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Abstract—Performance optimization of various combustion-
based power generation systems requires fast and accurate online 
monitoring of their thermochemical parameters. As an in situ 
sensing technology, laser absorption spectroscopy (LAS) with 
modulated wavelength, has been widely adopted. However, rapid 
parameters retrieval from modulated LAS signal can be 
challenging due to the underlying complex and non-linear 
spectroscopy model. Most existing acceleration algorithms utilize 
supervised neural networks in an end-to-end manner ignored 
constraints on the spectroscopic model constraint. In addition, 
most state-of-the-art neural networks exhibit complicated 
structures with low computation efficiency. In this work, we 
developed a spectroscopy-constraint neural network for rapid 
thermochemical parameters extraction. The laser spectroscopic 
model is integrated in the proposed network through an encoder-
decoder structure, offering independency on synthetic labeled 
dataset and hence enhance its performance on measurement 
thermochemical parameters in industrial scenarios. Furthermore, 
the developed network has a simple structure and lightweight 
parameter size. A case study of an aircraft engine exhaust 
monitoring is presented. The proposed model effectively reveals 
the dynamic behaviors of the engine. Compared with two 
representative supervised models, the new model exhibits better 
performance on spectral recovery as well as higher computational 
efficiency. 

Index Terms—laser absorption spectroscopy; wavelength 
modulation spectroscopy; thermochemical parameters; neural 
networks; gas turbine engine. 

I. INTRODUCTION
YNAMIC process modelling [1-3] and intelligent 
control strategies [4, 5] can greatly improve 
operational performance of combustion-based power 

generation systems. These technologies contribute to better 
operational safety and higher energy-transition efficiency. 
Meanwhile, it places stringent requirements on instruments for 
fast, accurate and online monitoring of the system’s 
thermochemical parameters, such as temperature and gas 
concentrations. For example: the flue gas temperature and 
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species concentrations were dynamically monitored to ensure 
the close-loop stability and combustion efficiency of a coal-
fired power plant [6, 7]. Emissions of Nitrogen oxides (NOx) 
were monitored online for efficient pollution controlling of 
solid waste incinerators [8, 9]. Exhaust gas temperature and 
species concentrations of gas turbine engines were measured to 
infer the combustion efficiency and operational safety [10-12]. 
However, such high-fidelity measurements are very 
challenging in harsh industrial environments due to the 
existence of significant distortion, such as the environmental 
noise and mechanical vibration.  

Laser absorption spectroscopy (LAS), as a non-intrusive 
optical sensing technique [13], has been widely employed for 
in situ diagnosis of thermochemical parameters in industrial 
processes. It is implemented by scanning the laser wavelength 
across the absorbing transitions of target molecules and usually 
coincided with high-frequency wavelength modulation for 
better noise immunity. Traditionally, the demodulated 
absorption spectra from the laser transmission signal are fitted 
to the spectroscopic model through a least-square procedure 
[14]. The fitting process, however, is iterative and 
time/resource-consuming, hindering the real-time extraction of 
dynamically varying parameters. In response to this challenge, 
data-driven methods have become popular for rapid LAS-based 
gas monitoring, exploiting their remarkable computational 
efficiency in extracting spectral features. 

The state-of-the-art data-driven LAS techniques [15-25] 
mainly utilize supervised-learning neural networks in an end-
to-end manner, requiring a labelled dataset for training. Many 
of these models are trained solely on existing spectral 
databases, e.g., HITRAN [26], and directly learn the mapping 
between the absorbing spectra and the gaseous parameters. 
Some attempts constructed the training set using pure simulated 
spectra [15, 17, 23-25]. To adapt the models to incorporate 
measurement noise, recent works have either added synthetic 
noise to the simulated dataset [20] or combined limited 
experimental data with the simulated data [16]. These models 
favor simplicity, as the training set can be easily generated 
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according to an estimated range of spectral parameters. 
However, their end-to-end nature can barely interpret spectral 
attributes that are physically linked to the gaseous parameters, 
and therefore, less adaptable for industrial scenarios where the 
in situ spectroscopic features cannot be estimated accurately. 

To further improve model’s performance, spectroscopic 
information of LAS, such as lineshape [19] and peak 
absorbance [22], is incorporated into the network training. 
Since spectral information imposes physical constraints on the 
neural network, it effectively enhances the applicability of data-
driven LAS models in various measurement scenarios as well 
as their noise resistance. To date, this kind of physical-
motivated models have been applied to denoise the measured 
spectra [21] and decouple the target absorption feature from its 
wavelength-neighbouring interferences [18]. However, they 
still require high-fidelity training labels and exhibit inadequate 
experimental spectra recovery. Recently, a hybrid LAS dataset 
was proposed by combining simulated labels and a portion of 
in situ experimental data labelled through the above-mentioned 
least-square fitting [27]. Although this method improves the 
recovery of in situ measured spectra, its dependence on fitting 
of post-experiment data hinders real-time combustion 
monitoring. In addition, with the reliance on labelled training 
set and less incorporation with the in situ spectral features, the 
above supervised models exhibit growing neural network 
complexity in order to achieve better generalization, and 
therefore, they are less deployable in industrial systems, such as 
on edge-computing devices 

To address these limitations, a spectroscopy-constraint LAS 
network is proposed for fast extraction of thermochemical 
parameters from the modulated LAS signal in combustion-
based power-generation systems. The main novelties of this 
paper are: 

1) The spectroscopic constraint is imposed through the
proposed autoencoder-structured neural network, making its 
training process exclusive on LAS measurement data from real 
industrial experiments. Incorporation of the spectroscopic 
model also enhances the robustness and generalizability of the 
proposed network for many industrial measurements. 

