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Abstract

In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures
using Recursive Principle Component Analysis (RPCA) in conjunction with online damage indicators is proposed. The RPCA
algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive
time instants, to obtain recursive proper orthogonal modes online using the rank-one perturbation method. The proposed method
when applied to streaming data, eliminates the need for offline post processing. Numerical simulations performed on 5-DOF
nonlinear system under white noise excitations, with different levels of damage demonstrate the robustness and efficacy of the
proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
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1. Introduction

Damage detection in structures is a topic that has received considerable attention in the literature ([1-3]). The
basic idea is that the dynamic parameters are related to the physical and material properties of the structure, i.e. mass,
stiffness and damping which suffer significant alteration due to damage (caused due to excessive response, fatigue,
buckling, accumulation of cracks, impact of a foreign object, etc.). A robust damage detection framework should
provide an early detection, estimate the severity of the damage, determine the location of the damage and predict the
remaining useful life of the structure. Online damage detection entails identification of damage of a multi degree of
freedom vibrating system as the recorded vibration data streams in real time. Bulk of the vibration based damage
detection techniques rely heavily on post processing of data that has already been acquired. These methods can be
classified as: model based methods involving a comparative analysis with respect to a detailed numerical model of
the system ([1,4]), and response based methods which detect damage from only the response data of the system.
This paper endeavors to address the problem of online damage detection of vibrating systems and proposes a novel
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technique utilizing the concepts of recursive principal component analysis (RPCA) and a robust online condition
indicators called recursive residual error (RRE).

Classical damage detection is closely related to system identification techniques ([2,5]). In the context of adaptive
system identification; recursive subspace identification, recursive least-squares ([6,7]), hybrid clustering for nonlinear
systems using radial basis function networks, detection of change points in data using CUSUM ([3]) are some notable
contributions. But none of the aforementioned algorithms are amenable to online damage detection. This is due to
the fact that there is a close relationship between online damage detection and the time varying modal behavior of
multi degree of freedom vibrating systems that evolve in real time. In recent times, a paradigm shift to data driven
statistical techniques like blind source separation ([8]) and principal component analysis pitched in a semi-recursive
and windowed data processing framework has paved way to opportunities in real time structural health monitoring
and damage detection.

The key objective of the present work is to develop an algorithm which can process the data online and to detect
damages or changes in the stiffness of the structure in real time. Since the data streams in continuously, the algorithm
must work online, which further necessitates that it should be relatively parameter free and independent of baseline
data. In this paper, a baseline free approach is proposed which facilitates the monitoring of structural systems directly
using the acceleration data. CIs are employed in order to detect the instant of damage online. Damage in the present
context is idealized as a transition from linear to nonlinear behavior (or vice-versa) of vibrating systems. The change
in nonlinearity serves as an indication of damage of the monitored system which can be utilized to develop an online
damage detection framework exclusive of baseline data. The cases of false detections are addressed by effective use
of scatter plots and observing the change in orientation of cluster pre and post event.

The major contributions of this work are as follows: Firstly, a novel framework has been provided using RPCA
([9]) as a damage detection tool that has so far not been explored in the context of structural damage detection.
Secondly, the paper proposes the use of RRE to provide a unique online damage detection technique incorporated
into the RPCA framework which serves as a viable candidate for online damage detection. Finally, the authors have
extended the utility of the proposed algorithm to assess damage detection in a 5 degree of freedom (dof) buocwen
system excited by a white noise, in which the nonlinearity level is subjected to various degrees of changes to simulate
different levels of damage in the structure. These numerical results were complemented with scatter plots which help
in validating the exact instant of damage, thereby providing good visual aid of damage manifestation in the system.

2. RPCA and structural dynamics

Traditional PCA analyzes data in batches, offline, which cannot be utilized without the application of windowing
and using a baseline value. This motivates the need of using a baseline free approach amenable to online damage detec-
tion which is addressed by the RPCA based framework. The algorithm is based on rank-one update of the eigenspace
of the covariance matrix applied to the data vector and as new sampled data becomes available, the eigenstructure
is updated as a whole which extracts the linear normal modes (LNMs), instead of updating the covariance matrix
directly, thus providing an immediate update of the eigenvalues and the proper orthogonal matrices (POMs)(i.e., the
eigen vectors) in a recursive manner ([9]). In order to understand the application of RPCA in the purview of structural
dynamics, consider a linear, classically damped, and lumped parameter system with mass and stiffness matrices M
and K subjected to an external force, with x as the displacement vector.

