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Abstract  With the aid of computer aided design (CAD) 
and building information modelling (BIM), as-built to 
as-designed comparison has seen many developments in 
improving the workflow of manufacturing and construction 
tasks. Recently, evolution has been centred around automa-
tion of scene interpretation from three-dimensional (3D) 
scan data. The scope of this paper is to assess assemblies as 
the installation process progresses and inferring if arising 
deviations are problematic (complex task). The adequacy 
of utilising unorganised point clouds to compliance check 
are trialled with a real life down-scaled prototype model in 
conjunction with a synthetic dataset. This work aims to high-
light areas where large rework could be avoided, in part by 
the detection of potential clashes of components early in the 
pipeline installation process. With the help of an extracted 
model in the form of a point cloud generated from a scanned 
physical model and a 3D CAD model representing the nomi-
nal geometry, an operator can be made visually aware of 
potential deviations and component clashes during a pipeline 
assembly process.

Keywords  Point clouds · Modelling · Computer aided 
design (CAD) · Digital manufacturing · Interval scanning

1  Introduction

To enable the comparison of as-design computer aided 
design (CAD) or building information modelling (BIM) 
models with the as-built state of construction, a three-dimen-
sional (3D) scan of the environment is required, usually from 
a scanner which outputs point clouds. Information on the 
comparison can then be used for a variety of applications 
from maintenance of structures [1] to collision detection 
when installing or disassembling components [2]. Compar-
ing deviations from scan to CAD/BIM have been explored 
by numerous researchers such as Bosché et al. [3, 4] and 
Anil et al. [5]. Comparing deviations to models whose parts 
change significantly from the CAD/BIM are complex tasks 
as the final location of the parts could be in a significantly 
different pose (differing in translation and/or rotation) as 
well as hindered by occlusion effects from the scanning 
process. Utilising the local information becomes less robust 
with larger deviations not documented in CAD/BIM and 
requires manual operator intervention. However, not all 
deviations are critical, implying that deviations should be 
further examined to assess the impact on the sub-assemblies 
in place.

In this study, the focus is on keeping an updated version 
of the as-is state of a piping assembly and sub-assemblies 
during the installation process utilising point clouds. The 
study aims to integrate quality control during the instal-
lation of the piping sub-assemblies and assembly without 
the explicit need of separate quality assurance stations for 
prefabrication. Sub-assemblies are not routinely compared 
with neighbouring sub-assemblies in quality control, albeit 
rather to identify deviations or defects within the current 
sub-assembly [6]. This study aims to reduce rework by 
giving the operator the ability and flexibility to detect and 
remediate major deviations earlier. Indirectly, this reduces 
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the time for installing the components at the final location 
and lowers the tolerances experienced when installing the 
assemblies on site. This provides greater oversight from the 
current progress of the installation and enables documenta-
tion for maintenance purposes (as-is CAD/BIM is created 
in the process). The point cloud processing occurs with an 
automated robust workflow during installation, reducing the 
manual processing required by the operator. The recognition 
of the valves and other components is undertaken with a 
combination of robust registration and deep learning(DL) 
methods. The DL model is trained using synthetic data that 
are generated using an automated process and effectively 
imitates real-life scans.

Section 2 provides an overview of the state of the art 
actively applied when undertaking similar pipeline tasks. 
Section 3 presents the method followed through this study, 
where experimental setup was showcased in Sect. 4 and 3D 
scanning detailed within Sect. 5. Results are presented in 
Sect. 6 and further discussed in Sect. 7.