2) The SC-LAS network is free from labelling experimental
data. Such a label-free scheme eliminates complex signal post-
processing of the experimental spectra, offering a new online 
solution for dynamic monitoring of thermochemical parameters 
using data-driven LAS. 

3) The proposed network is constructed using a high-
efficiency structure with fewer parameters, compared to the 
existing models. The inference speed of this network is 
significantly faster for real-time gas monitoring and is easy to 
be deployed on edge-computing units. 

4)  The SC-LAS model is tested on measing the temperature
and species concentration of the exhaust from a commercial 
aircraft engine, inferring its effectiveness in industrially 
relevant conditions.  

The rest of the paper is organized as follows. In Section II, 
the preliminaries LAS are introduced. The architecture of the 
proposed network is described in Section III. Section IV 

presents a case study on applying the proposed technique to a 
gas turbine engine. The paper is concluded in Section V. 

II. PROBLEM FORMULATION AND PRELIMINARIES

Wavelength modulation spectroscopy (WMS) is a typical 
implementation of LAS that enables strong sensitivity and noise 
immunity in harsh environment [13]. It is carried out by 
superimposing a high-frequency sinusoidal modulation fm [Hz] 
on the low-frequency current scan fs [Hz] injected into the laser 
diode. Thus, the time-varying frequency of the light emitted by 
the laser (expressed here as wavenumber), v(t), can be 
expressed as: 

 (1) 

where t is time, 𝑣̅! [cm-1] is the laser central wavenumber, and as 
and am are the amplitudes of the wavelength scan and 
modulation, respectively. Accompanied by the wavelength 
modulation, the incident laser intensity is also modulated and can 
be written as:  

 (2) 

where 𝐼!̅  is the averaged laser intensity, is and im are the 
amplitudes of intensity scan and modulation, respectively, and 
φIM and φFM are the phase differences between the laser 
intensity modulation (IM) and frequency modulation (FM), 
respectively. 

The incident laser beam penetrates the target absorbing gas. 
According to the Beer-Lambert law [13], the transmitted laser 
intensity It(t) is modelled as: 

 (3) 
 (4) 

where α(v(t)) is the spectral absorbance which is parameterized 
by target flow parameters, i.e., pressure P [atm], temperature T 
[K], temperature-dependent line strength Sv(T) [cm-2atm-1], 
target gas mole fraction X and line-of-sight absorption path 
length L [cm], as well as the transition lineshape profile ϕv(v(t)). 

In general, the first- and second-order harmonics of It(t), 
noted respectively as 1f and 2f, are demodulated by a digital 
quadrature lock-in amplifier at the frequencies of fm and 2fm [28, 
29]. The calibration-free WMS signal can then be realized by 
calculating the 1f-normalized 2f spectrum (WMS-2f/1f) [30] as 
follows:   

(5) 

where Xnf and Ynf refer to the demodulated in-phase and 
quadrature nf (n = 1 or 2) components, R1f = √(X1f2  + Y1f2 ) is the 
magnitude of the first harmonic, and the subscripts (⋅)raw and 
(⋅)bg refer to the signal collected in the scenarios with and 
without the absorption, respectively. 

According to above discussion, the spectra 𝛤(t)  can be 
expressed as a forward function, which is constrained with the 
absorption spectroscopic model and parameterized by the laser 

0( ) cos(2 ) cos(2 )s s m mv t v a f t a f tp p= + × + ×
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characteristics, i.e., v(t) and I0(t), and the flow parameters T, X, 
P and L. In addition, 𝛤(t) can also be affected by the flow-
related line-shift μ [cm-1] of v(t), which will be discussed in 
detail in Section III. We denote the forward function as f(⋅) to 
express 𝛤(t) as: 

 (6) 

However, solving the inverse function f-1(⋅) of (6) to infer T, 
X, P from the measured 𝛤(t) is complex. Although v(t) and I0(t) 
are pre-determined before the experiment, non-linearity exists 
in both Sv(T) in (4) and 𝛤(t) in (5), resulting in non-existence of 
analytic solutions for f-1(⋅). Spectral fitting methods have been 
adopted by iteratively updating the flow parameters to calculate 
the theoretical 𝛤(t) using (6) and then to least-square fit to the 
measured one [14]. Although it exhibits high accuracy, fitting 
of a single absorption spectrum is time-consuming, which takes 
over a second per laser scan even using modern high-level 
processors. The slow response limits the online performance of 
WMS and thus its application to active combustion control. To 
accelerate solution of the non-linear f-1(⋅), we design a neural 
network, as detailed in the next section, to replace the spectral 
fitting method. 

