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A B S T R A C T 

We have developed a simple analytic formula that well describes quadrupole l-changing collisions of the form nl → nl ′ , as
confirmed by comparison with numerical quantal Born calculations obtained with the program AUTOSTRUCTURE . Such formulae 
could easily be included in models of astrophysical plasma emission, such as the hydrogen and helium-like recombination 

spectra. When compared with the results of previous quantal calculations based upon an analytic solution of the time-dependent 
Schr ̈odinger equation by Vrinceanu & Flannery, we find relatively good agreement, with the exception of large l > n/ 2 

transitions. We provide a tentative explanation for such discrepancies. Ho we ver, we also show that the rates for quadrupole 
l-changing collisions are typically two orders of magnitude lower than the dipolar ones. Inclusion of the quadrupolar rates in
a hydrogenic collisional-radiative model of nebular plasma shows minimal changes to the level populations, typically within 1
per cent in nebular conditions. Simple and complete theories are now available for l-changing collisions suitable for astrophysical
applications.

Key words: atomic data – ISM: abundances – H II regions – cosmology: observations – primordial nucleosynthesis. 
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 I N T RO D U C T I O N  

strophysical plasma, comprising 95 per cent of cosmic baryonic 
atter, consists of a mixture of ions, atoms, and free electrons 

nd protons. Given the large abundance of hydrogen and helium, 
ccurate non-LTE collisional-radiative modelling including several 
onization and recombination processes is required for a vast amount 
f astrophysical applications. Long ago, it was recognized that dipole 
-changing collisions by protons and electrons are fundamentally
mportant for such models (Pengelly & Seaton 1964 ). l-changing
ollisions are also generally important for redistributing the popula- 
ions of atomic states of any atom. For this reason, there has been
ecent interest in improving upon the seminal work of Pengelly & 

eaton ( 1964 ), see our previous paper (Badnell et al. 2021 ) and
eferences therein. 

This paper focuses on quadrupole l-changing collisions for hy- 
rogen, addressing the need for an investigation that is presently 
bsent in the literature. Such collisions are of the form nl → nl ′ ,
here | l − l ′ | = �l = 2 and for which we can neglect the excitation

nergy ( �E ≈ 0). In paper II of this series by Guzm ́an et al.
 2017 ), the effects of higher multipole l-changing collisions were 
riefly examined using the simplified semiclassical (SSC) method 
f Vrinceanu, Onofrio & Sadeghpour ( 2012 ) for He-like ions, see
ection 2.4 . It was found that while multipole effects are generally
e gligible, the y can contribute up to 50 per cent of the differences
 E-mail: ed650@cam.ac.uk 
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etween the Quantum Mechanical (QM), see Section 2.3 , and the
engelly & Seaton ( 1964 ) method (PSM) results, for certain Brackett
nd Paschen lines at common astrophysical densities. Notably, these 
ifferences in line intensities do not exceed 2 per cent. In this paper
e extend this investigation to quadrupole l-changing collisions for 
ydrogen, by providing an analysis of their impact. As in paper II,
e explore the role of different approximations and examine the 

ignificance of quadrupole transitions under rele v ant conditions. 
The time-dependent Schr ̈ondiger equation (TDSE) quantum me- 

hanical (QM) approximation and the Born approximation are the 
rimary tools that can be used to solve quadrupole l-changing 
ollisions. An initial comparison between the two reveals a dis- 
repancy, particularly at large nl → nl ′ transitions. Consequently, 
 deeper analytical comparison was undertaken, employing two 
dditional rate coefficient expressions representing accurate TDSE 

M and Born approximations to search for the root causes of
he observed disagreement. The Born approximation is a well- 
nown QM approximation for higher multipole expansions. The 
SC approximation developed by Vrinceanu et al. ( 2012 ) and a
ate coefficient e xpression dev eloped by Burgess & Tully ( 2005 )
onstitute the TDSE QM and the Born approximations, respectively. 
oth expressions necessitate simplifications and modifications to 
ccount for quadrupole l-changing collisions ef fecti vely. 

In Section 2 , we discuss the Born and QM rate coefficients. In
ection 3 , we discuss the methods we used for the study. In Section
 , we present the outcomes of the numerical e v aluation and analytic
omparison, identifying agreements and discrepancies between the 
pproximations. In Section 5 , we discuss the applications of our
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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nalysis by testing the rele v ance of quadrupole rates. In Section 6 ,
e elaborate on the outcomes of the numerical analysis. 

