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ABSTRACT
This work presents an adaptive backstepping controller using a radial basis function neural network (RBF-
NN) for position control of a linear motor drive with parameter uncertainties, discontinuous friction and
unknown external disturbances. Initially, a robust control scheme is developed to ensure asymptotic sta-
bility. To avoid conservative tracking performance, we propose an adaptive robust backstepping law
incorporating an RBF-NN to estimate lumped uncertainties and disturbances. The dynamic determina-
tion of the approximation error upper bound eliminates discontinuities in the adaptive control law. The
RBF-NN’s characteristics are utilised to establish the existence of solutions for the system, ensuring that
the adaptive control law satisfies the Lipschitz continuity condition. The developed scheme ensures global
asymptotic stability under boundeddisturbances. Simulation results validate the proposed scheme’s effec-
tiveness in achieving precise positioning and reducing chattering compared to a robust backstepping
controller, a fast nonsingular terminal sliding mode controller and an adaptive recursive terminal sliding
mode controller.
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1. Introduction

Linear drive motors are widely used in modern manufacturing
processes, including automatic machine inspection, machine
tools, and semiconductor manufacturing (Z. Liu et al., 2024;
Mirić et al., 2020;W.Wang et al., 2020). Their widespread adop-
tion stems from advantages over rotary motors, such as the
elimination of the need for gears between the motion device
and motor, reduced mechanical loss, high operational speed,
silent operation, and high initial thrust force (Paul et al., 2022).
Despite these merits, linear drive motors exhibit a signifi-
cant interaction between direct drives and the machining pro-
cess (M. Yang et al., 2021), making it essential to develop
drive control systems capable of delivering high tracking perfor-
mance. Achieving a good tracking performance is challenging
because motor parameters vary significantly due to the dynam-
ics of the air gap, phase imbalance, rail resistivity, magnetisa-
tion saturation, and other factors (Wallscheid, 2021). Addition-
ally, uncertain parameter variations, unmodelled dynamics, and
external load disturbances further degrade the performance of
the control system in practical applications (Gao et al., 2023;
Nakata & Noda, 2023).

Frictional forces are unavoidable due to contact between
surfaces in drive motor operation. These forces pose a major
challenge to control systems by introducing steady-state error.
Traditional methods, such as adaptive and variable-structure
control (Y. Li et al., 2020; B. Zhang et al., 2020), address this
issue by developing frictionmodels to estimate and compensate
for the effects of frictional forces. However, obtaining a precise
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friction model is difficult, as friction behaviour is usually not
fully understood (Shao, Zheng, Wang, Wang, et al., 2021). Over
the past three decades, extensive research has been conducted
to overcome challenges like parameter variations and friction in
linear drive motor position tracking control (Shi & Chen, 2023;
Z. Wang et al., 2017; J. Zhang et al., 2020).

Various robust control schemes have been developed for
linear drive motors. One approach is the use of feedfor-
ward control techniques to improve motor tracking perfor-
mance. Yao and Xu (2002) highlighted that H∞ methods
often provide conservative performance, which is not ideal for
high-accuracy tracking control. As an alternative, disturbance
observer (DOB)-based controllers were proposed to enhance
tracking performance in the face of system uncertainties (L. Li
et al., 2020; Shao, Zheng, Wang, Xu, et al., 2021). Particularly, L.
Li et al. (2020) developed a two-degree-of-freedom (2-DOF)
H∞ control system that combines an H∞ disturbance observer
with feedback and feedforward controllers to enhance robust-
ness and dynamic response while providing robust tracking. An
experimental study (X. Wang et al., 2021) demonstrated that
the DOB approach cannot adequately manage the discontinu-
ities associated with Coulomb friction. Another factor driving
the development of position controllers for linear motor drives
is the need to minimise nonlinear ripple and cogging effects.
For instance, a first-order approximation of ripple effects was
experimentally obtained, upon which a feedforward controller
was developed to cancel these effects, thus improving position
tracking (Van Den Braembussche et al., 1996). However, this
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offline technique of identifying a compensation model can be
of limited utility since it may change due to operating condi-
tions, and a particular model may only be useful for a specific
linear drive motor. In light of this, a feedforward controller
that relies on neural networks to estimate uncertainties was
proposed to improve positional accuracy (Otten et al., 1997).
However, this scheme, which relied on a neural network (NN),
did not provide a theoretical guarantee of closed-loop stabil-
ity. In a recent study (Shi & Chen, 2023), a fractional-order
ideal cut-off Bode filter was used to suppress the effects of high-
frequency noise and an extended state observer was used to
implement a feed-forward control system for a linear motor
drive system.

Given the weaknesses associated with the above control
methods, adaptive robust control (ARC) methods have gar-
nered significant interest in position-tracking control of linear
motors. These ARC schemes mostly rely on backstepping tech-
niques that utilise Lyapunov functions to enforce the asymptotic
stability of the closed-loop response of the drive motors. Adap-
tive backstepping is achieved via a recursive and systematic
design procedure for nonlinear feedback control, providing a
structured approach to handling system uncertainties and non-
linearities (Yu et al., 2020). For instance, Yuan et al. (2019)
developed a dual-loop control strategy to improve the speed
and tracking accuracy of the linear drive system. The outer
loop implemented an online trajectory replanning strategy that
forces the replanned trajectory to converge to the actual tra-
jectory in minimum time under system constraints. The inner
loop then employed an ARC to improve tracking performance
under disturbances. The control framework’s performance was
experimentally validated.

An ARC scheme was developed for high-speed and high-
accuracy position control of machine tools driven by rotary
AC motors (Gai et al., 2021). By leveraging the Lyapunov sta-
bility theory, the researchers designed an adaptive law and
validated the control strategy through simulation and experi-
ments. The results demonstrated significant improvements in
motion control accuracy, response speed, and noise suppres-
sion. Additionally, significant disturbances and parameter vari-
ations are accommodated in the ARC technique as opposed to
the DOB method, whose performance can degrade markedly
when estimation accuracy declines. Shao, Zheng, Wang, Wang,
et al. (2021) developed an ARC for iron-core linear motors,
which exhibit greater parameter variations and other difficul-
ties when compared to their rotary counterparts. The effec-
tiveness of the scheme was demonstrated via extensive sim-
ulation studies. Z. Liu et al. (2023) developed an ARC for
linear motor-driven systems using a gradient descent-based
B-spline wavelet neural network compensator. The proposed
control scheme integrated recursive least squares (RLS)-based
parameter estimation, a neural network compensator to esti-
mate complex uncertainties, and an anti-saturation auxiliary
system. The experimental results showed improved tracking
accuracy, optimal parameter estimation, and effective compen-
sation for actuator saturation, making the method highly suit-
able for real-time, high-precision applications in linear motor
systems.

