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ABSTRACT

We have developed a simple analytic formula that well describes quadrupole /-changing collisions of the form nl — nl’, as
confirmed by comparison with numerical quantal Born calculations obtained with the program AUTOSTRUCTURE. Such formulae
could easily be included in models of astrophysical plasma emission, such as the hydrogen and helium-like recombination
spectra. When compared with the results of previous quantal calculations based upon an analytic solution of the time-dependent
Schrodinger equation by Vrinceanu & Flannery, we find relatively good agreement, with the exception of large / > n/2
transitions. We provide a tentative explanation for such discrepancies. However, we also show that the rates for quadrupole
[-changing collisions are typically two orders of magnitude lower than the dipolar ones. Inclusion of the quadrupolar rates in
a hydrogenic collisional-radiative model of nebular plasma shows minimal changes to the level populations, typically within 1
per cent in nebular conditions. Simple and complete theories are now available for /-changing collisions suitable for astrophysical

applications.
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1 INTRODUCTION

Astrophysical plasma, comprising 95 per cent of cosmic baryonic
matter, consists of a mixture of ions, atoms, and free electrons
and protons. Given the large abundance of hydrogen and helium,
accurate non-LTE collisional-radiative modelling including several
ionization and recombination processes is required for a vast amount
of astrophysical applications. Long ago, it was recognized that dipole
[-changing collisions by protons and electrons are fundamentally
important for such models (Pengelly & Seaton 1964). [-changing
collisions are also generally important for redistributing the popula-
tions of atomic states of any atom. For this reason, there has been
recent interest in improving upon the seminal work of Pengelly &
Seaton (1964), see our previous paper (Badnell et al. 2021) and
references therein.

This paper focuses on quadrupole /-changing collisions for hy-
drogen, addressing the need for an investigation that is presently
absent in the literature. Such collisions are of the form nl — nl’,
where |l — I'| = Al = 2 and for which we can neglect the excitation
energy (AE =~ 0). In paper II of this series by Guzman et al.
(2017), the effects of higher multipole /-changing collisions were
briefly examined using the simplified semiclassical (SSC) method
of Vrinceanu, Onofrio & Sadeghpour (2012) for He-like ions, see
Section 2.4. It was found that while multipole effects are generally
negligible, they can contribute up to 50 per cent of the differences

* E-mail: ed650@cam.ac.uk
© 2025 The Author(s).

between the Quantum Mechanical (QM), see Section 2.3, and the
Pengelly & Seaton (1964) method (PSM) results, for certain Brackett
and Paschen lines at common astrophysical densities. Notably, these
differences in line intensities do not exceed 2 per cent. In this paper
we extend this investigation to quadrupole /-changing collisions for
hydrogen, by providing an analysis of their impact. As in paper II,
we explore the role of different approximations and examine the
significance of quadrupole transitions under relevant conditions.

The time-dependent Schrondiger equation (TDSE) quantum me-
chanical (QM) approximation and the Born approximation are the
primary tools that can be used to solve quadrupole /-changing
collisions. An initial comparison between the two reveals a dis-
crepancy, particularly at large nl — nl’ transitions. Consequently,
a deeper analytical comparison was undertaken, employing two
additional rate coefficient expressions representing accurate TDSE
QM and Born approximations to search for the root causes of
the observed disagreement. The Born approximation is a well-
known QM approximation for higher multipole expansions. The
SSC approximation developed by Vrinceanu et al. (2012) and a
rate coefficient expression developed by Burgess & Tully (2005)
constitute the TDSE QM and the Born approximations, respectively.
Both expressions necessitate simplifications and modifications to
account for quadrupole /-changing collisions effectively.

In Section 2, we discuss the Born and QM rate coefficients. In
Section 3, we discuss the methods we used for the study. In Section
4, we present the outcomes of the numerical evaluation and analytic
comparison, identifying agreements and discrepancies between the
approximations. In Section 5, we discuss the applications of our
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analysis by testing the relevance of quadrupole rates. In Section 6,
we elaborate on the outcomes of the numerical analysis.

2 THEORY

The key quantity used for collisional radiative modelling is the rate
coefficient [cm? s™'] (see e.g. Burgess & Tully 2005)

qi_>j=/f(v)injdv, ey

where f(v) is the velocity distribution of the free particles, assumed
to be Maxwellian (a generally good approximation for astrophysical
plasma), and Q;; is the cross-section for the /-changing collisions
between the target states i and j.

The high-energy scattering regime of atoms is characterized
by the ratio E/AE, where E represents the thermal energy and
AFE is the excitation energy. This regime requires a large ratio,
meaning the thermal energy significantly exceeds the excitation
energy. Quadrupole /-changing collisions exhibit an energy de-
pendence when AFE is finite. When E/AE becomes large, the
regime approaches an infinite energy limit, effectively making the
cross-section independent of scattering energy. This limit, in which
AE — 0, was detailed by Burgess & Tully (2005) in their study of
low-/ proton—electron collisions involving fine-structure excitations
with zero excitation energy.

The electric quadrupole radiation is much weaker than the electric
dipole radiation. In quadrupole proton—electron collisions within a
hydrogen atom, the proton changes the electron’s angular momentum
by 2 units due to angular momentum exchange. Without a cut-off
parameter, the cross-section for dipole /-changing collisions would
diverge. However, quadrupole cross-sections do not diverge, so no
cut-off is necessary.