III. MODEL ESTABLISHMENT

As shown in Fig. 1, the SC-LAS model is designed using an 
autoencoder (AE) structured neural network. The proposed 
network is completely free from synthetic labels, thus being 
superior to any of the existing data-driven LAS models in terms of 
generalizability to various test cases. Spectroscopic constraint is 
integrated in this encoder-decoder structured network, enabling its 
training to be solely dependent on 𝛤(t) measured under industrial 
conditions. 

A. Dual-branch encoder
Ratio thermometry [31] using two laser lines selected at 

wavenumbers v1 and v2 with different line strengths Sv(T), has 
been widely adopted for simultaneous temperature and gas 
concentration retrieval. The two measured spectral vectors with 
l wavenumber samples, noted as 𝚪"!Îℝ

#×% and 𝚪""Îℝ
#×%, are

firstly concatenated as the input vector 𝚪Îℝ#×& for the dual-
branch encoder. The encoder consists of a spectral feature 
extractor, a dual-branch temperature and concentration 
predictor and a line-shift estimator. 
1) Spectral feature extractor

The spectral feature extractor is constructed using a one-
dimensional convolutional neural network (1D-CNN). Because 
of its compact structure with low computational complexity 
[32], 1D-CNN is well-suited to real-time and low-cost 1D 
signal processing in our application. As shown in Fig. 2, the 
spectral feature maps are extracted by three 1D convolutional 
layers, i.e., Conv1, Conv2 and Conv3. The 1D-CNN layers 
learn the hierarchies from the spectral sequences and the 
correlation between the two transitions. The forward 
propagation of the 1D-CNN is formulated as: 

(7) 

 (8) 
 (9) 

where * represents the 1D convolution operand, 𝜎'()*+(∙) is 
the PReLU activation function, and OConv1Î ℝHO1×CO1 , 
OConv2ÎℝHO2×CO2  and OConv3ÎℝHO3×CO3 	 are output spectral 
feature maps for each 1D-CNN layer, respectively. The 
dimensional parameters, HO1, HO2 and HO3, are the output 
lengths for the three layers, while CO1, CO2 and CO3 are the 
numbers of output channels. 
WConv1ÎℝHW1×CW1(WConv2ÎℝHW2×CW2 	and WConv2ÎℝHW2×CW2) 
and bConv1Îℝ1×CO1(bConv2Îℝ1×CO2 and bConv3Îℝ1×CO3) are the 
1D convolution kernel and the bias vector from layer Conv1 
(Conv2 and Conv3), respectively. Dimensional parameters HW1 
(HW2 and HW3) and CW1 (CW2 and CW3) are the kernel lengths 
and the numbers of kernel channels for layer Conv1 (Conv2 and 
Conv3), respectively. 
2) Dual-branch temperature and concentration predictor

Temperature and gas concentration are predicted in this stage 
from the extracted spectral feature OConv3. As shown in Fig. 2, 
OConv3 is firstly flattened and refined through a fully-connected 
(FC) layer: 

 (10) 

where 𝐹(∙) represents the flattening transformation. ZÎℝHZ×1 
is the flattened and refined feature vector with length of Hz. 
WFCÎℝHZ×(HO3∙CO3)  and bFCÎℝHZ×1  are the weight and bias 
parameters of the FC layer, respectively. 

The refined feature vector Z is fed into a sub-network with 
two branches to predict temperature and concentration. Within 
each branch, four layers constructed by multi-layer perceptron 

0( ) ( , , , , ( ) , ( ))Γ t f T X P L v t I tµ= +

Con 1 PReLU Conv1 Conv1( * )v sO W Γ b= +

Conv2 PReLU Conv2 Conv1 Conv2( * )s= +O W O b

Conv3 PReLU Conv3 Conv2 Conv3( * )s= +O W O b

PReLU FC Conv3 FC( ( ) )Fs= × +Z W O b

Fig. 1 Overall architecture of the proposed SC-LAS neural network. 
 



4 
< 

(MLP) are established. In industrial combustion processes, 
temperature and post-combustion water vapor (H2O) 
concentration are positively correlated when using either 
hydrocarbon or carbon-free fuels, such as hydrogen and 
ammonia in the latter case. In general, higher temperature 
indicates stronger chemical reactions and thus higher H2O 
concentration. Therefore, an internal crosstalk is incorporated 
between two branches to represent this correlation. The forward 
propagation for the dual-branch predictor is formulated as: 

 (11) 

 (12) 

where kÎ{1, 2, 3, 4} is the index of each layer in the dual-
branch predictor;  𝐖.