 T H E O RY  

he key quantity used for collisional radiative modelling is the rate
oefficient [cm 

3 s −1 ] (see e.g. Burgess & Tully 2005 ) 

 i→ j = 

∫ 
f ( v) v Q ij d v , (1) 

here f (v) is the velocity distribution of the free particles, assumed
o be Maxwellian (a generally good approximation for astrophysical
lasma), and Q ij is the cross-section for the l-changing collisions
etween the target states i and j . 

The high-energy scattering regime of atoms is characterized
y the ratio E /�E , where E represents the thermal energy and
E is the excitation energy. This regime requires a large ratio,
eaning the thermal energy significantly exceeds the excitation

nergy. Quadrupole l-changing collisions exhibit an energy de-
endence when �E is finite. When E/�E becomes large, the
egime approaches an infinite energy limit, ef fecti vely making the
ross-section independent of scattering energy. This limit, in which
E → 0, was detailed by Burgess & Tully ( 2005 ) in their study of

ow- l proton–electron collisions involving fine-structure excitations
ith zero excitation energy.
The electric quadrupole radiation is much weaker than the electric

ipole radiation. In quadrupole proton–electron collisions within a
ydrogen atom, the proton changes the electron’s angular momentum
y 2 units due to angular momentum exchange. Without a cut-off
arameter, the cross-section for dipole l-changing collisions would
i verge. Ho we ver, quadrupole cross-sections do not diverge, so no
ut-off is necessary. 

The interactions asymptotically vary as 1 /r 2 for the dipole, and as
 /r 3 for quadrupole l-changing collisions. 

.1 The Born approximation 

he Born approximation treats the collider as a plane wave. The total
ross-section is obtained by summing o v er a multipole expansion.
or scattering between atoms and electrons, the Born cross-section as
oded by NRB within AUTOSTRUCTURE (Badnell 2011 ) is widely
sed. The calculations follow the descriptions given for the different
ypes of transitions by Burgess, Chidichimo & Tully ( 1997 ) and
hidichimo, Badnell & Tully ( 2003 ), which refer to the original
orks by Born ( 1926 ) and Bethe ( 1930 ). 
The Born approximation is well-suited to describing proton–ion

ollisions, especially quadrupole l-changing collisions. We present
he full Born approximation for quadrupole l-changing collisions
n Appendix A . This was derived by NRB based on the above
apers, using further assumptions and approximations to make it
uitable for quadrupole l-changing collisions. The final Born cross-
ection expression is given by 

 

Born 
nl → nl ′ = 

π

K 

2 
q (2 l + 1) 

× 8 
∫ 

d K 

K 

3 
4 π

∑ 

λ

| < t ′ ‖ B λ ‖ t > | 2 ,

(2) 

where the collision strength is the integral over the momentum
ransfer, given by 

Born 
nl → nl ′ = 8 

∫ 
d K 

K 

3 
4 π

∑ 

λ

| < nl ′ ‖ B λ ‖ nl > | 2 , (3) 
NRAS 539, 2957–2966 (2025) 
and, | < nl ′ ‖ B λ ‖ nl > | 2 is the term in the summation for
ultipole 

< n ′ l ′ ‖ B λ ‖ nl > = ( −1) l 
′
[

(2 l + 1)(2 λ + 1)(2 l ′ + 1) 

4 π

]1 / 2

×
(

l ′ λ l 

0 0 0 

)
< l ′ ‖ j λ ‖ l >, (4) 

where the 3-j symbol is equal to 0, unless the sum of the terms
s even and | l − l ′ | ≤ λ ≤ ( l + l ′ ), based on the triangular rule of
he Wigner 3-j symbol that determines the allowed multipoles of the
orn approximation. K q is the initial momentum of the free electron,
 is the momentum transfer, and λ indicates the multipole. 
The 3-j symbol also mirrors the conservation of parity during

nteractions, influencing the progression of alternating multipole
equences. In cases of parity conservation, transitions between
ngular momenta l and l ′ yield electric multipole series in the form
 − 3 − 5 − 7 or 2 − 4 − 6 − 8, determined by the parity of the
lectric multipole operator, represented as ( −1) λ. 

The radial part of the cross-section integral involves a spherical
essel function as presented below, 

< l ′ ‖ j λ ‖ l > =
∫ ∞ 

0
P n ′ l ′ ( r ) [ j λ( K r ) − δλ0 ] P nl ( r) d r . (5) 

There is no analytic expression for the integral of the spherical
essel function between tw o w av e functions, ev en for hydrogen.
urgess & Tully ( 2005 ) developed simple expressions for proton–
lectron collisions, which are similar to Born for l-changing colli-
ions, as the excitation energy is zero and the collision strength is a
onstant. 