The sliding mode control (SMC) strategy has garnered sig-
nificant attention due to its ability to enhance the robustness

of control systems for linear motor drives (X. Sun et al., 2023).
SMC has been proven effective in mitigating the adverse effects
of model inaccuracies and external disturbances, which are
common challenges in high-precision applications (Mousavi
et al., 2023). By maintaining stability and performance even
under uncertain conditions, sliding mode control has emerged
as a preferred technique for ensuring reliable and accurate oper-
ation in demanding environments. Tu and Dong (2023) devel-
oped a dual-layer SMC framework for the robust control of
linear motor drive systems in the presence of actuator faults
and external disturbances. The method integrated an integral
sliding function with an auxiliary controller to handle time
derivatives and introduced a nested sliding mode to decouple
disturbances, ensuring uniformly bounded system responses.
Simulations demonstrated superior tracking accuracy, robust-
ness, and reduced chattering compared to conventional SMC
methods.

An experimental study (G. Sun et al., 2018) proposed a
fractional-order SMC strategy for the linear motor drive to
improve its robustness in the presence of model uncertain-
ties and external disturbances. Shao, Zheng, Wang, Wang,
et al. (2021) proposed a barrier function adaptive SMC scheme
to address issueswith conventional robust SMCmethods, which
often exhibit chattering under low-disturbance conditions. This
approach adjusts the controller gain based on disturbance mag-
nitude to reduce chattering and optimise control effort (Shao,
Zheng, Wang, Wang, et al., 2021). Experimental results demon-
strated its effectiveness in linear motor positioning control.

In light of the reviewed literature, ensuring accurate and reli-
able position tracking in linear motor drive systems remains a
challenging task due to various inherent and external factors.
The primary challenges in controlling linear motor drives arise
from significant parameter variations caused by factors such as
air gap dynamics, phase imbalances, and magnetic saturation.
These uncertainties are further compounded by unmodelled
dynamics and external disturbances, including load changes
and environmental effects. Frictional forces, particularly dis-
continuous types such as Coulomb and stiction friction, add
another layer of complexity, often leading to steady-state errors
and oscillations, thereby degrading system performance. Con-
ventional control methods, while effective to a degree, struggle
to address these multifaceted challenges (Xu et al., 2018).

Robust control strategies, for instance, typically rely on con-
servatively predefined disturbance bounds, which can result
in suboptimal tracking performance (Mohanraj et al., 2022).
Adaptive control methods, on the other hand, often require
detailed friction models or precise system characterisation,
which are difficult to develop and may not generalise across
different operational conditions. In a recent study (Ager
et al., 2024), it was demonstrated that an adaptive mechanism
can enhance the performance of a conventional backstepping
controller by leveraging delayed state and input variables to
approximate the upper bound of the disturbance. However, this
approach attempts to estimate the upper bound of the previ-
ous disturbance in the current time, leading to a discontinuous
control law with significant chattering effects in the control
input.

Motivated by the limitations of conventional robust and slid-
ing mode controllers, which rely on discontinuous laws, for
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instance, sgn(·) functions, and predefined bounds, often result-
ing in chattering (Zheng et al., 2015), this study introduces
an adaptive robust backstepping control (AR-BSC) strategy
enhanced with a radial basis function neural network (RBF-
NN).

Leveraging the RBF-NN’s universal approximation capabil-
ity, our approach smoothly estimates nonlinear uncertainties,
adaptively adjusts the approximation error bound to elimi-
nate conservative limits, and ensures a continuous control law
without online weight tuning. This integration of adaptive
learning and robust control delivers precise position tracking,
significantly reduced chattering, and global asymptotic stabil-
ity, outperforming traditional methods in handling diverse,
dynamic uncertainties, as validated by comprehensive simula-
tions–offering a critical advancement for high-precision linear
motor applications.

The main contributions of this study are as follows:

• This work introduces a novel adaptive robust backstepping
control strategy that combines the universal approximation
capability of RBF-NNswith a robust control law to effectively
handle parameter uncertainties, external disturbances, and
discontinuous frictional forces.

• The proposed scheme employs a combination of an RBF-
NN and an adaptive estimation of error bounds to eliminate
discontinuities in the control law and reduce input chat-
tering, thereby ensuring smoother and more stable control
performance compared to existing robust and sliding-mode
controllers.

• The proposed control law is shown to be Lipschitz contin-
uous and globally asymptotically stabilising under the given
assumptions.

• Comprehensive simulations demonstrate that the proposed
controller outperforms conventional methods, including
robust backstepping, fast terminal nonsingular sliding mode
control (FTNSMC), and adaptive recursive terminal slid-
ing mode control (ARTSMC), achieving superior tracking
accuracy and significantly reduced chattering.

The rest of this paper is organised as follows. Section 2
presents the formulation of the problem by describing the
mathematical model of the linear motor and stating the con-
trol objective. Section 3 provides the development of a robust
backstepping controller with a sign function and the neural-
network-based adaptive robust backstepping scheme. An exten-
sive simulation studies are presented in Section 4. Finally,
Section 5 provides concluding remarks.

Notation: We adopt standard notation throughout this text.
The operator ‖ · ‖ denotes the 2-norm of its argument. We sim-
ply denote dx

dt by ẋ. For brevity, time dependence of time-varying
signals is omitted unless explicitly required.

2. Preliminaries

2.1 Linear drivemotormodel

The linear drive system with parameter deviations and external
disturbances can be modelled as:

ẋ1 = x2

Mẋ2 = kf u − (B + �B)x2 − f (x2) − fd (1)

where x1 [m] is the position of the mover, x2 [m/s] is the mover
velocity. We define x � [ x1 x2 ]� as the state vector, M [kg] is
the total mass of the moving element, B [Ns/m] represents the
combined viscous friction coefficient and load damping, �B is
a parametric uncertainty, fd [N] represents the external distur-
bance force, u [V] is the control input voltage of the motor,
while kf [N/V] is the input constant. In addition, f (x2) [N] is
the combined stiction andCoulomb friction. By considering the
Coulomb, stiction, and Stribeck effect, this is expressed as F. J.
Lin et al. (2002):

f (x2) = fc sgn(x2) + (fs − fc) exp{−(x2/ẋs)2} sgn(x2) + Kvx2,
(2)

where fc is the Coulomb friction, fs is the static friction, ẋs
denotes the Stribeck velocity parameter, sgn(·) is the sign func-
tion, and Kv is the viscous coefficient.