2 � Background

2.1 � Pipeline workflows

Using 3D point clouds obtained from scanners, there have 
been works for construction comparisons to CAD/BIM such 
as Bosché and Haas [7]. The context of pipe and valve com-
ponents has been explored by various authors. Maalek et al. 
[8] explored automated pipe and flanges extraction using a 
framework of robust circle fitting techniques. Kim et al. [9] 
investigated pipe and elbow automated recognition using 
curvature information with primitive classification with sim-
ple and S-shaped elbow. Sharif et al. [10] employed local 
feature of point pairs for object recognition and isolation 
adapted from the framework based on Papazov and Burschka 
[11] for mechanical, electrical, plumbing (MEP) compo-
nents. As-built pipe network reconstruction has been consid-
ered by Kawashima et al. [12]. Pipe spool recognition work 
was outlined by Czerniawski et al. [13] for automation when 

extracting spools in an as-built scene using an extraction 
algorithm based on local curvature estimation, clustering 
and a bag-of-features matching. Inspection of pipe systems 
was validated by Nguyen and Choi [14] using normal-based 
region growing and efficient random sample consensus in 
shipbuilding compartments. Deviation comparisons to as-is 
was detailed by Anil et al. [15] using point clouds of a plant 
facility which concluded with a time reduction of identifying 
errors by 40% when using conventional measurement meth-
ods. Safa et al. [16] showed a measurement process when 
undertaking piping fabrication with certain areas marked as 
critical points on the pipeline as well as quality assurance 
stations for measuring the components when completed. In 
the case where a previous 3D model is unavailable, scan-to-
BIM methods are used such as the reconstruction of pipeline 
by Cheng et al. [17].

Less common is utilising 3D point clouds with in situ 
measurements to generate an updated digital model (asso-
ciated 3D model) as the operator works through the piping 
installation, where deviations are varied (small and large). 
An example not in the scope of pipeline installation, but 

Fig. 1   Workflow flowchart (task repetition highlighted in purple)

Fig. 2   CAD digital rendering of 3PM with starting and ending part 
numbering
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related to it, is seen by Kim et al. [18] who conducted qual-
ity inspection for full-scale precast concrete elements from 
laser scanning and BIM. Another distant example is seen 
in a brief study with pipe installation by Fraga-Lamas et al. 
[19] within shipbuilding using multiple sensors rather than 
point clouds.

2.2 � Point cloud classification using DL

To further decrease the burden of manual operation, auto-
mated classification labelling operations have been actively 
developed to ease the task of semantic interpretation. Greater 
focus has been concentrated on the advancement of 3D DL 
architectures available for point cloud classification as they 
have lagged behind their 2D counterpart models. Partly due 

to the complexity of processing 3D information with the 
added difficulty from dealing with unorganised data with 
no coherent order. PointNet [20], Pointnet++ [21], DGCNN 
[22], and PCT [23] are examples of point cloud DL models 
attempting to bridge that gap.

2.3 � Data for DL model training

With the majority of DL models currently requiring super-
vised learning for training, synthetic generated benchmarks 
are vital for an understanding of DL model capabilities and 
are readily used when comparing different models (such as 
dataset ModelNet40 [24] and PartNet [25]). In contrast, in 
comparison to real life scans, it is more difficult to directly 
classify objects accurately employing synthetic data for 

Fig. 3   Prototype downscaled DN200 PN10 parts
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training purposes using homogeneous discretisation over 
entire surfaces. As by Uy et al. [26], real world scanning data 
still prove to be complex when undertaking classification 
for DL tasks. Their study showed, that while the accuracy 
of CAD like dataset was reaching near perfection, training 
a model to classify a real-world object dataset was still a 
very challenging task which led them to the creation of a 
custom real-world object dataset. This can be explained as 
DL models are primarily being compared and benchmarked 
on clean, non-corrupted CAD datasets.

Real-life pipework and valve datasets such as from Yeo 
et al. [27] are useful and have been incorporated into DL 
tasks, for example in Ref. [28] during classification of pipe-
work components. Nevertheless, limited pipework and valve 
point cloud datasets (both synthetic and real life) are pub-
licly available encompassing different types and varieties 
of design standards which could be reliably trained on. In 
addition to the limitations of the variety of valve and elbow 
datasets, datasets with a large number of point clouds for 
training a variety of occasions and conditions are limited 
as well.