The interactions asymptotically vary as 1/r> for the dipole, and as
1/r3 for quadrupole /-changing collisions.

2.1 The Born approximation

The Born approximation treats the collider as a plane wave. The total
cross-section is obtained by summing over a multipole expansion.
For scattering between atoms and electrons, the Born cross-section as
coded by NRB within AUTOSTRUCTURE (Badnell 2011) is widely
used. The calculations follow the descriptions given for the different
types of transitions by Burgess, Chidichimo & Tully (1997) and
Chidichimo, Badnell & Tully (2003), which refer to the original
works by Born (1926) and Bethe (1930).

The Born approximation is well-suited to describing proton—ion
collisions, especially quadrupole /-changing collisions. We present
the full Born approximation for quadrupole /-changing collisions
in Appendix A. This was derived by NRB based on the above
papers, using further assumptions and approximations to make it
suitable for quadrupole /-changing collisions. The final Born cross-
section expression is given by

b4 dK
sz(’i’nw=mxg/ﬁ4”2|<t' I B Il 2> 1,
q A
2

where the collision strength is the integral over the momentum
transfer, given by

dK )
Qi =8 / 4D L=<l I By |nl > P, 3
A
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and, | <nl' | B, || nl > |* is the term in the summation for
multipole

Q1+ D@r+ DRI+ D]V
4

’
x(ééé) <IN >, 4
where the 3-j symbol is equal to O, unless the sum of the terms
iseven and |l —I'| <X < (I +1'), based on the triangular rule of
the Wigner 3-j symbol that determines the allowed multipoles of the
Born approximation. K, is the initial momentum of the free electron,
K is the momentum transfer, and A indicates the multipole.

The 3-j symbol also mirrors the conservation of parity during
interactions, influencing the progression of alternating multipole
sequences. In cases of parity conservation, transitions between
angular momenta [ and [’ yield electric multipole series in the form
1-3—-5—7o0r 2—4—6-—28, determined by the parity of the
electric multipole operator, represented as (—1)*.

The radial part of the cross-section integral involves a spherical
Bessel function as presented below,

<n'l'||By | nl > = (=1 [

<INl >= / Pur() U (KP) — 80 Pu(r)dr . (5)
0

There is no analytic expression for the integral of the spherical
Bessel function between two wave functions, even for hydrogen.
Burgess & Tully (2005) developed simple expressions for proton—
electron collisions, which are similar to Born for /-changing colli-
sions, as the excitation energy is zero and the collision strength is a
constant.

2.2 Burgess and Tully modified Born (BTM)

Burgess & Tully (2005) gave an analytic approximation to the full
Born cross-section for the general case (AE # 0) which we denote
BT, but it depended on a numerical quadrupole line strength (S,) and
an effective target radius (ry), the latter to be determined by matching
to numerical Born results. Their expression was initially provided for
modelling proton collisions. They obtained cross-sections, collision
strengths, and rate coefficients with accurate behaviour at infinite
energies and higher temperatures, correcting earlier mistakes. As we
wanted to obtain an analytic expression for our comparisons, we have
specialized their approach to the A E = 0 case. We denote this as the
modified Burgess—Tully (BTM) method.

The BTM rate coefficient, g™, is related to the collision strength
QB™ vyia

pm 2 (7wly 2 -3/2 BTM E/KT ag 6
Dni—n = 5[ (W) w ni—nt’ €XP (_ / ) 705 ( )

where w; = 21 + 1, is the statistical weight, © = M /m, is the
dimensionless reduced mass, VM =30.31 and k = 6.33 x 10°
[Ryd K~!] in atomic units. E is the excitation energy which is zero,
and hence, exp (—E/kT) = 1. Burgess & Tully (2005) introduce
a quantity Y;; (equation 35) in their rate coefficient expression
(equation 34), however, the quantity Yj; is equal to the collision
strength Qjj, because QB™ is independent of energy.

The quadrupole Born collision strength in its high-energy form is
given by

4 (nZ 2 ,
0 =5 (r—”) Sanl —nl'), @)
0

where Z, is the charge number of the projectile, S, is the
quadrupole line strength, and ry is the effective target radius



(Burgess & Tully 2005). The BT expression used the Bethe approxi-
mation and quadrupole line strength from the literature. Their work is
focused on proton excitation of the fine structure of the ground term
in complex ions, as opposed to the /-changing collisions in Rydberg
hydrogen, which are effectively degenerate. The high energy limit
of the BT formalism corresponds to the A E = 0 modification in the
BTM expression.

An analytic form for S, does not appear to be readily available in
the literature. We have used the ladder operator techniques of Hey
(2006) to obtain one:

_ (300N (n \' (L@ -DY 5 5, 2
2=(7) (57) (aron) -t -a -
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where Z, is the charge number of the target, and . = max(/, [") (see
details in Appendix B). We have verified this expression against the
numerical results from AUTOSTRUCTURE.