The model (1) can be re-written with lumped uncertainties
and disturbances as follows:

ẋ1 = x2

ẋ2 = Āx2 + B̄u + C̄(f (x2) + Fe,1)

y = x1 (3)

y is the controlled output, Ā = −B/M, B̄ = kf /M, C̄ = −1/M,
and Fe,1 = �Bx2 + fd represents the system uncertainty, which
includes parameter uncertainty and unknown exogenous dis-
turbance, fd. The exogenous disturbance fd is unknown but
bounded and must be observed. Observing the unknown dis-
turbance is underpinned by the assumption that the disturbance
remains constant during the observation period. This is a practi-
cal assumption in real applications where the observer’s update
rate exceeds the disturbance’s (fd) variation rate, as is common
in high-speed control systems.

2.2 Problem formulation

The primary objective of this study is to design a control sys-
tem for the linearmotor drive, modelled by (1)–(3), that ensures
precise position tracking despite significant challenges posed
by parameter uncertainties, discontinuous frictional forces, and
unknown external disturbances. Specifically, let yd denote the
desired reference position trajectory, which may differ from the
initial mover position x1(t0). The control problem is to syn-
thesise a control input u such that the mover position y = x1
asymptotically tracks the reference trajectory, i.e.

lim
t→∞ |y(t) − yd(t)| = 0,

while maintaining stability and smoothness in the presence of
the following challenging factors:

(1) Parameter Uncertainties: The viscous friction coefficient
B is subject to variations �B, reflecting changes due to
air gap dynamics, phase imbalances, or operating condi-
tions, which introduce uncertainty in the system dynam-
ics (Wallscheid, 2021).
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(2) Discontinuous Frictional Forces: The friction term f (x2),
defined in Equation (2), includes Coulomb and stiction
components with sign functions and Stribeck effects, ren-
dering the system nonlinear and discontinuous (F. J. Lin
et al., 2002).

(3) Unknown External Disturbances: The exogenous distur-
bance fd is bounded but unknown, varying unpredictably
in practical applications (e.g. load changes), and must
be compensated without precise prior knowledge (Gao
et al., 2023).

These factors collectively degrade tracking performance,
introduce steady-state errors, and can lead to undesirable chat-
tering in the control input–issues that conventional robust con-
trol methods struggle to address effectively due to their reliance
on conservative disturbance bounds or discontinuous laws (e.g.
sgn(·)).

Traditional robust backstepping control (R-BSC), as explored
in Section 3.2, employs a sign function to bound uncertainties
(e.g. |Fe,1| ≤ F̄e), achieving stability but at the cost of disconti-
nuities that violate Lipschitz conditions and induce chattering
(Remark 3.2). This motivates an adaptive approach leveraging
the universal approximation capability of radial basis function
neural networks (RBF-NNs) to estimate the lumped uncer-
tainty f1(x2) = f (x2) + Fe,1 − Kvx2 (where Kvx2 is known and
excluded from estimation) as a continuous function d(x), with
an approximation error defined as:

ε(t) � f1(x2) − d(x). (4)

To ensure the feasibility of this approach, we introduce the
following assumptions:

Assumption 2.1: Considering the universal approximation
property of RBF-NNs, which can approximate arbitrary nonlin-
ear and discontinuous functions with bounded errors (H. Yang
& Liu, 2018), the approximation error ε(t) is bounded such that
|ε(t)| ≤ ε̄ for all t with ε̄ being an adaptive bound. The bound-
edness of ε(t) is supported by the fact that f1(x2) is constructed
from physically measurable and bounded phenomena, such as
Coulomb friction and external disturbances.

Assumption 2.2: (a) There exists a continuous function

d(x) = K1 exp{−(x − xc)�Q(x − xc)}, (5)

with Q ∈ R
2×2 positive definite, K1 ∈ R, and xc ∈ R

2, that
approximates f1(x2).

(b) The control signal u(x) for the system (3) is Lipschitz contin-
uous, i.e. ‖u(x) − u(x̃)‖ ≤ Lu‖x − x̃‖, where Lu > 0 is the
Lipschitz constant (Gwiazda et al., 2010).

Under these assumptions, let us rewrite the system dynam-
ics (3) as:

F(t, x, u) �
[

x2
Āx2 + B̄u + C̄Kvx2 + C̄d(x) + Fe,2

]
, (6)

where Fe,2 accounts for the scaled the approximation error.
The control problem thus reduces to designing an adaptive

robust backstepping control (AR-BSC) law u(x) that: (i) ensures
F(t, x, u) satisfies a Lipschitz condition for solution existence
(Theorem 3.1), (ii) adaptively estimates d(x) and ε̄ to elim-
inate discontinuities in the control law, and (iii) guarantees
global asymptotic stability of the tracking error z1. Theorem 3.1,
proven below, establishes the theoretical foundation.

3. Main results

3.1 Existence and uniqueness of the solution

The adaptive robust backstepping control (AR-BSC) design
ensures that the system dynamics ẋ = F(t, x, u) (Equation (6))
exhibit continuity and Lipschitz properties, critical in the pres-
ence of nonlinearities such as discontinuous friction and exter-
nal disturbances. The Lipschitz condition on F(t, x, u) bounds
its rate of change with respect to x, guaranteeing a unique
solution via the Picard-Lindelöf theorem (Walter, 2013) and
reflecting smooth operation of the linearmotor drive. The radial
basis function neural network (RBF-NN) approximates lumped
uncertainties (e.g. Coulomb friction and disturbances) as a con-
tinuous function d(x), while the control input u(x) employs
smooth approximations to avoid destabilising discontinuities.
Under Assumptions 2.1 and 2.2, the Picard-Lindelöf theorem
applies, establishing solution existence for Equation (6). The
Lipschitz continuity of u(x), ensured by the proposed control’s
design and bounded adaptive components, aligns with recent
studies on nonlinear systems (e.g. W. Wang, Wu, et al., 2025;
W. Wang, Zeng, et al., 2025), reinforcing the theoretical and
practical significance of these conditions for stability and pre-
dictability.

Theorem 3.1: Under Assumptions 2.1 and 2.2, F(t, x, u) is a
vector-valued continuous function that satisfies the Lipschitz con-
dition:

‖F(t, x, u) − F(t, x̃, ũ)‖ ≤ L‖x − x̃‖ (7)

for all x, x̃ ∈ B(x0, r) � {x ∈ R
2 : ‖x − x0‖ ≤ r}with t ∈ [t0, t].

Then, there exists δ > 0 such that the state equation ẋ = F(t, x, u)
with the initial condition x(t0) = x0 has a unique solution over
[t, t + δ].

Proof: Given Assumptions 2.1 and 2.2, we first show that the
function F(t, x, u) satisfies the Lipschitz continuity condition
with respect to the state variable x. This implies there exists a
constant L > 0, such that for all x, x̃ ∈ B(x0, r), the (7) holds.