.2 Burgess and Tully modified Born (BTM) 

urgess & Tully ( 2005 ) gave an analytic approximation to the full
orn cross-section for the general case ( �E �= 0) which we denote
T, but it depended on a numerical quadrupole line strength ( S 2 ) and
n ef fecti ve target radius ( r 0 ), the latter to be determined by matching
o numerical Born results. Their expression was initially provided for
odelling proton collisions. They obtained cross-sections, collision

trengths, and rate coefficients with accurate behaviour at infinite
nergies and higher temperatures, correcting earlier mistakes. As we
anted to obtain an analytic expression for our comparisons, we have

pecialized their approach to the �E = 0 case. We denote this as the
odified Burgess–Tully (BTM) method. 
The BTM rate coefficient, q BTM , is related to the collision strength

BTM via 

 

BTM 

nl → nl ′ = 

2 

ω l 

(
π I H 

kT 

)1 / 2

μ−3 / 2 �BTM 

nl −nl ′ exp ( −E/kT ) 
a 30 

τ0 
, (6) 

where ω l = 2 l + 1, is the statistical weight, μ = M/m e is the
imensionless reduced mass, 

√ 

M = 30 . 31 and k = 6 . 33 × 10 −6 

Ryd K 

−1 ] in atomic units. E is the excitation energy which is zero,
nd hence, exp ( −E/kT ) = 1. Burgess & Tully ( 2005 ) introduce
 quantity Y ij (equation 35) in their rate coefficient expression
equation 34), ho we ver, the quantity Y ij is equal to the collision
trength �ij , because �BTM is independent of energy. 

The quadrupole Born collision strength in its high-energy form is
iven by 

BTM 

nl −nl ′ = 

4 

5 

(
μZ p 

r 0 

)2

S 2 ( nl − nl ′ ) , (7) 

where Z p is the charge number of the projectile, S 2 is the
uadrupole line strength, and r 0 is the ef fecti ve target radius
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Burgess & Tully 2005 ). The BT expression used the Bethe approxi-
ation and quadrupole line strength from the literature. Their work is

ocused on proton excitation of the fine structure of the ground term
n complex ions, as opposed to the l-changing collisions in Rydberg 
ydrogen, which are ef fecti v ely de generate. The high energy limit
f the BT formalism corresponds to the �E = 0 modification in the
TM expression. 
An analytic form for S 2 does not appear to be readily available in

he literature. We have used the ladder operator techniques of Hey 
 2006 ) to obtain one: 

 2 = 

(
300 

2 

)(
n 

2 Z t 

)4 (
l > 

( l > 

− 1) 

(2 l > 

− 1) 

)
( n 2 − l 2 > 

)( n 2 − ( l > 

− 1) 2 ) , 

(8) 

here Z t is the charge number of the target, and l > 

= max ( l , l ′ ) (see
etails in Appendix B ). We have verified this expression against the
umerical results from AUTOSTRUCTURE . 
For the ef fecti ve target radius r 0 , we adopt an expression of the

orm 

 0 = 

c 0 n
2

Z t 

, (9) 

obtained based on the turning points of the asymptotic behaviour 
f the bounded and unbounded solutions of the Schr ̈odinger’s radial 
quation, as r → ∞ . 

We find the best agreement between our analytic approximation 
nd exact Born collision strengths if we take 

 0 = 1 + 

[
1 − l( l + 1) 

n 2 

]1 / 4

. (10) 

If the power in equation ( 10 ) were 1 / 2, then r 0 would be the outer
urning point of the (hydrogenic) radial function. 

.3 TDSE 

rinceanu & Flannery ( 2001 ) solved the TDSE for a colliding
article at large impact parameters by making use of the Stark 
ffect in Rydberg transitions. The y inv estigated collisions of slow 

harged particles at large impact parameters, and they provided an 
xpression for the Stark mixing-transitions’ probability of arbitrary 
ngular momentum Rydberg atomic states of the form nl → nl ′ .
his method has been e v aluated for dipole l-changing collisions,
ut its accuracy for higher multipole collisions has not been closely 
e vie wed yet. The TDSE quantum mechanical probability is given 
y Vrinceanu & Flannery ( 2001 ) 

 

QM 

nl → nl ′ = (2 l ′ + 1) 
n −1∑

L =| l ′ −l| 
(2 L + 1) 

{
l ′ l L

j j j 

}2

× ( L !) 2 ( n − L − 1)! 