For the effective target radius r(, we adopt an expression of the
form

Co }’l2

Z
obtained based on the turning points of the asymptotic behaviour
of the bounded and unbounded solutions of the Schrédinger’s radial
equation, as r — 0.
We find the best agreement between our analytic approximation
and exact Born collision strengths if we take

11+ 17
Co=l+|:1—(:;):| .

: )
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If the power in equation (10) were 1/2, then ry would be the outer
turning point of the (hydrogenic) radial function.

2.3 TDSE

Vrinceanu & Flannery (2001) solved the TDSE for a colliding
particle at large impact parameters by making use of the Stark
effect in Rydberg transitions. They investigated collisions of slow
charged particles at large impact parameters, and they provided an
expression for the Stark mixing-transitions’ probability of arbitrary
angular momentum Rydberg atomic states of the form nl — nl’.
This method has been evaluated for dipole /-changing collisions,
but its accuracy for higher multipole collisions has not been closely
reviewed yet. The TDSE quantum mechanical probability is given
by Vrinceanu & Flannery (2001)

oM ) n—1 1L 2
PR, =@ +1) > QL+ LT
, JjoJ
L=|I'—1|
LY?(m—-L—-1)" _ . 2
B sin )** [c,ﬁ{;ljl(cosp] ’
(1)

where {...} denotes a Wigner 6j-symbol, C}l” is an ultraspherical
polynomial, and j = (n — 1)/2. This is evaluated analytically using
techniques from Edmonds (1996). The pseudo-multipole summation
over L can contribute significantly in the quadrupole case, unlike the
dipole case where the L = 1 term dominates. The rotation angle x
is written in terms of the scattering parameter « via

1 + a? cos(ADP/1 + o2)

cos y = and

3Z,nh
o =
1+ a?

" 2m,vb’

12)
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where A® = m, b is the impact parameter and v is the projectile
speed. Integration over « yields both cross-sections and rate coeffi-
cients.

Vrinceanu et al. (2012) further evaluated the TDSE QM proba-
bility term, and they re-expressed the cross-section, considering the

probability dependence on the impact parameter b and the projectile
velocity v, through «, which is given by

2
TDSE = _ 9l x M N (13)
nl—nl 2 m,v =0

where I,(i),, is the velocity-independent integral factor that

Vrinceanu et al. (2012) introduced, which is determined by the initial
and final states as

o0 do
1= [P (14)
0 o

where the 1/a® dependence generates the logarithmic singularity
in the cross-section for large impact parameters. It is also where the
cut-off parameter is applied for dipole /-changing collisions.

The upper limit L restricts the contribution of higher multipoles in
the summation of equation (11), which ultimately yields the cross-
section and rate coefficient. Adjusting this limit controls the impact
of higher multipoles on the numerical rate coefficient. For / é n/2
the 6-j symbol truncates the sum at L = [ + I, however, forl  n/2,
the upper limit L = n — 1 of the summation is the term that truncates
the sum.

2.4 SSC

The SSC approximation is an analytic simplification of the QM
approximation, without making use of the Bethe approximation
and hence no cut-off parameter is introduced for the SSC. This
approximation is very accurate at low impact parameters and was
derived by Vrinceanu et al. (2012):

M Z,

me T

n [+ 1) — 21+ +2|Al)D]
(I + 1/2)] Al

g5, =1.294 x 107

[em®s™], (15)

where I_ is the smaller of [ and I’, v'M = 30.3039, m,=11in
atomic units, and Z, = 1.

The SSC approximation shows high accuracy on quadrupole
and higher multipole /-changing collisions, compared with the old
semiclassical (SC) (Vrinceanu & Flannery 2001).

3 METHODOLOGY

We employed both numerical and analytical methods to compare
cross-section and rate coefficient expressions. Numerical results for
the Born collision strengths are derived from AUTOSTRUCTURE. In
addition, QM, SSC, and BTM cross-sections and rate coefficients
are derived by a FORTRAN executable program written by NRB.
The program calculates Maxwellian rate coefficients and cross-
sections for approximations that describe /-changing atomic colli-
sions. The Born rate coefficient expression is determined analytically,
using the BT rate coefficient and cross-section results from the
modified /-changing collisions program, and the Born collision
strength results from the AUTOSTRUCTURE code, where we account
for proton collisions by scaling the outputs with the |/m ,/m, ratio.

Expressions displaying discrepancies for identical values of n and
[ are subjected to analytical comparison to identify the underlying
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SSC vs BTM Rate Coefficients
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Figure 1. Variation of TDSE QM (SSC) and Born (BTM) rate coefficients
[em? s~ with/ona logarithmic scale for 7= 100 [K].

sources of disagreement. We also investigate the contribution of
higher multipoles on the summation terms of the QM and the Born
approximations by restricting the contribution of higher multipoles
on the Born summation and by adding an upper L limit on the

QM summation and via a modification to the AUTOSTRUCTURE
program.

4 RESULTS

Our numerical results reveal good agreement between rate coeffi-
cients in the range 100 < n < 500 across all approximations for
low-/, with significant discrepancies emerging at higher / values (see
Fig. 1 and Table 1).

Although the Born is the most accurate approximation for the high
energy behaviour, it disagrees with the TDSE QM approximation for
intermediate and high / quadrupole n/ — nl’ transitions. Numerical
results reveal a good agreement between the BTM and the Born
approximations for ¢y = 2.