Let us first calculate dF � F(t, x, u) − F(t, x̃, ũ):

dF =
[

x2 − x̃2
(Ā + C̄Kv)(x2 − x̃2) + B̄(u − ũ) + C̄(d(x) − d(x̃))

]
.

(8)

Given Assumption 2.1, the bounded approximation error ε(t)
does not affect the Lipschitz continuity of F(t, x, u), since it only
represents a bounded additive term. Thus, using the triangle
inequality and norm properties, we have:

‖F(t, x, u) − F(t, x̃, ũ)‖ ≤ ‖x2 − x̃2‖ + ‖(Ā + C̄Kv)(x2 − x̃2)‖
+ ‖B̄(u − ũ)‖ + ‖C̄(d(x) − d(x̃))‖
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≤ (
1 + ‖Ā + C̄Kv‖

) ‖x2 − x̃2‖
+ ‖B̄‖‖u − ũ‖ + ‖C̄‖‖d(x) − d(x̃)‖.

(9)

Given that the control input u(x) satisfies Assumption 2.1, we
have:

‖u − ũ‖ ≤ Lu‖x − x̃‖. (10)

To estimate the Lipschitz constant Lf associated with the con-
tinuous function d(x), we apply the mean value theorem for
vector-valued functions. Thus, there exists a vector ξ on the line
segment connecting x and x̃ such that:

d(x) − d(x̃) = ∇d(ξ)(x − x̃), (11)

where the gradient ∇d(x) is given by:

∇d(x) = K1 exp
{
−(x − xc)�Q(x − xc)

}
(−2Q(x − xc)).

Since Q ∈ R
2×2 is positive definite, the exponential term satis-

fies:

0 ≤ exp
{
−(x − xc)�Q(x − xc)

}
≤ 1. (12)

Therefore, the gradient norm is bounded as follows:

‖∇d(ξ)‖ ≤ 2‖K1‖‖Q‖‖ξ − xc‖ exp
{
−(ξ − xc)�Q(ξ − xc)

}
≤ 2‖K1‖λmax(Q) sup

ξ∈B(x0,r)
‖ξ − xc‖. (13)

whereλmax(Q) stands for themaximumeigenvalue ofQ. Hence,
we have the following bound on the difference:

‖d(x) − d(x̃)‖ ≤ Lf ‖x − x̃‖, (14)

where the Lipschitz constant Lf is defined as:

Lf = 2‖K1‖λmax(Q) sup
ξ∈B(x0,r)

‖ξ − xc‖.

Therefore, considering bounds (10) and (14), we conclude:

‖F(t, x, u) − F(t, x̃, ũ)‖ ≤ L‖x − x̃‖, (15)

where the Lipschitz constant L is given by:

L = 1 + ‖Ā + C̄Kv‖ + ‖B̄‖Lu + ‖C̄‖Lf .

Consequently, since F(t, x, u) satisfies the Lipschitz condition
in x, by the Picard–Lindelöf theorem, the local existence and
uniqueness of the solution to the initial-value problem ẋ =
F(t, x, u) with initial condition x(t0) = x0 is guaranteed within
a neighbourhood of x0, on the time interval [t0, t0 + δ]. This
concludes the proof. �

3.2 Robust backstepping control system

The design of a robust backstepping controller (R-BSC) for the
nonlinear discontinuous system (3) is presented in this section.
The objective is to achieve precise position tracking by steering
the tracking error z1, defined as

z1 � y − yd, (16)

towards zero, where y = x1 is the mover position and yd is
the desired reference trajectory. The derivative of the tracking
error is

ż1 = x2 − ẏd, (17)

since ẋ1 = x2 from (1). Here, the state x2 (velocity) is treated as
a virtual control input. Let us define the stabilising function:

η � ẏd − k1z1, (18)

where k1 > 0 is a design constant. If x2 = η, then

ż1 = x2 − ẏd = (ẏd − k1z1) − ẏd = −k1z1. (19)

Now let us consider the first Lyapunov function:

V1 � 1
2
z21. (20)

Its time-derivative, under the condition x2 = η, is

V̇1 = z1ż1 = z1(−k1z1) = −k1z21. (21)

Since k1 > 0, V̇1 is globally negative definite, indicating that z1
would be asymptotically stable if x2 = η holds. However, x2 is a
state, not a control input, so define the secondary error:

z2 � x2 − η. (22)

Thus, x2 = z2 + η, and

ż1 = x2 − ẏd

= (z2 + η) − ẏd

= z2 + (ẏd − k1z1) − ẏd

= z2 − k1z1 (23)

The derivative of z2 is

ż2 = ẋ2 − η̇,

= Āx2 + B̄u + C̄f (x2) + C̄Fe,1 − η̇, (24)

where, from (3), ẋ2 = Āx2 + B̄u + C̄f (x2) + C̄Fe,1, and

η̇ = ÿd − k1ż1 = ÿd − k1(x2 − ẏd). (25)

To account for parametric uncertainties and disturbances,
assume the lumped uncertainty Fe,1 is bounded such that
|Fe,1| ≤ F̄e, where F̄e > 0 is a known constant.

Define the second Lyapunov function:

V2(z1, z2) � V1 + 1
2
z22 = 1

2
z21 + 1

2
z22. (26)
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Its time-derivative yields

V̇2(z1, z2) = z1ż1 + z2ż2,

= z1(z2 − k1z1)

+ z2
[
Āx2 + B̄u + C̄f (x2) + C̄Fe,1 − η̇

]
,

= −k1z21 + z1z2

+ z2
[
Āx2 + B̄u + C̄f (x2) + C̄Fe,1 − η̇

]
. (27)

Now we can propose the following robust backstepping control
law:

u = B̄−1 [−k2z2 − z1 − Āx2 − C̄f (x2) + C̄F̄esgn(z2) + η̇
]
,

(28)

where k2 > 0 is a design constant, and the term−z1 cancels the
cross-term z1z2 in V̇2, while C̄F̄esgn(z2) (with C̄ = −1/M < 0)
compensates for the disturbance C̄Fe,1. Then, substituting (28)
into (24) gives

ż2 = Āx2 + (−k2z2 − z1 − Āx2 − C̄f (x2) + C̄F̄esgn(z2) + η̇)

+ C̄f (x2) + C̄Fe,1 − η̇

= −k2z2 − z1 + C̄(Fe,1 + F̄esgn(z2)) (29)

Now, substituting ż2 into V̇2 results in

V̇2 = z1(z2 − k1z1)

+ z2
[−k2z2 − z1 + C̄(Fe,1 + F̄esgn(z2))

]
= −k1z21 + z1z2 − k2z22 − z1z2 + z2C̄(Fe,1 + F̄esgn(z2))

= −k1z21 − k2z22 + z2C̄(Fe,1 + F̄esgn(z2)). (30)

Let us focus on the robust term with C̄ = −1/M < 0:

z2C̄(Fe,1 + F̄esgn(z2)) = − z2
M

(Fe,1 + F̄esgn(z2)), (31)

Note that

• If z2 > 0: sgn(z2) = 1, Fe,1 + F̄e ≥ Fe,1 − |Fe,1| ≥ 0, so
− z2

M (Fe,1 + F̄e) ≤ 0,
• If z2 < 0: sgn(z2) = −1, Fe,1 − F̄e ≤ |Fe,1| − F̄e ≤ 0, so

− z2
M (Fe,1 − F̄e) ≤ 0,

• If z2 = 0: the term is zero.