/Îℝ0#$!×0# (𝐖.
1Îℝ0#$!×0# ) is the kth 

MLP layer weight from temperature (concentration) branch; 
and τkÎℝ0#×1  and χkÎℝ0#×1  are the corresponding output 
vectors from the temperature and concentration branches, 

respectively. The trainable parameters 𝐂./ Î ℝ0#×1  and 
𝐂.
1Îℝ0#×1  are the kth MLP layer crosstalk weights that add 

correlation between temperature and concentration branches. 
Symbol ⨀ denotes the element-wise production. 𝜎2345(∙) is the 
Tanh activation function to normalize the predicted temperature 
and concentration scale, 𝑇4 =	τ4 Îℝ%×1 and 𝑋4 =	χ4 Îℝ%×1 , 
distributed between -1 and 1. 
3) Line-shift estimator

The laser transition line centre 𝑣̅! in (1) is affected by the 
flow velocity along the laser propagation direction and will 
exhibit the Doppler shift. Due to the wavenumber-scanning 
nature, this line shift in laser wavelength is translated into a shift 
of the measured spectra 𝛤(t) on the time t axis. Thus, estimators 
to compensate this line shift μ for each of the two transitions are 
established in this sub-network. 

The line-shift estimator is constructed by a 3-layer MLP 
network for each transition and has a similar structure to the 
dual-branch predictor but without the cross-talk structure. It 
takes the refined feature vector Z as input and outputs the 
estimated line shift: 

 (13) 

 (14) 

where 𝐖%
"! Î ℝ6!×HZ , 𝐖&

"! Î ℝ6"×6!  and 𝐖7
"! Î ℝ6%×6" 

(𝐖%
"" Îℝ6!×HZ , 𝐖&

""Îℝ6"×6!  and 𝐖7
""Îℝ6%×6" ) are the 

weight of first (second and third) MLP layer for transition v1 
(v2). 𝜇̂"! and 𝜇̂""  are the output line-shift scalars normalized 
between -1 and 1 for transition line v1 and v2, respectively. 

B. Spectral Decoder
The decoder established in this stage is the reverse process of 

the encoder, i.e., recovering the spectra of the transitions v1 and 
v2 from the 𝑇4  and 𝑋4  as well as the line shifts 𝜇̂"!  and 𝜇̂"" 
estimated by the encoder. In other words, it can represent the 
spectroscopic model in (6). By comparing the recovered spectra 
with the measurements, absorption spectroscopic model is 
imposed as physical constraint on the network. 

As shown in Fig. 3, the decoder contains an up-sampling 
module using MLP and a spectra recovery module based on the 
transposed 1D-CNN. The up-sampling expands the dimension 
of four encoder-estimated scalar inputs, i.e., (𝑇4, 𝑋4, 𝜇̂"! , 𝜇̂"") , 
using two-layer MLPs: 

(15) 

(16) 

 (17) 

 (18) 

where 𝐖8!
9 Î ℝ:&!×1 ( 𝐖8"

9 Î ℝ:&"×:&! ), 
𝐖8!

; Î ℝ:&!×1 ( 𝐖8"
; Î ℝ:&"×:&! ), 

𝐖8!
<'! Î ℝ:&!×1 ( 𝐖8"

<'! Î ℝ:&"×:&! ) and

𝐖8"
<'"Îℝ:&"×1(𝐖8"

<'"Îℝ:&"×:&! ) are the weights from first
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Fig. 2 Architecture of the dual-branch encoder in the SC-LAS 
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(second) up-sampling layer for 𝑇4 , 𝑋4, 𝜇̂"! and 𝜇̂"", respectively. 
The up-sampled input vectors 𝐔9 , 𝐔; , 𝐔<'! and 𝐔<'" with 
length 𝐻8"  are concatenated, and then fused by a fully-
connected layer: 

 (19) 

where WFuseÎℝ(>×:&")×(>×:&") is the weight of the fusion FC-
layer, cat(⋅) represents the concatenation operation, and R(⋅) 
reshapes the output vector to L Îℝ:&"×4. 

Then, the up-sampled vector L passes a 3-layer transposed 
1D-CNN and a FC layer for spectral recovery of the two 
transitions. We denote ħi(⋅) as the ith (i = 1, 2, 3) transposed 1D 
convolutional layer using the PReLU activation function. The 
final transposed 1D convolution output 𝚪;Îℝ&×:()  is expressed 
as: 

 (20) 

Finally, the spectra for v1 and v2 are recovered through two 
separate FC layers: 

 (21) 

 (22) 

where [1, :] and [2, :] are the first- and second-channel slice 
operations, respectively, and 𝐖?)@

"! Îℝ#×:()  and 𝐖?)@
"" Îℝ#×:()  

are the weights of the FC layers for spectra recovery of the 
transitions v1 and v2. The resulting 𝚪;"!Îℝ

#×% and 𝚪;""Îℝ
#×% are 

the recovered spectra of the two transitions, which will be 
compared to the measured spectra, 𝚪"! and 𝚪"", for the encoder 
training. The training process of the proposed network is 

illustrated in the case study in the next section. 

IV. CASE STUDY: AIRCRAFT ENGINE EXHAUST MONITORING

A case study is carried out in this section by using the 
proposed SC-LAS model to measure temperature and H2O 
concentration in the exhaust of a commercial aircraft auxiliary 
power unit (APU, Honeywell 131-9A) running on a test stand 
at the University of Sheffield. The APU is commonly situated 
at the tail of an aircraft, which supplies airflow and additional 
power to various systems, including the air conditioning and 
aircraft control systems. 