We see from Table 1 that the SSC and BTM approximations are
representative of the TDSE QM and Born results respectively over
all-/. The latter two are also in good agreement with each other at low-
1. However, for [ 2 n/2 we see increasing divergence between the
TDSE QM/SSC and Born/BTM results. Fig. 1 shows the variation
of the SSC and the BTM with /. Similarly with Table 1, there is
agreement between the SSC and the BTM for small / transitions
(I << n), better agreement for intermediate transitions (/ & n/2)
and large disagreement for [ ~ n.

Taking the limit of intermediate-/-changing collisions (1 <<

| << n) we find analytically a disagreement of approximately 0.8
when taking the ratio of ¢55¢/¢B™:

Gy =98 x 107% xn* [em’s™'] (16)

and

g3t =123 x107 xn* [ems™'].

an
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We can see the discrepancies more clearly if we take the limit of
large-/ for both the BTM and SSC expressions given by equations
(6) and (15) (for Z, = Z, = 1 and T = 100 K):

g3™ , ~9.80 x 1075 x I2  [em’s™'] (18)

and

g€, ~3.92x 1072 [em’s™!] (19)
Thus

Aot /Aoy ~ 0.4 . l—>n. (20

A full derivation of the analytic evaluation for both intermediate
and large /-changing collisions is given in Appendix C.

The analytical comparison in each transition range has quantified
the numerical discrepancies in the rate coefficients. We obtained ad-
ditional numerical results, using the AUTOSTRUCTURE code, including
an imposed restriction on the contribution of higher multipoles in the
Born approximation. Specifically, we progressively limit the number
of contributing multipoles in the summation of equation (2), first
considering only the lowest order term, then successively adding
higher order terms. The summation starts at A = 2 and increases in
steps of AA = 2, due to parity conservation.

Fig. 2 clearly shows an increasing relative contribution from the
higher pseudo-multipole terms to the TDSE QM L-sum compared
to the Born multipole sum; for/ 2 n/2 the two summations disagree
increasingly. It is evident that the first multipoles significantly influ-
ence and dominate the Born approximation’s summation term, with
the remaining multipoles contributing only 10 — 30 per cent. This
raises the question of whether the disagreement between the Born
and the TDSE QM approximations is only observed in quadrupole
[-changing collisions and persists for higher multipole transitions.

Comparison with TDSE QM approximation is essential for conclu-
sive insights, especially given the BT Bethe approximation’s internal
agreement with the Born approximation. The agreement between the
BT and the Born approximation would be worse if higher multipoles
were restricted.

Referring to the Born summation term, equation (4), BT obtained
the quadrupole collision strength without the contribution of higher
multipoles. For higher [ values, the multipoles physically contribute
more to the sum as [ — n, compared to the first term of the sum.
Considering the efficacy of the Born approximation in small /-
changing collisions, any observed disagreement likely stems from
the influence of higher multipoles on the summation term. We
therefore suggest that the contribution of higher multipoles plays
a pivotal role in the observed disagreement between the Born
and the TDSE QM approximations, especially for large /-changing
collisions. The quadrupole Born terms always dominate the total
expression when summing over all multipoles without a limit. This
completely differs from how the TDSE QM approximations vary
based on its summation term. The Born approximation’s multi-
pole expansion involves distinct electric multipole interactions (e.g.
dipole, quadrupole, octupole) integral to the electrostatic interaction
governing the collision process.

We applied a limiting parameter to the TDSE QM approximation’s
summation term, equation (11), further investigating the origin of
the discrepancy with the Born. The limiting parameter whose impact
is illustrated in Fig. 2, is the only parameter that can restrict the
contribution of higher multipoles on the expansion. We truncate the
sum at that L value, beyond which the rate coefficient is constant
with no further fluctuations. The Born and the TDSE QM behave in

the same way inasmuch as they yield consistent results when higher
multipoles are unrestricted.
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We observed that the Bethe approximation, the first term in the
Born summation (Burgess & Tully 2005), aligns well with the TDSE
QM for small and intermediate / transitions, but deviates for large
quadrupole /-changing collisions. We also noticed that when restrict-
ing the summation term to the first quadrupole multipole, the TDSE
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Table 1. Representative TDSE QM, SCC, BTM, and Born rate coefficients [cm3 sfl] at T = 100 [K], for various n and
[ values. All of the higher (> 2) multipoles have been included in the Quantal Born and the TDSE results.