Thus:

V̇2(z1, z2) = −k1z21 − k2z22 + z2C̄(Fe,1 + F̄esgn(z2)),

≤ −k1z21 − k2z22,

≤ 0, (32)

Let us define

D(t) � k1z21 + k2z22 ≤ −V̇2(z1(t), z2(t)). (33)

Integrating both sides from 0 to t yields∫ t

0
D(τ ) dτ ≤ V2(z1(0), z2(0)) − V2(z1(t), z2(t)). (34)

SinceV2 ≥ 0 and V̇2 ≤ 0,V2(t) is non-increasing and bounded,
implying:

lim
t→∞

∫ t

0
D(τ ) dτ ≤ V2(z1(0), z2(0)) < ∞. (35)

To apply Barbalat’s lemma, let us check the uniform continuity
of D(t). Compute:

Ḋ(t) = 2k1z1ż1 + 2k2z2ż2,

where ż1 = z2 − k1z1 and ż2 = −k2z2 − z1 + C̄(Fe,1 + F̄esgn
(z2)) are bounded (since Fe,1 and sgn(z2) are bounded). Thus,
Ḋ(t) is bounded, and D(t) is uniformly continuous. By Bar-
balat’s lemma (Slotine & Li, 1991):

lim
t→∞D(t) = 0. (36)

Hence, z1 → 0 and z2 → 0 as t → ∞, ensuring limt→∞ y(t) =
yd. The controller (28) achieves global asymptotic stability
despite parametric uncertainties and external disturbances.

Remark 3.1: The use of sgn(z2) in (28) ensures robustness but
introduces discontinuities, potentially causing chattering in u,
especially near z2 = 0. This limitation motivates the adaptive
approach in Section 3.3.

Remark 3.2: The robust control law (28) is discontinuous,
which implies that it does not satisfy the conditions necessary to
guarantee the existence and uniqueness of a solution, as stated
in Theorem 3.1.

In the following subsection, we leverage the structure of the
approximation function (5) to integrate an NN-based approx-
imator, facilitating the design of a robust adaptive control law
that satisfies the conditions of Theorem 3.1.

3.3 Adaptive robust backstepping control via radial basis
function neural network

The nominal controller (28) relies on an arbitrarily predefined
upper bound F̄e for system uncertainty, limiting its adaptability.
To overcome this, we propose an alternative controller utilising
a radial basis function neural network (RBF-NN) to estimate
exogenous disturbances and discontinuous frictional forces.
The lumped uncertainty, encompassing these components,
is defined as f1(x2) = f (x2) + Fe,1 − Kvx2, where the known
viscous term Kvx2 is excluded from estimation, targeting only
the discontinuous f (x2) and unknown disturbances.

The RBF-NN, illustrated in Figure 1, is a three-layer architec-
ture: the input layer processes the linear drive’s two states, the
hidden layer computes weighted Gaussian activation functions,
and the output layer approximates the lumped disturbance. The
activation function is:

φi(x) = exp

{
−

2∑
k=1

(xk − x̄ik)2

σ 2
ik

}
, i = 1, 2, . . . ,N, (37)

where x̄ik and σ 2
ik denote the mean and variance of the Gaussian

functions. This is reformulated as φi(x) = exp{−(x − x̄ci)�Qi
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Figure 1. Configuration of the RBF-NN.

(x − x̄ci)}, with Qi = diag(σ−2
i1 , σ−2

i2 ) and x̄ci = [x̄i1, x̄i2]�. The
RBF-NN output is:

d(x) = W��(x), (38)

where W = [w1,w2, . . . ,wN]� is the weight vector, �(x) =
[φ1(x),φ2(x), . . . ,φN(x)]� is the activation vector, and N is the
number of hidden neurons. Weights wi are optimised via a
quadratic cost function J = 1

2z
2
1 based on the tracking error z1,

using supervised gradient descent (Lu et al., 2010). The RBF-
NN’s selection is justified by its universal approximation capa-
bility, simplicity, and rapid learning (Park & Sandberg, 1991;
X. Wang et al., 2022), enabling representation of discontinu-
ous components (5) and supporting widespread engineering
applications (Ting et al., 2015).

Incorporating f1(x2) into the dynamics (3), the system is
expressed as ẋ2 = Āx2 + B̄u + C̄(f1(x2) + Kvx2). The RBF-NN
approximates f1(x2)with d(x), defining the approximation error
ε = f1(x2) − d(x) with |ε| ≤ ε̄. The adaptive estimate ε̂ and
error ε̃ = ε̂ − ε̄ are introduced.

The control law, integrating the RBF-NN estimate, is:

u = B̄−1 [−k2z2 − z1 − Āx2 − C̄Kvx2 − C̄d(x)

− kr ε̂|C̄| arctan(cz2) + η̇
]
, (39)

where k2 > 0, kr > 0, and c > 0 are design parameters, with
the arctan term providing smooth robust compensation. The
adaptation law is:

˙̂ε = β|C̄||z2|| arctan(cz2)|, ε̂(0) ≥ 0, β > 0, (40)

dynamically updating the uncertainty bound estimate.

Theorem 3.2 (Global Asymptotic Stability under Adaptive
Robust Backstepping Control): Consider the system in (3),
controlled by (39) and (40), with tracking errors z1 = y − yd,
z2 = x2 − η, and η = ẏd − k1z1 (k1 > 0) (22). If kr > 2

π , then
z1(t) → 0 and z2(t) → 0 as t → ∞, ensuring global asymptotic
stability for any M > 0.