Datasets for semantic segmentation require per point 
labelling of data which is a time-consuming process requir-
ing human intervention. There have been work from authors 
such as Yin et al. [29] which have created four industry areas 
of point clouds for semantic segmentation, and required the 
combined use of human operators and DL to categorise 
pipeline scenes for semantic segmentation purposes [30]. 
Recently, Korus et al. [31] discussed using DynamoPC-
Sim for synthetic point cloud creation to reduce the cost 
and time of manual data creation using Revit and visual 
programming.

Evidently, there is a need for a workflow expediting crea-
tion of large training-agnostic datasets, which minimizes the 
laborious task of categorisation and includes real-life aspects 
of the scanning procedure arising from pipeline assembly.

3 � Process and method overview

We propose a method, outlined in Fig. 1, where, as input, the 
CAD/BIM designer creates an assembly of a model which 
then gets submitted to manufacturing. This model under-
goes assembly with 3D interval scanning as the operator 
progresses through the steps until completion. The interval 
3D point clouds obtained from the scanner are down sam-
pled for quicker processing turnaround times. Noise filter-
ing removes spurious points due to the 3D scanner machine 
characteristics. Next, undertaking coordinate system align-
ment facilitates direct comparisons of the progression to 
the CAD assembly model. Segmentation of homogeneous 
surface geometries is used to detect straight pipe segments. 
This is followed by clustering of the remaining points to 
be classified into seven groups by a deep neural network. 
The final stage is comparing the classified objects with the 
CAD/BIM objects using robust registration to obtain the 
as-is pose of each individual CAD part within the assem-
bly (see Sect. 6.4). This process is repeated until the sub-
assemblies and the whole assembly are completed. Follow-
ing each iteration of this process, an updated CAD model is 
overlaid with the original position of the sub-assemblies for 
the operator to visualize.

4 � Experimental model setup

The steps of the proposed pipeline are illustrated (and vali-
dated) using a downscaled physical prototype pipeline instal-
lation model (3PM). The 3PM was created to showcase the 
numerous possibilities for assembly deviations during instal-
lation from design intent. Figure 2 shows a rendering of the 
CAD model of that prototype.

The pipeline (containing three different sub-assemblies) 
was envisioned to be built in a modular capacity and has an 
arbitrary valve/elbow configuration, where compartments 
could be created off-site and connected at a later setting 
in the final location. Flange couplings are considered as a 
core strategy for prefabrication in this work as weld and 
butt fusion joints are not deemed to be easily detachable for 
ease of use in such a scenario, as commented by Li et al. 
[32] in a study on pipe prefabrication. The smaller scale of 
the model ( 1 ∶ 5.5̇ ) allows for easier trialling of potential 
solutions without the inconvenience of moving larger and 
heavier parts. The parts were numerically numbered starting 
from the left hand side of the CAD sub-assembly “A” finish-
ing on the right hand side of sub-assembly “C”.

The CAD models were selected for a size of DN200 and 
were downscaled by a factor of 5.5̇ to retain characteris-
tics of geometrical components obtained when scanning in 
real life with a light detection and ranging (LiDAR) scan-
ner. The models were 3D printed using stereolithography 

Fig. 4   3PM setup physical dimensions with sub-assemblies “A”, “B”, 
and “C” indicated
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(SLA) grey resin from designs of a manufacturer of valve 
and piping components (see Figs. 3d, e and f). SLA print-
ing is used to ensure accurate dimensionality containing 
intricate details which have been verified by individual 
part scanning and comparing to the dimensions of the 
CAD model seen in Figs. 3a b, c. Orientation of the parts 
on the bed was adjusted to minimise the structural support 
that would be seen when scanning. Curing was used to 
enhance the rigidity of the parts for handling when install-
ing the components. The printed parts are a tight press fit 
for the polyvinyl chloride (PVC) pipe of outer diameter 

36 mm as no adjustments were made to compensate for 
the slight shrinking experienced, as seen in Figs. 3g, h, i.