n =1 TDSE QM SSC BTM Born
20 1-3 3.38 x 10° 2.08 x 100 3.04 x 109 2.97 x 10°
20 9—11 1.69 x 10° 1.25 x 10° 1.20 x 10° 1.18 x 10°
20 17 —19 3.34 x 107! 3.18 x 107! 5.24 x 1072 5.52 x 1072
30 1-3 1.72 x 10! 1.06 x 10! 1.57 x 10! 1.54 x 10!
30 14— 16 8.33 x 100 6.19 x 10° 6.07 x 10° 5.89 x 10°
30 27 —29 1.10 x 10° 1.07 x 10° 1.30 x 107! 1.34 x 107!
50 1-3 1.33 x 102 8.17 x 10! 1.22 x 102 1.19 x 102
50 24 —26 6.30 x 10! 4.70 x 10! 4.67 x 10! 4.52 x 10!
50 47 — 49 5.02 x 10° 4.93 x 10° 4.00 x 107! 4.10 x 107!
100 1-3 2.13 x 103 1.31 x 103 1.96 x 103 1.92 x 10°
100 20 —22 1.31 x 103 9.61 x 10? 1.18 x 10° 1.14 x 103
100 50 — 52 9.80 x 10? 7.33 x 10% 7.25 x 102 7.01 x 10?
100 97 —99 3.97 x 10! 3.93 x 10! 1.80 x 10° 1.88 x 10°
250 1-3 8.34 x 10* 5.11 x 104 7.66 x 10* 7.50 x 10*
250 50 — 52 4.99 x 10* 3.71 x 104 4.52 x 10* 4.35 x 10*
250 125 — 127 3.83 x 10* 2.87 x 10* 2.87 x 10* 2.67 x 10*
250 247 — 249 6.15 x 102 6.14 x 10? 1.29 x 10! 1.47 x 10!
500 1-3 1.33 x 10° 8.17 x 10° 1.23 x 10° 1.18 x 10°
500 100 — 102 7.91 x 10° 5.91 x 10° 7.19 x 10° 6.90 x 10°
500 250 — 252 6.13 x 10° 4.59 x 10° 4.61 x 10° 4.39 x 10°
500 497 — 499 4.98 x 10° 4.93 x 10° 5.66 x 10! 6.52 x 10!
i —-——— 40 - E—
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_ 950 ’r | o
1
// 900 ,I 30 ,’
// 1 1
o0 !
. 1 20 I
o 800 1 L
7 ] !
/,’ 750 1 10 1
s ! "
./ 700 -' -E- n=100, /=50, I'=52 -_._ n=100, /=97, I'=99
0
2.0 25 3.0 35 4.0 5 10 15 0 25 50 75 100
QM upper L value QM upper L value QM upper L value
A 1.9 —
—- n=100, /=1, /r=3/‘/A 700 /‘/‘,.*- A— A ““_— A— 'y
7 7 1.8 £
7 690 ! k
7 ! A
7/ 1 /
. 1.7 |
d 680 A
vl ! 16 |
7 670 | !
e ] i
) "—A— n=100, /=50, I'=52 1.5 i—A— n=100, /=97, I'=99
660
2.0 2.5 3.0 35 4.0 5 10 15 0 20 40

Born upper A value

Born upper A value Born upper A value

Figure 2. Variation of Born and TDSE QM rate coefficients [cm> s~!] with the restriction of multipoles, at 7= 100 [K].

multipoles. This further agreement between the Born and the TDSE
QM approximations supports that the primary source of disagreement
between the latter for large /-changing collisions arises from the
contribution of higher multipoles to their respective summation
terms.

QM agrees approximately with the Born rate coefficient, including all
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Table 2. Comparison table of dipole and quadrupole quantum me-
chanical (QM) rate coefficients [cm? s~!] for transitions starting at the
same [ for the same n, at T= 100 [K] and N, = | [cm?].

n =i Dipole =i Quadrupole
10 1-2 1.08 x 10! 1-3 2.04 x107!
10 4-5 7.11 x10° 4-6 1.15 x107!
10 7-8 3.39 x10° 7-9 4.54 x1072
30 1-2 7.20 x 102 1-3 1.72 x 10!
30 14-15 427 x10? 14-16 8.33 x10°
30 27-28 7.97 x10! 27-29 1.10 x10°
50 1-2 4.90 x103 1-3 1.33 x10?
50 25-26 2.79 x103 25-27 6.11 x10!
50 47-48 3.41 x10? 47-49 5.02 x10°
100 1-2 6.40 x10* 1-3 2.13 x103
100 20-21 471 x10* 20-22 1.31 x103
100 50-51 3.76 x10* 50-52 9.80 x 102
100 97-98 242 x10° 97-99 3.97 x10!
250 1-2 1.75 x10° 1-3 8.34 x10*
250 50-51 1.27 x10° 50-52 4.99 x10*
250 125-126 1.10 x10° 125-127 3.83 x10*
250 247-248 3.11 x10* 247-249 6.15 x10?
500 1-2 1.90 x107 1-3 1.33 x10°
500 100-101 1.38 x107 100-102 7.91 x10°
500 250-251 1.12 x107 250-252 6.31 x10°
500 497-498 2.08 x10° 497-499 498 x10°

We find mathematical disagreement between the summation terms
of the Born (4) and the TDSE QM (11) approximations when higher
multipoles start to contribute. The Born summation follows a pattern
based on |/ — I’| and extends up to / + [’ in an alternating sequence,
while there is no corresponding physical interpretation of the TDSE
QM sum.

5 TESTS ON THE RELEVANCE OF
QUADRUPOLE RATES

Regardless of the discrepancies at high /, the fundamental question
for astrophysical applications is whether quadrupolar rates affect the
level populations of spectroscopically important states, and should
be included in collisional-radiative models, alongside the dipolar
rates.

To start with, we have compared the dipolar and quadrupolar rate
coefficients for transitions starting at the same / for the same n. A
range of values is shown in Table 2. It is clear that the quadrupolar
rates are typically 14-100 times weaker than the dipolar ones.

