]εV (x(τk ∧ t), τk ∧ t))− V (x(t0), t0)

=E
ˆ τk∧t

t0

[vδ(s)]ε
( ε

δ(s)
V (x(s), s) + LV (x(s), x(s− δ(s)), s)

)
ds.

Under condition (3.6), we then obtain

E([vδ(τk ∧ t)]εV (x(τk ∧ t), τk ∧ t))− V (x(t0), t0)

≤α0

ˆ t

t0

[vδ(s)]εds+ E
ˆ τk∧t

t0

[vδ(s)]ε
( ε

δ(t0)
− α1

)
V (x(s), s)ds+ α2E

ˆ τk∧t

t0

[vδ(s)]εV (x(s− δ(s)), s− δ(s))ds.

Simply integrating with transformation u = ψ(s) = s− δ(s) or equivalently, s = w(u), we can derive

E
ˆ τk∧t

t0

[vδ(s)]εV (x(s− δ(s)), s− δ(s))ds

=E
ˆ ψ(τk∧t)

ψ(t0)

[vδ(w(u))]εV (x(u), u)
1

1− δ′(w(u))
du

≤ 1

1− δ̄

ˆ t0

t0−δ(t0)
V (ξ(s), s)ds+

1

1− δ̄
E
ˆ τk∧t

t0

[vδ(w(u))
vδ(u)

]ε
[vδ(u)]εV (x(u), u)du.

Applying two properties in Lemma 2.4 and h(ε) > 0, we then calculate

E([vδ(τk ∧ t)]εV (x(τk ∧ t), τk ∧ t)) ≤C + α0

ˆ t

t0

[vδ(s)]εds− h(ε)E
ˆ τk∧t

t0

[vδ(s)]εV (x(s), s)ds

≤C +
α0

ε
δ(t)([vδ(t)]ε − 1),
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where C = V (x(t0), t0) +
1

1−δ̄

´ t0
t0−δ(t0) V (ξ(s), s)ds. Taking k → ∞ and applying V (x, t) ≥ c0|x|p, we get

E|x(t)|p ≤ C

c0
[vδ(t)]−ε +

α0

c0ε
δ(t)(1− [vδ(t)]−ε) (3.10)

and then the first assertion (3.7) is verified by letting ε→ ε0.
If α0 = 0, we see from (3.10) that E|x(t)|p ≤ C

c0
[vδ(t)]−ε, which means lim sup

t→∞

lnE|x(t)|p
ln vδ(t)

≤ −ε. Then the
second assertion (3.8) is also verified by letting ε→ ε0.

4. An illustrative example

In order to verify our results, consider following nonlinear equation

dx(t) =

(
−2x(t) +

t

1 + t
x
(
t−

√
t
))

dt+
1

2
sin

(
x(t−

√
t)
)
dBt (4.1)

defined on [1,+∞) with the unbounded delay δ(t) =
√
t. The initial condition is given by x(s) = s, 0 ≤ s ≤ 1.

Obviously, the equation satisfies Assumption 2.1. When t ≥ 1, δ′(t) ∈ (0, 12 ] gives δ̄ = 1
2 . Taking

V (x) = x2 for analyses, we see LV (x, y, t) = 2x(−2x + t
1+ty) +

1
4y

2 ≤ −3x2 + 5
4y

2, so that conditions in
Theorem 3.3 are satisfied with α0 = 0, α1 = 3 and α2 = 5

4 , and equation (4.1) is mean-square stable with
decay rate vδ(t) = e

√
t. We use MATLAB to simulate E|x(t)|2 for the solution of (4.1) as shown in Figure 1.

The simulation curve depicted in the left subfigure, where the vertical axis represents E|x(t)|2, demonstrates
the system’s stability. In the right subfigure, with the vertical axis lnE|x(t)|2√

t
, the tendency of the simulation

curve shows the decay rate e
√
t for E|x(t)|2, validating our theories.

Fig. 1. Left: simulation curve of E|x(t)|2 as a function of t. Right: simulation curve of ln E|x(t)|2√
t

as a function of t.

5. Conclusions

This article has focused on the decay rate for a stable SDDE with an unbounded time-varying delay
function. Under Khasminskii-type conditions, the existence-and-uniqueness and stability theorems on the
solution for such an SDDE are proposed. Given the unbounded delay function, a stable equation will have
the decay rate dependent on the delay. Meanwhile, if we set δ(t) = qt, vδ(t) will be t

1
q , which just means a

polynomial decay rate for an equation with a proportional delay. So our theories will cover related analyses
for SDDEs with proportional delays. The results got in this article can be extended further to cover more
equations and topics.
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