A. System set up
Fig. 4 (a) shows the picture of the in situ APU set up and the 

deployment of the LAS sensor. An exhaust plume guide tube 
with a diameter of 24 cm and a length of 30 cm is attached to 
the APU exit, which directs the plume into the exhaust system. 
A K-type thermocouple is inserted at the inlet of the guide tube 
to provide a reference gas temperature measurement. The laser 
beam is positioned on a plane that is located 3 cm downstream 
from the outlet of the guide tube. Since the combustor exhaust 
velocity can reach up to 100 m/s, the exhaust temperature and 
concentration difference between the inlet and outlet of the 
guide tube is assumed to be negligible. 

Fig. 4 (b) illustrates the schematic of the LAS measurement 
plane, viewing from the axial direction of the APU exhaust 
outlet. Specifically, two DFB laser diodes (NEL 
NLK1E5EAAA and NEL NLK1B5EAAA) with wavenumber 
centered at v1=7185.59 cm-1 and v2=7444.36 cm-1, are scanned 
at fs = 1 kHz and modulated at fm1 = 100 kHz and fm2 = 130 kHz, 
respectively. The selected two H2O absorption transitions have 
been widely used in LAS experiments, which have good 
sensitivity within the temperature range 300-1500 K [14, 28] 
and H2O concentration range 0-0.1, covering those in the target 
APU exhaust at various working conditions. These two lasers 
are frequency multiplexed [28] using a fiber coupler and 

1 2PReLU Fuse( ( ( , , , )))
v vT XR cat µ µs= ×Λ W U U U U

3 2 1( (( ( )))=Γ Λ   

1

1 PReLU rec( [1,:])v
v s= ×Γ W Γ 

2

2 PReLU rec( [2,:])v
v s= ×Γ W Γ 

Fig. 4 (a) APU and LAS sensor setup. (b) Laser beam arrangement viewing 
from the axial direction of the APU exit. 
 

Fig. 3 Architecture of the spectral decoder in the SC-LAS. 
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collimated to penetrate the exhaust plume. The distance 
between the collimator and the photodetector (Hamamatsu, 
G12182-010K), i.e., the absorption path length L, is fixed at 50 
cm, within which 27 cm of its length, denoted as Lplume, is 
located in the plume area while the length in ambient region 
Lamb is 23 cm. 

The transmitted laser signal It(t) is collected by a Red Pitaya 
(RP)-based DAQ system [29] which can provide 250 Hz 
temporal resolution with the quantization frequency fq of 
15.625 MHz. An online digital lock-in amplifier (DLIA) 
scheme [28] aided by a cascaded integrator-comb filter with 
decimation factor D = 32, is integrated into the DAQ system. 
As a result, there are 488 spectral wavenumber samples (fq/fs/D) 
within a laser scan. For each absorption transition, the central 
120 samples of the downwards sinusoid semi-scan are selected 
to extract the exhaust parameters. Thus, the two input WMS-
2f/1f spectral vectors, i.e., 𝚪"!and 𝚪"", have a length l of 120. 

B. Network training
1) Decoder pre-training

The implementation parameters for the spectral decoder are 
listed in TABLE I. It is notable that the two-layer MLPs in (15-
18) for up-sampling the estimated 𝑇4 , 𝑋4, 𝜇̂"! and 𝜇̂"", have the
same structure and parameter dimensions. For simplicity, only 
one set of these parameters is listed.  

Before the APU test, the decoder network should be pre-
trained to sufficiently approximate the spectroscopic model 
described in (6) and it is independent on a specific industrial 
scene. Thus, the decoder pre-training spectral labels, i.e., 
(𝚪"!

A3B)A, 𝚪""
A3B)A)  for v1 and v2, can be generated directly by 

equation (6) giving an input set (𝑇, 𝑋, 𝜇"! , 𝜇""), without adding 
any noise. To cover conditions from the ambient environment 
to the common working load of APU engines [33], 𝑇 ranges 
from Tmin = 280 K to Tmax = 1673 K with a step of 7 K, while 𝑋 
ranges from Xmin = 0.002 to Xmax = 0.0816 with a step of 0.0004, 
giving a total of 40,000 combinations. Then, 𝜇"!  and 𝜇""  are 
generated using random values between 𝜇CD4= -0.02 cm-1 and 
𝜇C3E= 0.02 cm-1. All the inputs are normalized within -1 and 1 
for training, noted as (𝑇4, 𝑋4, 𝜇̂"! , 𝜇̂"") . For example, the
normalized temperature 𝑇4 is calculated as: 

 (23) 

Then, according to the system set up, P and L in (6) are fixed at 
1 atm and 50 cm, respectively. v(t) and I0(t) are obtained from 
the laser characterization. 

Using the dataset generated above, i.e., {(𝑇4, 𝑋4, 𝜇̂"! , 𝜇̂"") , 
(𝚪"!