Considering the limiting cases for both rates, we find that they
depend similarly on # and the nuclear charge, Z,. Hence, we expect
that also for any other H-like atom or ion the quadrupole rates are
negligible compared to the dipolar rates.

Still, one could wonder how much the inclusion of the quadrupolar
rate changes the populations of all the states. To answer this question,
the hydrogenic collisional radiative model, described in Hummer &
Storey (1987) and based on Brocklehurst (1971), was modified to
include the BTM rates, chosen as an upper limit for the low-/ states
which prove to be most affected.

Departure coefficients and line emissivities were compared with
and without quadrupole transitions for 10> < T[K] < 10, 10% <
N.[cm™] < 102, and 2 <n < 100 in Case A and Case B, de-
pending on whether the Lyman lines were assumed optically thin
or thick, respectively. The largest effects were found at the lowest
temperatures and densities for Case A, where departure coefficients
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Table 3. Table showing the maximum percentage change in emis-
sivity due to the inclusion of quadrupole collision rates, at a selection
of temperatures (K) and electron densities (cm?), and the upper, ny,
and lower n;, principal quantum numbers of the transition for which
it occurs. All transitions with n,, < 100 were searched.

T (K) Electron Transition Maximum percentage
density (cm?) n, —ny emissivity change
102 102 35-2 6.0
10* 19-2 48
100 12-11 3.7
108 6-5 3.3
1010 5-4 2.3
1023 102 38-2 43
10* 20-2 3.7
100 12-11 2.8
108 6-5 23
1010 4-3 0.88
103 102 43-2 2.9
10* 22-2 2.6
100 13-12 2.0
108 7-6 1.7
1010 4-3 0.66
1033 102 472 1.8
10* 23-2 1.7
10* 14-13 1.4
10* 7-6 1.3
1010 4-3 0.51
10* 102 53-2 1.0
10* 28-2 0.93
100 14-13 0.90
108 7-6 0.84
1010 4-3 0.35
10*3 102 52-2 0.52
10* 29-2 0.47
100 16-14 0.48
108 87 0.44
1010 5-4 0.21

changed by up to 8 per cent, while emissivities changed by 5 per cent.
At typical nebular temperatures of 10* K no departure coefficients
or emissivity was changed by more than 1 percent. We note that
a direct comparison of the quadrupole ! — / + 2 with the dipole
I — | + 1 rate coefficient does not capture all the physics, since
the probability of population being transferred from a state nl to
a state nl + 2 via the dipole / — [ + 1 — [ + 2 collisional process
must also take into account the probability of a radiative decay from
the nl + 1 state, which does not affect the quadrupole ! — [ 4 2
process.

In general, the impact of quadrupole transitions is expected to be
greatest for those n above which radiative processes dominate the
populations and below which populations are statistically distributed
by rapid /-changing collisions. Thus the contribution of quadrupole
rates is less significant at n values above and below this n regime,
whose position is a function of the ambient electron density. For ex-
ample Guzmdn et al. (2019), state that the critical densities, at which
radiative and collisional processes are in balance, are 30 cm~ and
0.6cm 3, forn = 30andn = 50, respectively. In Table 3 we show the
transitions which exhibit the largest change when quadrupole transi-
tions are added, as a function of electron temperature and density, for
arange of conditions, including those typically found in photoionized
nebulae.



6 CONCLUSIONS

We have developed a simple analytic formula (BTM) for quadrupole
I-changing collisions which will be of interest to model astrophysical
plasma emission, for example the hydrogen and helium-like recom-
bination spectra (Guzman et al. 2016; Badnell et al. 2021).

We find a good agreement between this BTM formula and results
from our quantal Born calculations using the AUTOSTRUCTURE
code, as well as between the SSC formula and the TDSE QM
approximation.

We also find good agreement between our Born results and those
we obtain from the TDSE method (Vrinceanu et al. 2012) for small-/
(<< n), but the two start to differ for intermediate-/ (~ n/2) and
diverge increasingly for large-I (= n/2).

The source of the disagreement between the two quantal results
appears to lie with their representation of the higher (> 2) terms
of the multipole expansion, which is much larger in the quadrupole
case than the dipole one. There is a much larger relative contribution
from the higher pseudo-multipole terms (L =2,3,4,...n/2) on
the TDSE QM total, compared with the contribution of the higher
multipoles (A = 2,4, 6, ...l + ') to the Born one. Higher multipoles
contribute significantly (approximately 90 percent) to the TDSE
QM approximation, while applying limiting parameters on multipole
expansion terms restricts their contribution and allows for a closer
examination of rate coefficient variations. At this evaluation level,
discrepancies between the TDSE and Born approximations highlight
differences in how quadrupole /-changing collisions are treated.
Given that TDSE is a full quantum approach, it is expected to
provide a more rigorous description. However, further investigation
is needed to fully understand the physical implications of these
differences.

However, regardless of the reason for the discrepancy, it is clear
that the quadrupolar rates are always going to be significantly lower
than the dipolar ones, by typically two orders of magnitude. Their
inclusion in a hydrogenic collisional radiative model for hydrogen
shows minimal changes (a few percent) in the line emissivities,
which we consider negligible for most astrophysical applications.