Proof: We begin by defining a Lyapunov function to assess
stability, given by

V = 1
2
(z21 + z22) + 1

2β
ε̃2, (41)
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where ε̃ = ε̂ − ε̄ and β > 0. The time derivative of V is com-
puted as

V̇ = z1ż1 + z2ż2 + 1
β

ε̃ ˙̂ε. (42)

For the first term, since ż1 = z2 − k1z1, we obtain

z1ż1 = z1z2 − k1z21. (43)

Next, we derive the dynamics of z2 using (24) and (39), result-
ing in

ż2 = −k2z2 − z1 + C̄ε − kr ε̂|C̄| arctan(cz2), (44)

where ε = f1(x2) − d(x). Multiplying by z2 yields

z2ż2 = −k2z22 − z1z2 + z2C̄ε − kr ε̂|C̄|z2 arctan(cz2). (45)

The adaptation term from (40) gives

1
β

ε̃ ˙̂ε = ε̃|C̄||z2|| arctan(cz2)|. (46)

Combining these, and noting ε̃ = ε̂ − ε̄, we arrive at

V̇ = −k1z21 − k2z22 + z2C̄ε + |C̄||z2|| arctan(cz2)|(−kr ε̂ + ε̃).
(47)

To bound the uncertainty, with C̄ = −1/M < 0 and |ε| ≤ ε̄,
we get

V̇ ≤ −k1z21 − k2z22 + |z2|
M

[
ε̄ + | arctan(cz2)|(−kr ε̂ + ε̃)

]
.

(48)

For stability, the bracketed term must be non-positive. Substi-
tuting ε̃ = ε̂ − ε̄, and at | arctan(cz2)| = π

2 , we need

π

2
(−kr ε̂ + ε̂ − ε̄) ≤ −ε̄. (49)

Simplifying, π
2 (−kr ε̂ + ε̂ − ε̄) = π

2 (1 − kr)ε̂ − π
2 ε̄ ≤ −ε̄.

Thus, π
2 (1 − kr)ε̂ ≤ ε̄(1 − π

2 ). Since 1 − π
2 < 0, and ε̂ ≥ 0,

we require 1 − kr ≤ 0, so kr ≥ 1. However, if ε̂ < ε̄, the adap-
tation law ˙̂ε > 0 when z2 
= 0 ensures ε̂ increases. To domi-
nate ε̄, set kr ε̂ π

2 ≥ ε̄, so kr ≥ 2
π

ε̄
ε̂
. As ε̂ grows, kr > 2

π suffices.
Consequently,

V̇ ≤ −k1z21 − k2z22 ≤ 0. (50)

Since V̇ is uniformly continuous, Barbalat’s lemma ensures
z1, z2 → 0, establishing global asymptotic stability. �

Proposition 3.3: Given the control law

u = B−1 [−k2z2 − z1 − Ax2 − CKvx2 − Cd(x)

− kr ε̂|C| arctan(cz2) + η̇
]
, (51)

where k2, kr, and c are positive design parameters, A, B, C, and Kv
are system parameters, z1, z2, and η are defined in the backstep-
ping procedure, d(x) is the RBF-NN output, and ε̂ is the adaptive

estimate of the approximation error bound, the control law u is
Lipschitz continuous with respect to the state vector x = [x1 x2]T.

Proof: To establish the Lipschitz continuity of the control law u,
it is necessary to demonstrate the existence of a constant Lu > 0
such that for any state vectors x = [x1 x2]T and x̃ = [x̃1 x̃2]T in
the domain of u, the following condition holds:

||u(x) − u(x̃)|| ≤ Lu||x − x̃||. (52)

Consider the difference between the control law evaluated at two
distinct state vectors x and x̃:

u(x) − u(x̃) = B−1 [−k2(z2 − z̃2) − (z1 − z̃1) − A(x2 − x̃2)

− CKv(x2 − x̃2) − C(d(x) − d(x̃))

− kr ε̂|C|(arctan(cz2) − arctan(cz̃2))

+ (η̇ − ˙̃η)
]
. (53)

We proceed to analyse each term within the equation:

(i) Linear Terms: The terms involving z1, z2, x2, and η̇ are
linear in x1 and x2 due to the definitions of z1 = x1 − yd,
z2 = x2 − η, and η as a function of x1 and x2. Conse-
quently, their differences, i.e. (z2 − z̃2), (z1 − z̃1), (x2 −
x̃2), and (η̇ − ˙̃η), are Lipschitz continuous with respect to
x1 and x2. For instance, |x2 − x̃2| ≤ ||x − x̃||.

(ii) RBF-NN Output Term: The term involving the RBF-NN
output is C(d(x) − d(x̃)). From prior results, it is estab-
lished that d(x) is Lipschitz continuous, satisfying the
condition:

||d(x) − d(x̃)|| ≤ Lf ||x − x̃||, (54)

whereLf represents the Lipschitz constant associatedwith
d(x).

(iii) Arctangent Term: The term involving the arctangent func-
tion is kr ε̂|C|(arctan(cz2) − arctan(cz̃2)). The arctangent
function, arctan(x), is inherently Lipschitz continuous,
with its derivative, 1

1+x2 , bounded by 1. Therefore, we
have:

| arctan(cz2) − arctan(cz̃2)| ≤ c|z2 − z̃2|. (55)

Given that z2 is Lipschitz continuous with respect to x,
this term is also Lipschitz continuous with respect to x.

(iv) Adaptive Estimate Term: The term involving the arctan-
gent function is kr ε̂|C|(arctan(cz2) − arctan(cz̃2)). The
arctangent function, arctan(x), is inherently Lipschitz
continuous, with its derivative, 1

1+x2 , bounded by 1.
Therefore, we have:

| arctan(cz2) − arctan(cz̃2)| ≤ c|z2 − z̃2|. (56)

Given that z2 is Lipschitz continuous with respect to x,
the term arctan(cz2) is also Lipschitz continuous with
respect to x. Furthermore, ε̂ is bounded due to the sta-
bility analysis of the adaptive system. The product of a
bounded function (ε̂) and a Lipschitz continuous func-
tion (arctan(cz2)) is Lipschitz continuous. Therefore, the
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term kr ε̂|C|(arctan(cz2) − arctan(cz̃2)) is Lipschitz con-
tinuous with respect to x.

By synthesising these results and applying the triangle
inequality, it is feasible to identify a constant Lu such that:

||u(x) − u(x̃)|| ≤ Lu||x − x̃||. (57)

This confirms that the control law u satisfies the Lipschitz
continuity condition with respect to the state vector x. �

4. Simulation results

The linear drive system is simulated using the robust backstep-
ping controller (R-BSC) (28) and the proposed adaptive robust
backstepping controller (AR-BSC) under different conditions in
the presence of disturbances. To benchmark the proposed con-
troller, we also implement the fast nonsingular terminal sliding
mode controller (FTNSMC) developed by Zheng et al. (2015),
alongside the R-BSC and the adaptive recursive terminal slid-
ing mode controller (ARTSMC) from Qin et al. (2024). The
FTNSMC is selected due to its ability to achieve fast conver-
gence and robustness against uncertainties, making it a suitable
comparison for our nonlinear linear motor drive system.