A3B)A, 𝚪""
A3B)A)}, the decoder is optimized by minimizing the 

difference between its output spectra and the label set. To make 
the full use of each point in the spectra, the normalized L1 loss 
function Ldec is used: 

 (24) 

where 𝚪;"! and 𝚪;"" are the decoder output spectra for v1 and v2, 
respectively, and b is 0.5 to balance the loss on the two 
transitions. The Adam optimizer [34] is adopted with the 
learning rate αdec = 0.001 and the batch size B = 128. The 
decoder training was conducted using the Pytorch framework 
on a desktop PC (AMD R7-5800x, 32 GB RAM, NVIDIA RTX 
3060Ti). It is trained for 300 epochs until the loss Ldec is below 
0.5%, indicating that the decoder can accurately represent the 
spectroscopic model expressed by (6). 
2) Encoder Training

The encoder, performing the inverse function f-1(⋅) of (6) for 
thermochemical parameter extraction, is trained exclusively on 
engine test measurement data with the decoder parameters 
frozen. The encoder implementation parameters are listed in 
TABLE II. Giving the same dimensions, only one set 
parameters of the 4-layer MLPs in the T-X predictor and the 3-
layer MLPs in the line-shift estimator are listed for simplicity. 
We randomly selected Nenc = 20,000 measured spectral vectors 
(𝚪"! , 𝚪"") among the total 87,500 frames during the whole APU 
running.  

The encoder takes (𝚪"! , 𝚪"")  as inputs and estimates the 
normalized temperature, concentration and line shifts, 
(𝑇4, 𝑋4, 𝜇̂"! , 𝜇̂""), which are fed into the fixed decoder to recover 
the spectra. The encoder network is then optimized by 

min max min
ˆ 2 ( ) / ( ) 1T T T T T= * - - -

1 2

1 2

1 2

label label

dec label label

1 1
(1 )v v

l l
v v

v vL
l l

b b
- -

= × + - ×å å
Γ Γ Γ Γ

Γ Γ

 

TABLE I. DECODER IMPLEMEMTATION PARAMETERS 
Up-sampling Module 

Input Weight size Output 
up-sampling FC 1 1 (1, 32) 32 
up-sampling FC 2 32 (32, 64) 64 

Fusion FC 256 (256, 256) 256 
Spectral Recovery Module 

Input Kernel Stride Output 
TransCovnv1 (64, 4) 3 3 (16, 12) 
TransCovnv2 (16, 12) 3 3 (8, 36) 
TransCovnv3 (8, 36) 3 3 (2, 108) 

Input Weight size Output 
𝚪<𝑣1  FC 108 (108, 120) 120 
𝚪<𝑣2  FC 108 (108, 120) 120 

TABLE II. ENCODER IMPLEMENTATION PARAMETERS 
Feature Extractor 

Input Kernel Stride Output 
1D-Conv1 (2, 120) 3 3 (8, 40) 
1D-Conv2 (8, 40) 3 3 (16, 13) 
1D-Conv3 (16, 13) 3 3 (64, 4) 

T-X Predictor
Input Weight size Output 

Refine FC 256 (256, 128) 128 
Predictor FC1 128 (128, 64) 64 
Predictor FC2 64 (64, 32) 32 
Predictor FC3 32 (32, 16) 16 
Predictor FC4 16 (16, 1) 1 

Line Shift Estimator 
Input Weight size Output 

Line shift FC1 128 (128, 64) 64 
Line shift FC2 64 (64, 32) 32 
Line shift FC3 32 (32, 1) 1 
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minimizing the difference between the decoder recovered and 
measured spectra. Since the well-trained decoder can 
sufficiently represent the spectroscopic model in (6), the 
constraint is imposed during training. The L1 loss function is 
selected as: 

 (25) 

 (26) 

where g is the spectral weight hyper-parameter for the two 
transitions. dec[×] represents the well-trained decoder network, 
performing the forward function f(⋅) to recover the spectra 
vectors (𝚪;"! , 𝚪;""). 

The Adam optimizer with g = 0.7 and B = 128 is used for the 
encoder training. The learning rate αenc is decaying with the 
epoch number n exponentially as αenc = 0.001×0.99n . The 
optimization of encoder was conducted on the same device with 
the decoder training for 300 epochs. 

C. Test result and discussion
During the APU test, the engine experienced different working 

conditions, including ignition, acceleration, no-load and full-load 
states, which indicates a highly dynamic in situ test environment. 
Under these working conditions, its plume temperature and 
exhausts H2O concentration are valuable for control optimization 
and emission evaluation. To highlight the advantages of the 
proposed SC-LAS model, two network-based models for gas 
parameters extraction from LAS signal, i.e., the  neural network 
filter (NNF) in [20] and the adaptively optimized gas analysis 
model (AOGAM) in [21], are adopted for performance 
comparison, including the estimation accuracy and computational 
efficiency. These two models are typical representatives of 
methods trained solely on synthetic data and with constraint of 
measured spectra, respectively. In addition, the traditional 
method, i.e., spectral fitting, is used as the accuracy benchmark. 
1) Evaluation of estimation accuracy