This is the last of a series of papers that began with Pengelly &
Seaton (1964), advanced to the work of Vrinceanu & Flannery
(2001), Vrinceanu et al. (2012, 2017), and Vrinceanu et al. (2019)
leading to our studies Guzmén et al. (2016, 2017); Guzman et al.
(2019); Badnell et al. (2021).

ad astra, Nigel
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APPENDIX A: BORN APPROXIMATION BY NRB

Consider a transition ¢ — ¢’ between atomic states of hydrogen,
where ¢ = nlm, ignoring spin. Then,

’ K'
0(q—q) = ?q / |Fyy(Ky, K dS2, (A1)
q

where K, is the initial momentum of the free electron. In the Born
approximation the scattering amplitude is given by

1
Fp Ky, Ky) = E/qqu,(rz) Vaq(ra2) ¢k, (r2)dro, (A2)
where V,, is given by
. 1 1
Vq’q(r2)2/¢q’(rl) — — — | ¢,(r)dry, (A3)
r2 r
where
o, (r) = eFar, (Ad4)

is a plane wave solution of
(V*+ K)ok, =0, (AS)
and ¢, (r) are atomic wavefunctions of the form

Pnl(r)

¢q(r) = Yiu(F) p (A6)
where Y;,,(F) is a spherical harmonic and
1 1
—_ = (A7)
rop |ry—ra|

To see a formal (partial wave) solution with application to
Coulomb Born, see Burgess, Hummer & Tully (1970), pp 226-230.
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To proceed with the Born solution we do not need to make a
partial wave analysis. Substituting equation (A3) into equation (A2),
we obtain,

1
Er Ky Ky) === /qﬁ;(rl)qbq(rl)

1 1 iK-r
X _——— e’ zdrzdI‘], (AS)
ra

where K = K, — K is the momentum transfer
A standard result in the literature comes from Bethe (1930)
integral, given by

zKrz
/|"1 — 1|

Also, we always use orthonormal atomic wavefunctions

4w iK- elKrz 4
dr, = Kze "I and / - drzzﬁ. (A9)

/¢,’;f(r1)¢q(r1)dr1 =84q'- (A10)

Using equation (A9) and equation (A10) in equation (AS8), we
obtain,

B 2 iK-r  x

FljK) = = | [ X0 g5 g (rydri =gy | (AlD)
where

L..]=(q'le® —1lg). (A12)
We can re-write the solid angle as

dQ = d¢sin6do . (A13)
Since we orientate K, along the z-axis, then

K*=K -K=(K,;—-K,) Ky —K,)

=K, + K, —2K,K, cos6. (A14)

So,

2KdK =2K, K, sin0 do (A15)
and

K, Kq//sinedez/l( dK . (A16)

Hence, using equation (A1l) and equation (A16) into equation
(Al), we obtain,

SdK g |k 2
Quy—q) = K2 Kr—1]g)| . (A17)
The collision strength €/, is defined from,
Qyq = 0lm — n''m') = quq . (A18)

lI

In order to match results obtained by Burgess et al. (1997), expand
the plane wave in spherical harmonics (Edmonds 1996), then

Kr = dm Y it ju(Kr) Y3, (K) Y (P). (A19)
Ap
Then,
dK
Qg =18 / &5 |Eaa(K ) (A20)
where
4‘1(1()_47[21 )\,IL(K) q |Bky.|q) (AZ])
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and

By = Y,u(F) G (K7) = 830). (A22)
Then

|Egg(K)> =47 | < q'|Biulg > I, (A23)

Ap
which still includes the magnetic quantum numbers m, m’.
The Wigner—Eckart theorem (Edmonds 1996) enables us to factor
our the magnetic quantum numbers. Hence,
/ '—m! l/ A l
<nl'm|Byynlm > = (=1)' ™ (—m’ " m)

x <n'l' | B, || nl > (A24)

and reduces the B;, dependence to B,, as u is the *magnetic’
component of ¥, ,. Then the reduced matrix element is
@1+ 1)2r+ DRI+ 1]
47

<n'l'|By || nl > = (-1 {

I'rl s
where
<l >=/ dr Py (r)[ja(Kr) — 8301 Pu(r) .
0
(A26)
The Wigner 3-j symbol (Edmonds 1957, p.125) is given by,
Ul (1)L U +r=D1 +1—0)17"?
000/ V+r+1+1)!
L/2)! 12
(L/2) ’ (A27)
(L2 =1)(L/2 —MW(L/2—-1)!

where L =1"4+1+1
The magnetic quantum numbers are then easily eliminated as in
Burgess & Tully (2005), given also that,

ra )
> (i) =

m'mp

(A28)

Which finally leaves us with equations (2) and (3) as presented in
the paper.

APPENDIX B: BTM APPROXIMATION BY NRB

In this appendix we describe the modifications made to the Burgess &
Tully (2005) approximation, which we now called BTM (Burgess and
Tully Modified), especially for the analytic form of the quadrupole
line strength of the target (S,), given in equation (8) in the paper.

Looking at equation (17), equation (31) and equation (33) from
the Burgess & Tully (2005) that present the collision strength, there
had to be modifications to the quadrupole line strength of the target
term, S,. Also, the rate coefficients are given in terms of energy,
however zero excitation energy is assumed for quadrupole /-changing
collisions.