The 3PM was created to contain three distinct pipelines 
(“A”, “B”, “C”) labelled in Fig. 4 similar to the CAD model 
designed (see Fig. 2). Sub-assembly “A” was first installed 
followed by “B” and “C”, as this allowed optimum scanning 
while building the pipeline assembly. The installed parts 
have both translation and rotation deviations from their CAD 
counterparts, as well as valves in incorrect sub-assembly 
positions (part 9, check valve) and missing in sub-assem-
blies (part 5, butterfly valve). A mixture of different changes 

Fig. 5   Scan interval point clouds using Faro LLP on 3PM
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from the digital ground truth model were created to trial 
the accuracy of the workflow in the ability to extract CAD 
components.

5 � Model scanning

The assembly and 3D models were scanned using a non-
contact Faro laser line probe (LLP) connected to a port-
able Faro ScanArm computer measuring machine (CMM) 
which was error compensated beforehand with an error of 

0.023 8 mm. No scanner filtering settings were used dur-
ing the scanning. The 3PM was scanned at intervals when 
additional valve or flange components were installed and for 
a final pass when the whole sub-assembly was completed. 
This allows ample time for the operator to know when a 
pipeline would likely become problematic and could remedy 
the installation before major rework would be required (at 
the completion stage). Each scan of the scene is treated as 
a different setup seen in Fig. 5, where the CMM LLP scan-
ner was not moved during each individual scan. During the 
installation of the sub-assemblies, deviations due to the lack 
of supporting structures are also present in the scene. This 
requires a final scan pass of each sub-assembly once both 
pipe ends meet the hole cut-outs.

During LLP scanning, the world origin is centred around 
the base of the Faro ScanArm. To undertake comparisons 
to the assembly model each scan also includes the Invar 36 
cube (see Fig. 6) within the scene. This assists (for the down-
scaled models) the coordinate system alignment using the 
three planes method from the planes extracted on the Invar 
36 cube which is fixed in place. Intersection of three planes 
is considered as the world origin point satisfying Cartesian 
Eq. (1),  where the intersection of two planes is used as a 
vector for the z direction (blue) and the subsequent x and y 
direction are best oriented to the intersection of the other 
two planes [33]. The normal plane vector is represented by 
n = ⟨â, b̂, ĉ⟩ for each plane.

Fig. 6   Invar 36 cube “ 50mm × 50mm × 50mm ”  peripheral milled surface side used for global origin alignment when a 3D scanning, b global 
system alignment using three planes

Fig. 7   Scan 8 showing plane RANSAC segmentation (light green), 
cylinder RANSAC segmentation (turquoise)
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For the downscaled workflow, this strategy allows for a 
smaller area coverage when undertaking alignment which 
benefits from less scanning required by the operator. In a 
full-size construction environment, this registration method 
could be adjusted by instead utilising the surrounding walls 
and floor that would have previously undergone quality 
control, and thus the as-is positions and shapes would have 
already been corrected in the CAD/BIM model. Different 
alignment strategies could also be adapted when undertak-
ing precision alignment of large scientific instruments that 
require module modular assembly. This allows for more 
flexibility and planning when working while not at a final 
location of the site.

(1)

⎧⎪⎨⎪⎩

â1x + b̂1y + ĉ1z + d̂1 = 0,

â2x + b̂2y + ĉ2z + d̂2 = 0,

â3x + b̂3y + ĉ3z + d̂3 = 0.

6 � Comparisons to CAD

After the scanning is completed by the operator, raw point 
clouds from the LLP scanner are downsampled for quicker 
processing speeds. Voxel-based downsampling with the 
same parameter was used for all twelve scans to facilitate 
capturing the underlying surface.

6.1 � Prepossessing (removing walls)

Efficient random sample consensus (RANSAC) [34] is used 
to detect the large planar regions from the sides (walls and 
floors) of the 3PM. For this, we used the same parameters 
throughout the twelve different scans. Figure 7 illustrates the 
result of this process with planar segment detections shown 
in green.