The model estimation accuracy is evaluated from two aspects: 
(a) WMS-2f/1f spectra recovery and (b) temperature and H2O
concentration retrieval. Fig. 5 shows 𝚪 sampled from the APU 
test and its recovery using the spectral fitting benchmark, the 
SC-LAS, NFF and AOGAM. The residual is calculated as the 
difference between the measured (𝚪"! , 𝚪"")  and the 
recovered(𝚪;"! , 𝚪;""). The proposed SC -LAS model has a similar 
performance of spectral recovery compared to the benchmark, 
indicating well-covered spectral features as spectroscopic 
constraint is imposed on these two methods. In contrast, larger 
mismatch is observed for the NNF and AOGAM around the 
peak absorbance at wavenumbers close to 7185.6 cm-1 and 
7444.4 cm-1. 

To further quantitatively evaluate the spectral recovery, the 
mean relative curve error (RCE) and absolute curve error (ACE) 
are introduced as metrics. The RCE and ACE for the transition 
v is defined as: 

1 1 2 2enc
1 1(1 )v v v vl l

L
l l

g g= × - + - × -å åΓ Γ Γ Γ 

1 2 1 2
ˆ ˆ ˆ ˆ( , ) [ , , , ]v v v vdec T X µ µ=Γ Γ 

Fig. 5 Comparison of the measured WMS-2f/1f signal and its spectra 
recovery using (a) spectra fitting (b) SC-LAS (c) NNF and (d) AOGAM. 

 

Fig. 6 Comparison of the APU plume temperature and H2O concentration obtained by SC-LAS, spectral fitting, AOGAM and NNF. 
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< 

(27) 

(28) 

where the subscript v represents either of the transitions. 
As listed in TABLE III, for either of the two transitions, the 

proposed SC-LAS gives the closest RCE and ACE values 
compared to the fitting benchmark. It outperforms the NNF and 
AOGAM by lowering the RCE by, respectively, 31.5 % and 
24.6 %, and lowering the ACE by, respectively, 50.3 % and 
33.9 %. 

In Fig. 6, the plume temperature and H2O concentration 
inferred from the proposed SC-LAS model as well as the 
spectral fitting, AOGAM and NNF models are shown. The 
measurement from the thermocouple (TC) with 10 Hz temporal 
resolution is also displayed as the referenced plume temperature. 
Compared to the TC reference, the 250 Hz temporal resolution 
of the LAS technique reveals more dynamic details during the 
APU engine run.  For example, a much sharper increase both in 
temperature and H2O concentration are observed after 6 s, 
indicating the fuel is ignited in the APU. Due to the effect of 
heat aggregation on the TC, the peak plume temperature at 8 s 
measured by TC reference is lower than that estimated by any 
of the spectral fitting, SC-LAS, AOGAM and NNF.  

To further evaluate the accuracy of each method, we compare 
the temperature and H2O concentration under the full-load 
condition of APU. In this period, the TC measurement can be 
regarded as a relatively convincing reference as the relatively 
stabilized temperature mitigates the influence from the slow-
response sensing nature. Measurement results between 110 s 
and 150 s of the APU operation is zoomed in and shown in the 
subplot of Fig. 6. The stand deviation (std) during that period is 

also listed in Table IV to reflect the robustness to noise. 
Consisted with the spectra recovery result, it illustrates that the 
spectral fitting and SC-LAS model exhibit more accurate 
temperature estimation, i.e., closer to the TC reference, with 
lower degree of fluctuations, compared to the AOGAM and 
NNF models. Since probe sampling is not available for real-
time H2O monitoring during the APU test, we use spectral-
fitted H2O concentration as the reference. As shown in the 
subplot of Fig. 6 (b), the proposed SC-LAS model gives closer 
estimation to the spectral-fitted H2O concentration than the 
AOGAM and NNF models. It also exhibits the smallest std 
among the three network-based approaches. 

The result above indicates the effectiveness of the explicit 
spectroscopic constraint in SC-LAS. The NNF model with 
simple MLPs structure, exhibits the worst result as its 
dependency on pure simulated dataset cannot handle the 
difference between the synthetic data and in situ APU test data. 
The AOGAM model gives a much better performance by 
adding a shape constraint of the measured spectra, but the lack 
of an inherent spectroscopic model makes its training still rely 
on synthetic dataset. On the contrary, in both SC-LAS and 
spectral fitting method, the spectroscopic constraint is explicitly 
imposed during training or iteration, which contributes to their 
independency of simulation dataset and hence the best 
performance in the APU test case. 

2) Evaluation of computation efficiency
The computation efficiency is another critical evaluation 

metrics as the timely and immediate feedback, which is 
increasingly demanded in industrial applications, depends 
heavily on the inference speed of the model. For each of the 
above three networks, TABLE IV lists the model training time 
per epoch and the forward inference time per frame using the 
same device in section IV.B, as well as the model parameter size. 
Due to a much simpler network structure with higher efficiency, 
the proposed SC-LAS model enables much faster computation. 
It reduces the training time by factors of 15 and 184 times 
compared to the NNF and AOGAM models, respectively. More 
importantly, in terms of the inference time that determines how 
fast the thermochemical parameters can be extracted, the SC-
LAS model improves the speed by factors of 6.17, 414 and 
21,702 compared to the NNF model, the AOGAM model and 
the spectral fitting method, respectively. This time-efficiency 
advantage will benefit the SC-LAS model for its further 
application on large-scale tomographic systems with a large 
number of laser beams. 