MI{X ()} + [CIH{X (O} + [K{x (D)} = {F (1)} ey

where F(¢) is the input excitation which is assumed to be Gaussian and broadband. The solution of the equation can
be written as {x},, = [V],xs{q}; From the previous discussion, it can be inferred that the POMs (W) can be expressed
in terms of LNMs (V) and error terms (&) as shown:

Y=WX=(V +£HX=Q+T )
where Q is the modal ensemble matrix and I' is the matrix containing the error terms. Hence, a new form of the
covariance matrix R, is obtained:
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The basic RPCA equation can be written as:

-1 1
k—kal + =X X7 4)

R, =
KTk k

where R; and X; are the covariance matrix and the matrix of the data points at the kK instant, respectively; and
Ri_, denotes the covariance matrix at the (k — 1) instant. The covariance estimate R, can be expressed as an eigen
decomposition as: R; = WkaW,{. Thus for (k — 1) data point the eigenvalue decomposition of R;_; can be
expressed as, Ry_; = W;_1€;_W,_;, and the gain depth parameter By is given by 5; = W,{_ Xt On substituting the
value of gain depth parameter and the covariance estimate in equation 4, the following expressions can be obtained

(&)
W (kQOW! = Wi {(k — 1)1 +BBIIWT_, )

For the RPCA algorithm to be stable and robust, it is important that the term {(k — 1)Q;_; + ,Bkﬁ,f} is diagonally
dominant, which can be demonstrated by expanding €;_; in terms of LNMs and error terms as follows:

Q1 = Qi T Qo+ QI+ Qo "Iy + Ty IT 6)

As N — oo, QTQ is approximately diagonal ([10]) for systems having mild to moderate damping under sufficiently
broadband excitations. Gershgorin’s theorem can now be applied on the diagonally dominant matrix which provides
recursive eigen space updates using perturbation techniques at each point in time. For a structural system, the recursive
eigen space update is obtained using a first order perturbation (FOP) approach which provides a less computationally
intensive algorithm in a recursive framework ([9]) for the eigen value decomposition (TkAkT]{) of the term (k —

DO + ﬁk,B,f, yielding the following iterative update equations: Wy = W;_; T} and & = %
3. Damage detection using Recursive Residual Error (RRE)

In the present damage detection framework, RPCA facilitates online processing of data by tracking the eigen space
by a set of damage markers which are referred to as condition indicators (CIs) or damage indicators ([11]) that can
detect damage online. These indicators are based on the change in the pattern of the eigen space due to damage which
is manifested through alteration of eigen vectors before and after damage. In the present work, RRE is presented as
the key CI along with scatter plots which validates the instant of damage. The main motivation for this condition
indicator is derived from the use of residual error as a criterion in quantification of nonlinear behavior ([12,13]) which
presents the use of residual error as a measure of distortion of subspaces of a nonlinear system with increase in levels
of excitation. The projection of nonlinear response at time ¢, denoted as x,;(t), on the matrix of proper orthogonal
modes (POMs) at low level of excitation U is given by the following expression: x;,; = UiUiTxnl(t) The transformed
response is obtained by the transforming the nonlinear response using the linear POMs (Ui) ([13]). This provides a
basis for the development of a condition indicator based on RRE for damage detection. The traditional residual error
works in batch mode whereas to tailor it towards online damage detection, the current modification requires it to work
in an online mode where the data streams in real time. The modifications require the arrangement of eigen values
in descending order of magnitude, such that the eigenvectors are correspondingly arranged as: Wy= [Wll(Wi], such
that, Wli represents the least number of eigenvectors whose corresponding eigen values explain more than 90% of the
variance. Considering a damage at the end of (k — 1) instant, for the initial few seconds, the updated eigenvector Wll(
can be approximated to be equal to the eigenvectors spanned by the previous time stamp, Wll(_1 (i.e.,Wll( = W11<—1)' For
detecting the instant of damage, the RRE proposed in this paper (yrg-1) can be represented by the following equation:

xrro = X7 (k) — WL X2 @)

From the equation 7, ygg-1 can be interpreted as the distance metric between the transformed response and its projec-
tion on the subspace at the previous time stamp.

4. Proposed Algorithm

The overall methodology followed in this paper is shown in Figure 1, which entails processing of the acceleration
data by the RPCA algorithm as it streams in real-time for online temporal damage detection. Whenever a significant
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Fig. 1: Flowchart for the proposed method

alteration is observed in the behavior of RRE, the outlier detection step operates on the RRE data accumulated till the
event instant (i.e. the instant of change) to determine whether the change corresponds to an outlier or a damage. The
basic steps of the algorithm is shown in Figure 1.