( n + L )! 
(2 sin χ ) 2 L 

[ 
C 

( L + 1) 
n −L −1 ( cos χ ) 

] 2
, 

(11) 

here { .. . } denotes a Wigner 6 j -symbol, C 

( l) 
n is an ultraspherical

olynomial, and j = ( n − 1) / 2. This is e v aluated analytically using
echniques from Edmonds ( 1996 ). The pseudo-multipole summation 
 v er L can contribute significantly in the quadrupole case, unlike the
ipole case where the L = 1 term dominates. The rotation angle χ
s written in terms of the scattering parameter α via

cos χ = 

1 + α2 cos ( �� 

√ 

1 + α2 ) 

1 + α2 
and α = 

3 Z p n � 
2 m e vb 

,

(12) 
where �� = π , b is the impact parameter and v is the projectile
peed. Inte gration o v er α yields both cross-sections and rate coeffi-
ients. 

Vrinceanu et al. ( 2012 ) further e v aluated the TDSE QM proba-
ility term, and they re-expressed the cross-section, considering the 
robability dependence on the impact parameter b and the projectile 
elocity v, through α, which is given by 

 

TDSE 
nl → nl ′ = 

9 π

2 
×

(
Z p n � 
m e v 

)2

× I 
( n ) 
l → l ′ , (13) 

where I 
( n ) 
l → l ′ is the velocity-independent integral factor that

rinceanu et al. ( 2012 ) introduced, which is determined by the initial
nd final states as 

 

( n ) 
l → l ′ = 

∫ ∞ 

0
P 

( n ) 
nl → nl ′ ( α)

d α

α3 
, (14) 

where the 1 /α3 dependence generates the logarithmic singularity 
n the cross-section for large impact parameters. It is also where the
ut-off parameter is applied for dipole l-changing collisions. 

The upper limit L restricts the contribution of higher multipoles in
he summation of equation ( 11 ), which ultimately yields the cross-
ection and rate coefficient. Adjusting this limit controls the impact 
f higher multipoles on the numerical rate coefficient. For l � n/ 2
he 6-j symbol truncates the sum at L = l + l ′ , ho we ver, for l � n/ 2,
he upper limit L = n − 1 of the summation is the term that truncates
he sum. 

.4 SSC 

he SSC approximation is an analytic simplification of the QM 

pproximation, without making use of the Bethe approximation 
nd hence no cut-off parameter is introduced for the SSC. This
pproximation is very accurate at low impact parameters and was 
erived by Vrinceanu et al. ( 2012 ): 

 

SSC 
nl → nl ′ = 1 . 294 × 10 −5 

√ 

M 

m e 

Z 

2 
p√
T 

×n 2 [ n 2 ( l + l ′ ) − l 2 < 

( l + l ′ + 2 | �l| )]
( l + 1 / 2) | �l| 3 [cm 

3 s −1 ] , (15) 

where l < 

is the smaller of l and l ′ , 
√ 

M = 30 . 3039, m e = 1 in
tomic units, and Z p = 1. 

The SSC approximation shows high accuracy on quadrupole 
nd higher multipole l-changing collisions, compared with the old 
emiclassical (SC) (Vrinceanu & Flannery 2001 ). 

 M E T H O D O L O G Y  

e employed both numerical and analytical methods to compare 
ross-section and rate coefficient expressions. Numerical results for 
he Born collision strengths are derived from AUTOSTRUCTURE . In 
ddition, QM, SSC, and BTM cross-sections and rate coefficients 
re derived by a FORTRAN e x ecutable program written by NRB.
he program calculates Maxwellian rate coefficients and cross- 
ections for approximations that describe l-changing atomic colli- 
ions. The Born rate coefficient expression is determined analytically, 
sing the BT rate coefficient and cross-section results from the 
odified l-changing collisions program, and the Born collision 

trength results from the AUTOSTRUCTURE code, where we account
or proton collisions by scaling the outputs with the 

√ 

m p /m e ratio. 
Expressions displaying discrepancies for identical values of n and 

are subjected to analytical comparison to identify the underlying
MNRAS 539, 2957–2966 (2025) 
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M

Figure 1. Variation of TDSE QM (SSC) and Born (BTM) rate coefficients 
[cm 

3 s −1 ] with l on a logarithmic scale for T = 100 [K]. 
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ources of disagreement. We also investigate the contribution of
igher multipoles on the summation terms of the QM and the Born
pproximations by restricting the contribution of higher multipoles
n the Born summation and by adding an upper L limit on the
M summation and via a modification to the AUTOSTRUCTURE

rogram. 