Furthermore, the model parameter size of the three models is 
also listed in Table IV. The proposed SC-LAS model exhibits a 
much light-weighted neural network for less memory usage, 
whose parameter size is only 1.85 % and 0.81 % compared to 
those of the NNF and AOGAM models, respectively.  

Furthermore, the simpler-structured network with fewer 
model parameters enables its potential deployment on edge-
computing devices [35]. The performance is evaluated by 
deploying the SC-LAS encoder on a Raspberry pi 4b (Cortex-
A72, 4 GB), which is a representative pocket-size edge-
computing platform. The result is illustrated in Table V, which 
demonstrates that running the SC-LAS on edge-computing 
devices requires very few hardware resources with power 

RCE (1/ ) v v
v l

v

l
-

= å
Γ Γ

Γ



ACE (1/ )v v vl
l= -å Γ Γ

TABLE III. RCEs and ACEs of WMS-2F/1F SPECTRA RECOVERY 
and FLOW PARAMETERS STD USING SPECTRAL FITTING, SC-

LAS, NNF AND AOGAM. 
Fitting SC-LAS NNF AOGAM 

7185 
cm-1

RCE 0.0686 0.0700 0.0971 0.0864 
ACE 0.0129 0.0127 0.0190 0.0160 

7444 
cm-1

RCE 0.1872 0.1936 0.2471 0.2402 
ACE 0.0219 0.0210 0.0322 0.0295 

Full-load T std 3.291 3.426 11.459 4.160 
Full-load X std 9.24e-5 9.34e-5 1.51e-4 9.93e-5 

TABLE IV EVALUATION OF COMPUTATION EFFICIENCY FOR 
SPECTRAL FITTING, SC-LAS, NNF AND AOGAM. 

Fitting SC-
Encoder NNF AOGAM 

Model 
parameters 0.32 MB 17.27 MB 39.53 MB 

Train/epoch 1.69 s 26.65 s 312.34 s 
Inference/ 

scan 1.02 s 0.047
ms 0.29 ms 19.46 ms 

TABLE V. EVALUATION of SC-LAS ENCODER DEPLOYMENT 
on a RASPBERRY PI 4B 

CPU 
usage 

RAM 
usage 

Power 
consumption 

Time 
per scan 

12.61 % 0.55 % 1.51 W 0.091 ms 
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consumption below 2 Watts, indicating its significant 
compatibility with industrial systems. In addition, the inference 
time is also 10 times shorter than the laser scan period, i.e., 1 
ms in this work, indicating a neglectable latency. 

V. FUTURE WORK

Although the proposed SC-LAS model has realized high 
performance, limitations still exist on insufficient industrial 
application cases, single gas species, laser beam measurement 
and so on. Several work may be considered in the future. Firstly, 
the SC-LAS model can be applied to more combustion-based 
systems, such as coal-fired power plants [6, 36] and waste 
incineration [8]. Then, combining the hyperspectral technique, 
the SC-LAS framework may be extended to monitor multiple 
combustion species simultaneously. In addition, the SC-LAS 
has a large potential to scale from the single laser beam to a 
LAS tomography system with multiple beams, which can offer 
spatial distribution of the target flow field. Finally, the adaptive 
learning can be adopted on the current SC-LAS model so that 
direct online flow parameters monitoring can be realized. 

VI. CONCLUSION

A SC-LAS model is developed for fast and accurate 
extraction of thermochemical parameters for combustion-based 
power-generation systems. Superior to the existing supervised 
LAS networks, it explicitly integrates the physical constraint of 
the absorption spectroscopic model through the encoder-
decoder structure and is trained exclusively on data sampled 
from industrial experiments. This unsupervised and 
spectroscopy-constraint manner not only frees the network 
training from the complicated labeling process but also enables 
strong generalization of the model to various industrial 
scenarios. Moreover, the proposed network is constructed using 
simple structures, i.e., 1D-CNNs and MLPs, with lightweight 
network parameters, which leading to high computation 
efficiency and further potentials on edge-computing unit 
deployment. 

A case study on monitoring the temperature and H2O 
concentration of an APU exhaust is presented to validate the 
proposed network. In terms of spectral features recovery, the 
proposed network shows the best fit with the measured WMS-
2f/1f spectra, the fastest inference speed, and the lightest model 
structure, compared to the two state-of-the-art networks, i.e., 
NNF and AOGAM. The SC-LAS model also exhibits the 
closest plume temperature and H2O concentration estimation to 
the TC reference and spectral fitting benchmark, respectively. 
The experimental results show the SC-LAS model effectively 
resolves dynamic thermochemical parameters with high 
accuracy, thus facilitating the control and monitoring of 
combustion-based power generation systems.   
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