Table 1   Comparison of virtual training dataset using various DN values

Fig. 8   PointNet classification network
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6.2 � Detection of straight pipes

RANSAC is then used again to detect all the straight pipe 
sections within the scene as cylinders. For this, we again 
used the same parameters throughout the twelve scans. Fig-
ure 7 illustrates the result of this process with straight pipe 
segment detections shown in turquoise colour.

6.3 � Detection of remaining pipeline components

Density-based spatial clustering of applications with 
noise (DBSCAN) [35] is then used to cluster the remain-
ing point clouds in corresponding groups for cylinders and 

components. In the case of very small clusters that are incor-
rectly grouped, each smaller cluster is filtered by automati-
cally removing point clouds with a sparse number of points. 
The remaining component clusters require to be labelled to 
their corresponding categories.

The remaining clusters are finally classified using deep 
learning model. The model is developed using a supervised 
training method using 3D CAD models of common pipe-
line components. Commonly, models of CAD components 
have been grouped using seven common categories: elbow, 
pump, valve, etc. Removing the requirement from labelling 
the data and enabling the use of existing name grouping 
structures already devised. This resulted in seven groups 

Fig. 9   PointNet validation data confusion matrix a virtual LiDAR scanner dataset, b the normalized matrix

Fig. 10   PointNet a accuracy, and b loss during training with virtual LiDAR scanner dataset
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of classification, with a total of 347 CAD models. Distinct 
complementary CAD models have been obtained from vari-
ous valve and fixture manufacturers, relevantly designed to 
the standards EN 545 (joints) [36], EN 593 (butterfly valves) 
[37], and EN 1092-2 (flange sizes) [38]. Straightforwardly, 
additional CAD models could be incorporated in the future 
to cater different industry standards. The pipe sizes used for 
training were mixed to include dimensions from DN10 to 
DN1500 and pressure ranges from PN10 to PN16 some of 
which could be seen in Table 1.

The CAD models in the devised dataset are split into 293 
for training and 54 for validation. During the training pro-
cess only virtually generated data from the CAD parts are 
used, with real-life individual scans not incorporated in the 
data. This allows for the creation of a customised dataset 
with numerous standardised parts for pipework and valves 
which are not required to be extensively modelled within 
assemblies for labelling. To alleviate a few of the shortcom-
ings from synthetic data, the CAD dataset is scanned by a 
virtual scanner which mimics the machine characteristics 
of the Riegl vz400i LiDAR terrestrial laser scanner (TLS) 
utilising Helios++ library from Winiwarter et al. [39]. The 
dataset created has similar features to Wang et al. [40], 
as well as Huang and You [41], but with the addition of 
machine noise characteristics with each scan (combined with 
the effects of self occlusion). The synthetic dataset is LiDAR 
realistic with beam divergence from the scanner and full 
waveform representation of the 3D point clouds generated 
through ray tracing. Additionally, density and noise varia-
tions are baked into the point cloud dataset arising from the 
scanner. This workflow enables multiple different geometri-
cal dimensions of flange and valve components allowing for 
greater flexibility when interpreting scenes. The syntheti-
cally created large unorganised point cloud dataset contains 
1.63×104 point clouds for training and 3×103 point clouds 
for validating.

These point clouds are then prepared for batch training 
with a point cloud size of 4 096 which was achieved using 
farthest point sampling.

We have chosen PointNet as the architecture used for the 
classification as this model accounts for permutation invari-
ance of point clouds, using a multilayer perceptron (MLP) 
layer taking the points from three dimensions to 64 dimen-
sions, where the detailed architecture could be seen in Fig. 8. 
Mapping the points into 64 dimensions by having the MLP 
share their weights allows for an arbitrary number of points.

Each (unlabelled) point cloud cluster remaining from the 
previous step (straight pipe detection) is passed through the 
classification network of PointNet [20] with default values 
which was implemented with the previously custom trained 
CAD dataset of valve and flanges. Figure 9 reports the con-
fused matrix obtained from the validation data.