 RESULTS  

ur numerical results reveal good agreement between rate coeffi-
ients in the range 100 < n < 500 across all approximations for
ow- l, with significant discrepancies emerging at higher l values (see
ig. 1 and Table 1 ). 
Although the Born is the most accurate approximation for the high

nergy behaviour, it disagrees with the TDSE QM approximation for
ntermediate and high l quadrupole nl → nl ′ transitions. Numerical
esults reveal a good agreement between the BTM and the Born
pproximations for c 0 = 2. 

We see from Table 1 that the SSC and BTM approximations are
epresentative of the TDSE QM and Born results respectively over
ll- l. The latter two are also in good agreement with each other at low-
. Ho we ver, for l � n/ 2 we see increasing divergence between the
DSE QM/SSC and Born/BTM results. Fig. 1 shows the variation
f the SSC and the BTM with l. Similarly with Table 1 , there is
greement between the SSC and the BTM for small l transitions
 l << n ), better agreement for intermediate transitions ( l ≈ n/ 2)
nd large disagreement for l ≈ n .

Taking the limit of intermediate- l-changing collisions (1 <<

<< n ) we find analytically a disagreement of approximately 0.8
hen taking the ratio of q SSC /q BTM :

 

SSC 
nl → nl ′ = 9 . 8 × 10 −6 × n 4 [ cm 

3 s −1 ] (16) 

nd 

 

BT 
nl → nl ′ = 1 . 23 × 10 −5 × n 4 [ cm 

3 s −1 ] . (17) 
NRAS 539, 2957–2966 (2025) 
We can see the discrepancies more clearly if we take the limit of
arge- l for both the BTM and SSC expressions given by equations
 6 ) and ( 15 ) (for Z p = Z t = 1 and T = 100 K): 

 

BTM 

nl → nl ′ ∼ 9 . 80 × 10 −5 × l 2> [ cm 

3 s −1 ] (18) 

nd 

 

SSC 
nl → nl ′ ∼ 3 . 92 × 10 −5 l 3> [ cm 

3 s −1 ] . (19) 

Thus 

 

SSC 
nl → nl ′ /q 

BTM
nl → nl ′ ∼ 0 . 4 l > as l → n . (20) 

A full deri v ation of the analytic e v aluation for both intermediate
nd large l-changing collisions is given in Appendix C . 

The analytical comparison in each transition range has quantified
he numerical discrepancies in the rate coefficients. We obtained ad-
itional numerical results, using the AUTOSTRUCTURE code, including
n imposed restriction on the contribution of higher multipoles in the
orn approximation. Specifically, we progressively limit the number
f contributing multipoles in the summation of equation ( 2 ), first
onsidering only the lowest order term, then successively adding
igher order terms. The summation starts at λ = 2 and increases in
teps of �λ = 2, due to parity conservation. 

Fig. 2 clearly shows an increasing relative contribution from the
igher pseudo-multipole terms to the TDSE QM L -sum compared
o the Born multipole sum; for l � n/ 2 the two summations disagree
ncreasingly. It is evident that the first multipoles significantly influ-
nce and dominate the Born approximation’s summation term, with
he remaining multipoles contributing only 10 − 30 per cent . This
aises the question of whether the disagreement between the Born
nd the TDSE QM approximations is only observed in quadrupole
-changing collisions and persists for higher multipole transitions.
omparison with TDSE QM approximation is essential for conclu-

ive insights, especially given the BT Bethe approximation’s internal
greement with the Born approximation. The agreement between the
T and the Born approximation would be worse if higher multipoles
ere restricted. 
Referring to the Born summation term, equation ( 4 ), BT obtained

he quadrupole collision strength without the contribution of higher
ultipoles. For higher l values, the multipoles physically contribute
ore to the sum as l → n , compared to the first term of the sum.
onsidering the efficacy of the Born approximation in small l-
hanging collisions, any observed disagreement likely stems from
he influence of higher multipoles on the summation term. We
herefore suggest that the contribution of higher multipoles plays
 pivotal role in the observed disagreement between the Born
nd the TDSE QM approximations, especially for large l-changing
ollisions. The quadrupole Born terms al w ays dominate the total
xpression when summing over all multipoles without a limit. This
ompletely differs from how the TDSE QM approximations vary
ased on its summation term. The Born approximation’s multi-
ole e xpansion involv es distinct electric multipole interactions (e.g.
ipole, quadrupole, octupole) integral to the electrostatic interaction
o v erning the collision process. 
We applied a limiting parameter to the TDSE QM approximation’s