All simulations were conducted in MATLAB/Simulink,
implementing the linear drive system model and control laws
as described in Sections 2 and 3, with performance metrics cal-
culated numerically based on the simulated position and control
input data.

The control scheme (FTNSMC), proposed in Zheng et al.
(2015) is given by

uSMC = u0 + u1, (58)

where u0 is the nominal control input derived from the plant
model assuming no uncertainties, and u1 is a reaching control
law designed to drive the system states onto the sliding surface
and handle disturbances. For consistency with our notation,
we define r � yd as the desired reference position trajectory,
such that ṙ = ẏd and r̈ = ÿd represent the reference velocity and
acceleration, respectively. These control signals are explicitly
expressed as follows:

u0 = Mÿd + f ′ − M
λγ

sign(ż1)2−γ , (59)

where f ′ = Bx2 + f (x2), λ > 0, 1 < γ < 2, and the notation
sign(x)a = |x|asign(x) defines a fractional power of the sign
function. The reaching control law is given by

u1 = M[k′
1s + k′

2sign(s)ρ], (60)

where k′
1, k

′
2 > 0, 0 < ρ < 1, and the sliding variable s is

defined as

s = z1 + λsign(ż1)γ , (61)

with z1 = y − yd = x1 − yd being the position tracking error,
consistent with our earlier definition in Section 3.1.

For the simulation study, the parameters are set as γ =
1.4, ρ = 0.8, and λ = 0.016, following the selection in Zheng

et al. (2015) to ensure fast convergence and reduced chattering.
The gains k′

1 = 500 and k′
2 = 200 are chosen as they provide

improved tracking performance and robustness for the lin-
ear motor studied in this work, determined through tuning to
balance accuracy and control effort.

Additionally, we implement the ARTSMC scheme proposed
by Qin et al. (2024). In what follows, we present the simulation
results.

Two case studies are considered, incorporating parameter
variations and external disturbances, as follows:

Case1 : �B = B, fd =
{
0 N, for t < 10 s,
10 N, for t ≥ 10 s.

Case2 : �B = 4B, fd = 15 sin(2t) N. (62)

The parameters of the linear drive systemwith amover are given
as follows (Paul et al., 2022)M = 0.3 kg, B = 0.7954N·s/m, and
kf = 1 N/V. The frictional force parameters are given as fc =
0.006, fs = 0.01, ẋs = 0.1, and Kv = 5.

The adaptation law is implemented alongside the AR-BSC
control signal, which is derived from the Lyapunov stability
theorem. Consequently, the stability of the closed-loop system is
ensured. The RBF-NN is implemented by randomly initialising
the weights. Additionally, the parameters of the backstepping
control system are set as:

k1 = 40, k2 = 40, β = 1, F̄e = 20. (63)

The sign function in the FTNSMC control law introduces dis-
continuities. Since a continuous control signal is desirable for
practical applications, an approximation of this function is used.
Various approximation methods can be employed; in this work,
we adopt the following approximation of the sign function (Paul
et al., 2022) for the nominal controller (28):

sign(x2) ≈ 2
π
arctan

(
900

2
π
x2

)
. (64)

To quantitatively compare the performances of the controllers,
we employ two tracking performance metrics: the Root Mean

Square Error (RMSE), defined as RMSE =
√

1
tf

∫ Tf
0 (y − yd)2 dt,

which measures the average magnitude of the tracking errors,
and the Maximum Absolute Error (MAE), given by MAE =
max |y − yd|, which captures the largest deviation between the
simulated and reference positions. Additionally, input chatter-
ing is assessed using the following metric:

Total Chattering =
∫ Tf

0
|u̇| dt. (65)

where Tf is the final time of the simulations.

Remark 4.1: The input chattering metric (65) is a standard
method for quantifying the total variation of the control input
over time. It corresponds to the L1-norm of the control
input’s derivative and effectively captures the energy associated
with high-frequency switching, which characterises chatter-
ing (Levant, 2010). Energy-basedmeasures provide a systematic
approach to evaluating the smoothness of control signals while
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Figure 2. Triangular position reference trackingwith disturbance occurring at t ≥ 10 s. (a) Case 1: Results showing the position tracking (top) and control signal (bottom)
under constant-type disturbance. (b) Case 2: Results showing the position tracking (top) and control signal (bottom) under time-varying disturbance.

mitigating inaccuracies from direct observations. Levant (2010)
formalises chattering as energy dissipation caused by switch-
ing forces, which can be associated with virtual dry friction and
accumulated over time. By integrating |u̇|, the chattering metric
ensures that both the magnitude and frequency of control input
variations are accounted for, making it a reasonable and reliable
measure for assessing and comparing chattering phenomena
in practical systems. This approach aligns with the classifica-
tion of chattering into infinitesimal, bounded, and unbounded
types (Levant, 2010), ensuring its theoretical validity and prac-
tical relevance.

Two types of reference tracking are considered. The first
is a periodic triangular reference trajectory, while the sec-
ond is a periodic sinusoidal reference for the mover position.
These trajectories are chosen as they represent repetitivemotion
tasks, a common characteristic of linear motor-driven systems.
For instance, surface mount equipment and glue dispensing
machines must consistently execute the same motion for each
batch of products on the production line while ensuring sus-
tained high precision and stable performance over time (Z. Liu
et al., 2024).

The selected trajectories illustrate two distinct scenarios: the
periodic sinusoidal trajectory represents cases where the refer-
ence is continuous with smooth transitions, whereas the trian-
gular reference represents periodic linear motions with sharp
transitions.

In each case study, we compare the proposed backstep-
ping controller with FTNSMC and ARTSMC. The parameters
for AR-BSC are set to ε̂(0) = 2.1/π and kf = 50. Other than
these differences, all controllers are implemented under iden-
tical conditions for fair benchmarking. The position tracking
and required input voltage results are shown in Figures 2 and 4.
Additionally, the tracking errors for the triangular and sinu-
soidal trajectories are presented in Figures 3 and 5, respectively.

In Case 1 (Figure 2(a)), under the triangular reference
position, all controllers exhibited good tracking performance
before the constant disturbance was introduced into the sys-
tem at t = 10 s. However, the performance of the R-BSC
degraded significantly once the nonzero constant distur-
bance was applied, whereas AR-BSC, FTNSMC, and ARTSMC
demonstrated robustness. The inferior performance of R-BSC
can be attributed to its simplistic adaptation to disturbances
within predefined bounds, unlike AR-BSC, FTNSMC, and
ARTSMC, which effectively minimise variations in the con-
trol signal upon disturbance entry. It is important to highlight
that the proposed AR-BSC provided a smooth control signal,
while FTNSMC and ARTSMC exhibited significant input volt-
age chattering.