5. Numerical Example

In order to illustrate an application of the proposed method, numerical simulations are performed on a 5-storey
model with a buoc-wen oscillator at the base degree of freedom to simulate nonlinear change of state which is con-
textually defined as damage, by subjecting the model to white noise excitation of duration 40s. The 5 storey structure
is modeled with 4 floors and a base. The equation of motion for the system can be summarized as:

Mii + Cit + Ku = A f — Mliig )

A simple shear building representation is assumed to arrive at the expressions for assembled mass (M), damping (C),
and stiffness (K) matrices respectively, which are skipped here for brevity. For each of the four floor levels above the
base, the values for the respective parameters are 7461 kg, 23.71 kNs/m and 11912kN/m; while the values for the base
are 6800 kg, 3.74 kNs/m and 232 kN/m respectively. In equation (8), iig represents the ground acceleration and A
represents the location of the base at the point of application of the non linear force (f) due to the LRB base isolator,
given by:

S =xz2Qpp — kpxp — cpp 9

where, O, = (1 - k‘—[”’) and k; and ¢, are the stiffness and the viscous damping respectively, in the horizontal

direction. The evolutionary variable z can be obtained by the solution of the following nonlinear differential equation:

2= —yzlipl[2"7] = By 12"] + Ay (10)

where vy, 8, A and n are the shape parameters of the hysteresis loop. For the current model, A = (:Lj”l) =6,y=0=
39.1, Q, = 17800 kg and n=1.

5.1. Results for White Noise

Temporal damage detection cases are studied by sequentially changing the « corresponding to 30%, 40% and 50%
changes in nonlinear characteristics respectively. The damage is detected at 31s using RRE (yzg-1) as a CI and is
validated using scatter plots of the transformed responses of the system at pre and post time instants of 30s and 32s
as shown in Figure 2. While the RREs show damage by a significant change at that instant and then hitting a plateau
region for the rest of the duration of the excitation (Figure 2a), the scatter plot between the transformed response show
a definite change in orientation which can be depicted easily from the plot shown in Figure 2b, thereby providing
a robust visual CI for indicating damage. The relative change in global RREs corresponding to different levels of
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Fig. 2: Damage detection using condition indicators for 50% nonlinearity change

Table 1: Global RREs for numerical modeling (using white noise)

Damage (%) Pre-damage RRE Post-damage RRE % change

30.00 0.71 0.97 36.62
40.00 0.68 1.02 50.15
50.00 0.69 1.27 84.06
10 20 Time (s) 3, 40 50
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Fig. 3: Damage detection using RRE and scatter plots for 50% nonlinearity change

damage is shown in Table 1. It is clear from the results in Table 1 that the percentage change in RRE increases with
the level of damage.

To demonstrate the efficacy of scatter plots, data are considered in growing windows with initial window size of
10s and at increments of 10s before damage and a slightly smaller increment in the vicinity of damage (31s). It
can be clearly observed from Figure 3 that there is a significant change in orientation of the scatter, also reflected
by the change in the signs of the correlation coefficients, between the successive windows immediately before and
after damage. Considering the time of damage as 31s (as obtained from RE plot), the 4™ window clearly indicates
the damage instant for the specified level of non linearity. Figure 4 shows the robustness of the RREs for various
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instants of damage for 30% and 40% damage cases, which clearly depicts that RRE shows distinct change for higher
percentage change in non linearity.

a)30% _ b)40%

4553(5;- 45

318%’—'-

Ve

RRE
RRE

11s 11

2‘0 3‘0 40 50 0 10 I . I0 40 50
Time(s) ;i‘lme(sﬁ

Fig. 4: Damage detection using RRE for various nonlinearity change at different time instances

6. Conclusions

A new online damage detection algorithm for vibrating structural systems using a combination of recursive princi-
ple component analysis and online condition indicators is presented. Subsequent implementation of recursive residual
errors (RRE) estimated on the eigenvector updates facilitated online detection of structural damage which provided the
instant of damage for the present framework. Application of cluster plots further eliminated the presence of outliers,
by observing the change in correlation coefficient between the transformed responses. The proposed methodology
provided successful results for numerical simulations both for white noise and earthquake excitations. Presented case
studies show that the proposed approach results in successful damage detection and it can be safely concluded that
the current framework is quite robust in detecting the instant of damage online.
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