The performance of DL models is directly impacted by 
data corruption levels (occlusion, noise, density, etc.) as 
explored by Sun et al. [42]. In their study there was a tri-
ple performance degradation observed with the same syn-
thetic dataset when using point cloud corruptions on the 
data. The highest corruptions were observed when data were 
in LiDAR-type form (i.e., only covering a portion of the 
object surface) as opposed to data covering a greater surface. 
PointNet was reported to contain superior characteristics in 
standard training (without any data augmentation methods) 
as it produced the lowest error rates amongst other network 
architectures when compared to DGCNN, PCT, etc. The 
error was shown to be further reduced using the RSMix [43] 
data augmentation method.

In this study, we have increased the classification accu-
racy of PointNet during training (see Fig. 10) using the 
custom CAD dataset when compared to random sampling 
of point clouds. Data augmentations included object rota-
tions and different rotations from the LiDAR scanner. The 
improvement is visible in Fig. A of Appendix where all 12 
scans provided a substantial increase in classification accu-
racy when dealing with real world data.

6.4 � Deviation quantification

The classified clusters must be compared to their as-designed 
3D CAD counterparts to assess the positional deviations of 
the parts. To quantify this deviation, robust registration is 
applied to get the transformation between the point cloud 
cluster and the as-design 3D CAD model (mesh). Registra-
tion is done in a two-step process, where first global reg-
istration from Zhou et al. [44] is performed followed by 
local robust iterative closest point (ICP) registration. For 
the coarse alignment of the corresponding point cloud to 
the CAD model, fast point feature histogram (FPFH) [45] 
is used as the initial correspondence set K , where for each 
query point pq the point feature histogram (PFH) descriptor 

Fig. 11   a Scan 1, 45° flanged elbow (part 1) CAD registered to seg-
mented point cloud, b scan 5, 90° flanged elbow (part 4) CAD regis-
tered to segmented point cloud
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Fig. 12   Digital overlay of real life scan point clouds over CAD sub-assemblies
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Fig. 13   As-designed CAD translation and rotational movement during interval scanning vs original CAD position (Part five was not found in 
the scene when scanning)

Fig. 14   Scan 12 a 90° flanged elbow, b 45° flanged elbow, and c check valve point clouds from LLP
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is calculated with the weight wi being the distance between 
the query point pq and a neighbor point pq as seen from Eq. 
(2).

Point-to-plane ICP (see Eq. (3)) was used for fine regis-
tration of the segmented point cloud onto the CAD with a 
robust kernel. This is undertaken using optimization of the 
objective function E(T) , by finding the correspondence set 
K = {(p, q)} from the target point cloud defined as P , to the 
source point cloud defined as Q . Where np is the normal of 
point p , and �(r) is the defined as the robust kernel (Tukey 
was used).

Segmentation clusters can contain neighbouring welded 
flanges or pipe segments that might have missing informa-
tion along the surface of the elbows and valves. Despite such 
possible errors, utilising this multi-registration workflow 
allows for robust registration in the case of over-segmenta-
tion with previous clusters (see Fig. 11).

This workflow is repeated for every scene scan, where the 
CAD locations after each scan are overlaid with the origi-
nal sub-assembly positions. When the operator is installing 
the corresponding components, this enables them to visual-
ize likely upcoming clashes and problematic deviations, as 
illustrated in Figs. 12a and b with the total 12 scans seen in 
Fig. B of Appendix.

7 � Discussion

During the installation of a new flanged part, the classifica-
tion and registration worked well as the occlusion was lower 
and neighbouring components did not create large amount of 
outliers. This is seen with examples in Fig. 13 where the first 
scan of each new component yields lower levels of registra-
tion failure. Consequently, the experimental results indicated 
that for better segmentation of components with lower levels 
of occlusion, there was a higher chance of correct classifica-
tion of objects with low likelihood of registration failure. 
Due to the geometric nature of the parts containing similar 
smooth patches, it was more difficult to classify and register 
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45° and 90° flanged elbows than more unique components 
such as the flanged check valve (see Fig. 14).