Burgess & Tully (2005) present the collision strength in their
equation (33) as,

2 22 a2
Q= (E>M z2 5 <%> , (B1)

where a? = 6 agrees with equation (17) from the Burgess & Tully
(2005) paper and ry can be determined by infinite energy or by
con?

ro = 7



The quadrupole line strength for the target transition, S, is given
by,

So(nl', nl' =142) = )21 + 1)l + 1)<é 3 i))

2

X /Pn, P2 Py dr| (B2)
where
, 120\° 3L@. -1
@)@+ DRl + 1)(O 0 0) =21 (B3)

and
‘/Pnlrzpnl’dr

Hence, we obtain the quadrupole line strength of the target term,
S,, as we presented in equation (8) in the paper, which is,

C 300\ [ n \*(LG- =D\ , L, 2
2= (7) () (ary) o -ter-a -,

(B5)

2 2
=100 (%) n? — 2P — (. — 17).
(B4)

Assuming that [ >> 1, and given that I’=142 then equa-
tion (BS5) simplifies to

300 / n \*
=" (—) Im®=1»?*. B6
S 2 (221) (n ) (B6)

APPENDIX C: ANALYTIC EVALUATION

The analytic rate coefficient of BTM is given by substituting the
collision strength, quadrupole line strength, and the effective size of
the atom, as follows,

g1 2NAM (12 Z, \* (300 nt
Di=nr = Ry \15) \eon2) 2 ) \162*
(- -1 2 2v02 ) 12
((% = 1)) x (= 2)n? — (I — 1))
L a4
QI+ 1)1

which is expressed in atomic units while the temperature (7) is
expressed in Rydberg units. Burgess & Tully (2005) use

x , (&3]

3
271/ <%°> —2.17167 x 10~ [em’s~'], (€2
0

to convert atomic units to cgs units, which we follow as the SSC
rate coefficient expression is given in cgs units. By making use of
the appropriate values for constants, and for 7= 100 K, we simplify
equation (C1) as a numerical part, times an expression only written
in terms of n and /, given by

1 l>(l> - 1)
20417 2. —1
x(n® —12)n* — (- — DH]  [em’s™']. (C3)

g8t =490 x 107° x

We first consider approximate expressions for the case of interme-
diate [ values, such that 1 << << n.Forl >> 1 we then have,

I.(n* —12)?

BT —=4.90x107°
qnl—ml X 2(21> + 1)

[em’s7!], (C4)
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which further simplifies to
g2, =123 x107° x (n* —1*)?* [em’s']. (C5)

Now, the full SSC simple rate coefficient, from Vrinceanu et al.
(2012) is given by,

M Z,

— = X

me /T

n?[n?(+1) — 21+ + 2|Al])]
(I +1/2)|Al)

g5, =129 x 107

[em’s™!7. (Co)

Then, we can multiply equation (15) by a factor of 2/2 so that the
denominator can be easily aligned in a way that it matches the initial
statistical weight of the BT rate coefficient of the form 1/(2/ + 1).
We then obtain,

455, =3.9213 x 107 x
nZ[nZ(l> ) e (A 2)2(l> + 1]
2021 + 1)

[em’s™']. (C7)

Then, similarly with the BTM evaluation, we can take the limit
where / >> 1 and simplify the SSC rate coefficient as,

a5, =98 x 1070 x n* [n* —1*]  [em’s™']. (C8)

If in addition / << n, then the expression further simplifies to
determine the final results of the analytic comparison for intermediate
[-changing transitions.

ay S,y =98 x107° xn* [em’s™'] (C9)
and
apty =123 %107 xn*  [em’s™']. (C10)

The SSC and the BTM expressions are finally compared for large
[-changing transitions where the biggest disagreement is observed
both numerically and analytically. The assumptions that hold for
large /-changing transitions are slightly different from intermediate
I-changing transitions. For large transitions, the SSC is in a highly
accurate agreement with the TDSE QM. Additionally, numerical
results show the highest level of agreement between the BTM and
the Born. If we take n = /. + 1, the initial SSC approximation,
equation (15), for the large /-changing transitions is simplified into
equation (C11).

g5 = 3.92x 107 x

NN

X

n?[2n%(l. — 1) = 2(> — 2)*(> + 1]

3.1
8+ 1/2) fem’s ]
= 3.92x 1075 x % X
2 _ _ _ 2
(- +1)° x (S (12)1 f;) 2] [em®s~']. (C1D)

The same assumption holds for the BT rate coefficient expression
evaluated on large /-changing transitions, so equation (C3) is further
simplified into equation (C12).

42 Q2L + 1)l — 1)

3.1
QU+ haL —1) |lemsl

g8t . =490 x 107 x

(C12)
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Also, for large [ transitions, the assumption that [ >> 1 still g2l =980 x 107 x 2 x [em®s7!]. (C14)
holds therefore SSC and BT expressions are further simplified into

equations (19) and (18), respectively, which are the final analytic Therefore the final ratio of SSC/BT for large [ transitions is

results for the evaluation of large / transitions. approximately 0.4/...
g33C,, =3.92x107 x 3 [em’s7'] (C13)
and
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