In Case 2 (Figure 2(b)), R-BSC showed the poorest track-
ing performance in the presence of a sinusoidal distur-
bance, whereas AR-BSC closely matched the performance of
ARTSMC. Moreover, AR-BSC provided the smoothest control
signal response but with higher magnitudes compared to R-
BSC and FTNSMC. Tracking errors for both cases are presented
in Figure 3, with R-BSC demonstrating comparatively poor
performance.

For the triangular reference trajectory, the performancemet-
rics are computed based on the errors shown in Figure 3 and
presented in Table 1. The AR-BSC controller consistently out-
performs the others, particularly in Case 1, where it achieves
the lowest RMSE (0.0066m) and significantly reduces chatter-
ing (0.191 kV). This demonstrates superior tracking accuracy
and smoother control action.

The ARTSMC controller also exhibits competitive perfor-
mance, particularly in reducing RMSE and MAE, but it lags
behind AR-BSC in minimising chattering. The R-BSC con-
troller has the highest RMSE andMAE, indicating poor tracking
performance, especially in Case 1.While FTNSMCdelivers rea-
sonable accuracy, its chattering is excessively high (1.529 kV),
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Figure 3. Triangular position reference tracking. (a) Case 1: Evolution of sampled error signals under constant-type disturbances (b) Case 2: Evolution of sampled error
signals under time-varying disturbance.

Table 1. Performance comparison of controllers in terms of RMSE,MAE, and total chattering under different reference trajectories.

Controllers

Scenario Performance metric AR-BSC R-BSC FTNSMC ARTSMC

Triangular reference (Case 1) RMSE [m] 0.0066 0.0196 0.0116 0.0105
MAE [m] 0.0199 0.0374 0.0210 0.0178
Chattering [kV] 0.191 0.296 1.529 0.987

Triangular reference (Case 2) RMSE [m] 0.0200 0.0240 0.0201 0.0212
MAE [m] 0.0206 0.0360 0.0210 0.0207
Chattering [kV] 0.408 0.524 0.465 0.859

Sinusoidal reference (Case 1) RMSE [m] 0.0145 0.0227 0.0198 0.0179
MAE [m] 0.0321 0.0389 0.0325 0.0320
Chattering [kV] 0.522 1.258 1.129 0.971

Sinusoidal reference (Case 2) RMSE [m] 0.0148 0.0243 0.0200 0.0188
MAE [m] 0.0316 0.0423 0.0327 0.0296
Chattering [kV] 0.602 1.299 1.212 0.940

making it less desirable for applications requiring smooth
control. Overall, AR-BSC proves to be the most effective con-
troller for this scenario, achieving a balance between accuracy
and chattering reduction.

In Figure 4, the tracking performance of the studied con-
trollers for the sinusoidal reference trajectory is shown. Similar
to the previous case, R-BSC, AR-BSC, FTNSMC, and ARTSMC
are compared for both Case 1 and Case 2.

In Case 1, all controllers demonstrate effective tracking per-
formance in the absence of external disturbances. However,
the proposed AR-BSC exhibits slightly superior tracking per-
formance compared to the other three controllers. The per-
formance of R-BSC deteriorates the most when a constant
disturbance is introduced into the system, as shown in Figure 4.

In Case 2 (Figure 4(b)), the robustness of the proposed
AR-BSC is further demonstrated, as it remains closely aligned
with the reference trajectory despite the presence of distur-
bances. This point is more evident in the error plots shown
in Figure 5. Additionally, it is observed that the control volt-
age required by ARTSMC is generally larger in magnitude than

that of the other three controllers. The performance metrics
for the sinusoidal reference trajectory scenarios are calculated
using the error plots displayed in Figure 5, with the results
detailed in Table 1. The comparison of the four controllers–AR-
BSC, R-BSC, FTNSMC, and ARTSMC–reveals that AR-BSC
consistently delivers superior performance in terms of track-
ing accuracy, achieving the lowest RMSE andMAE in both case
studies. However, it is noted that ARTSMC slightly outperforms
the proposed AR-BSC in terms of MAE, as the latter tends to
exhibit a larger initial tracking error. AR-BSC also significantly
reduces chattering, particularly in Case 1, where it outperforms
all other controllers. ARTSMC demonstrates competitive per-
formance, especially in minimising chattering in Case 2, while
maintaining relatively low tracking errors. FTNSMC achieves
moderate tracking accuracy but is hindered by higher chat-
tering levels. R-BSC consistently underperforms, showing the
highest error values and chattering among the controllers. Over-
all, AR-BSC and ARTSMC emerge as the most effective con-
trollers, with AR-BSC demonstrating a slight advantage in most
scenarios.
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Figure 4. Sinusoidal position reference tracking. (a) Case 1: Results showing the position tracking (top) and control signal (bottom). (b) Case 2: Results showing the
position tracking (top) and control signal (bottom).

Figure 5. Sinusoidal position reference tracking. (a) Case 1: Evolution of sampled error signals (b) Case 2: Evolution of sampled error signals.

5. Conclusions

This paper has presented a novel backstepping control system
with a stability guarantee that advances position control for lin-
ear drive systems. By integrating AR-BSC with an RBF-NN,
our approach addresses practical challenges such as parame-
ter uncertainty, discontinuous frictional forces, and external
disturbances, outperforming traditional methods by providing
precise tracking and minimal chattering–key requirements for
real-world precision applications. A robust control scheme that
relies on the disturbance upper bound for its implementation
is first proposed. However, since this approach may lead to con-
servative performance and fail to accurately capture disturbance
dynamics, we introduce an adaptive robust backstepping con-
troller. This controller employs a RBF-NN, which is easy to

train and implement, to approximate the lumped disturbances
affecting the linear drive system. The adaptive scheme relies
on the RBF-NN to approximate lumped disturbances, includ-
ing discontinuous frictional forces. The characteristics of the
approximation function are used to demonstrate that the pro-
posed adaptive control law ensures the existence anduniqueness
of the solution for the nonlinearmodel of the linear motor drive
system.

The simulation results demonstrated that the adaptive back-
stepping control system provides improved performance over
the robust controller with a constant upper bound defined on
the external disturbance. It was also shown that the proposed
scheme provides a smoother control signal and comparable
tracking performance to a fast nonsingular terminal sliding
mode controller. A limitation of this work is that while the
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control law assumes the estimation error is always bounded,
this condition is not theoretically guaranteed by the RBF-NN
employed. Consequently, future research will focus on address-
ing this issue and performing experimental validation.
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