The higher levels of occlusions of pipeline “A” compo-
nents as the assembly progressed is attributed to:

	 (i)	 Increasingly difficult areas to reach for scanning as 
more pipework are physically blocking scanning 
access.

	 (ii)	 Less attention paid to sub-assemblies that have previ-
ously been set in place and scanned with lower sur-
face area coverage. It is presumed the objects have 
not been significantly displaced. As seen in part one 
(from sub-assembly “A”) which has increased reg-
istration failure after the sixth scene scanning (after 
sub-assembly “A” was completed).

Different scanning setups could be accommodated to 
streamline the capture of point clouds using an increased 
amount of either stationary 3D scanners or smaller porta-
ble 3D handheld scanners. Stationary cameras would require 
preregistration of the point cloud scans to reduce the high 
occlusion present in the scene that was experienced. Simi-
larly, smaller portable 3D handheld scanners could be oper-
ated to improve movement in a confined space for increased 
flexibility when dealing with harder to reach areas.

During the training we have solely used the CAD models 
with no combinations of assembly geometries. Whereas, 
during the inference there was presence of both welded 
flanges near the CAD models (on either/one side) and oth-
ers where welded flanges were left out on purpose which 
have not been used during training. Using robust registration 
assisted with coarse segmentation showed that classification 
and registration could be undertaken correctly as seen previ-
ously in Fig. 11.

Presently, PointNet has varying results on the classi-
fication, and further testing would be needed to ascer-
tain the underlying characteristic relating to occlusion 
and outlier effects with similar geometrically models for 
classification. The current workflow could be further 
improved with finer semantic segmentation results of 
pipes from other components before passing the clusters 
through the classification networks. During this study 
we have only considered xyz coordinates and their CAD 
components. Colour, intensity, and other attributes have 
not been taken into account which would further aid the 
workflow. Using colour information could be further 
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combined with augmented reality/virtual reality enabling 
exploration using headsets for visualisations in a future 
study. The scanner used for the testing of this workflow in 
real life is an LLP, which differs from the characteristics 
of the Riegl scanner that was used in virtual data creation, 
despite also being based on laser point capturing. Current 
results indicate, even with the different characteristics, 
there is still a benefit in utilising data generation this 
way. The limitations are with longer slender pipes that 
RANSAC would have difficulty distinguishing from pip-
ing components such was the case with the flanged tee.

Finally, to provide more intuitive instructions to the oper-
ator, auto pipe (re)routing could be implemented such as in 
Park and Storch [46] where different objective functions for 
collective properties could be specified (number of elbows, 
spatial clearance for maintenance, maximization of support 
sharing with installation, compliance for vibration of nearby 
pipes, etc.) or similar applications [47–49].

8 � Conclusions

Using the outlined workflow comparisons of interval-based 
scans to CAD enables more foresight to be given to the 
operator during assembling. An automated approach was 
devised in the detection of various pipeline elements. DL 
was used in the classification of non-wall and non-straight-
pipe clusters with a model trained using a synthetic dataset 
generated from detailed geometrical CAD models. During 

the training multiple, different standard pipe sizes were used. 
Using the workflow explored, an updated assembly model of 
the current work as well as documentation for future main-
tenance can be created. In addition, costly rework can be 
avoided. In the case where the sub-assemblies arrive dam-
aged due to shipping, on-site repairs could be undertaken 
with more certainty with the final compliance/specification 
using this workflow. In situ measurements have been useful 
in manufacturing and recently with the wider availability of 
both LiDAR and handheld scanners, more deployment into 
installation processes could be implemented.
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Fig. A   Average classification accuracy using PointNet testing real life data with virtual LiDAR and common random sampling training com-
parison
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