ummation term, equation ( 11 ), further investigating the origin of
he discrepancy with the Born. The limiting parameter whose impact
s illustrated in Fig. 2 , is the only parameter that can restrict the
ontribution of higher multipoles on the expansion. We truncate the
um at that L value, beyond which the rate coefficient is constant
ith no further fluctuations. The Born and the TDSE QM behave in

he same way inasmuch as they yield consistent results when higher
ultipoles are unrestricted. 
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Table 1. Representative TDSE QM, SCC, BTM, and Born rate coefficients [cm 

3 s −1 ] at T = 100 [K], for various n and 
l values. All of the higher ( > 2) multipoles have been included in the Quantal Born and the TDSE results.

n l → l ′ TDSE QM SSC BTM Born 

20 1 − 3 3 . 38 × 10 0 2 . 08 × 10 0 3 . 04 × 10 0 2 . 97 × 10 0 

20 9 − 11 1 . 69 × 10 0 1 . 25 × 10 0 1 . 20 × 10 0 1 . 18 × 10 0 

20 17 − 19 3 . 34 × 10 −1 3 . 18 × 10 −1 5 . 24 × 10 −2 5 . 52 × 10 −2 

30 1 − 3 1 . 72 × 10 1 1 . 06 × 10 1 1 . 57 × 10 1 1 . 54 × 10 1 

30 14 − 16 8 . 33 × 10 0 6 . 19 × 10 0 6 . 07 × 10 0 5 . 89 × 10 0 

30 27 − 29 1 . 10 × 10 0 1 . 07 × 10 0 1 . 30 × 10 −1 1 . 34 × 10 −1 

50 1 − 3 1 . 33 × 10 2 8 . 17 × 10 1 1 . 22 × 10 2 1 . 19 × 10 2 

50 24 − 26 6 . 30 × 10 1 4 . 70 × 10 1 4 . 67 × 10 1 4 . 52 × 10 1 

50 47 − 49 5 . 02 × 10 0 4 . 93 × 10 0 4 . 00 × 10 −1 4 . 10 × 10 −1 

100 1 − 3 2 . 13 × 10 3 1 . 31 × 10 3 1 . 96 × 10 3 1 . 92 × 10 3 

100 20 − 22 1 . 31 × 10 3 9 . 61 × 10 2 1 . 18 × 10 3 1 . 14 × 10 3 

100 50 − 52 9 . 80 × 10 2 7 . 33 × 10 2 7 . 25 × 10 2 7 . 01 × 10 2 

100 97 − 99 3 . 97 × 10 1 3 . 93 × 10 1 1 . 80 × 10 0 1 . 88 × 10 0 

250 1 − 3 8 . 34 × 10 4 5 . 11 × 10 4 7 . 66 × 10 4 7 . 50 × 10 4 

250 50 − 52 4 . 99 × 10 4 3 . 71 × 10 4 4 . 52 × 10 4 4 . 35 × 10 4 

250 125 − 127 3 . 83 × 10 4 2 . 87 × 10 4 2 . 87 × 10 4 2 . 67 × 10 4 

250 247 − 249 6 . 15 × 10 2 6 . 14 × 10 2 1 . 29 × 10 1 1 . 47 × 10 1 

500 1 − 3 1 . 33 × 10 6 8 . 17 × 10 5 1 . 23 × 10 6 1 . 18 × 10 6 

500 100 − 102 7 . 91 × 10 5 5 . 91 × 10 5 7 . 19 × 10 5 6 . 90 × 10 5 

500 250 − 252 6 . 13 × 10 5 4 . 59 × 10 5 4 . 61 × 10 5 4 . 39 × 10 5 

500 497 − 499 4 . 98 × 10 3 4 . 93 × 10 3 5 . 66 × 10 1 6 . 52 × 10 1 

Figure 2. Variation of Born and TDSE QM rate coefficients [cm 

3 s −1 ] with the restriction of multipoles, at T = 100 [K]. 
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We observed that the Bethe approximation, the first term in the 
orn summation (Burgess & Tully 2005 ), aligns well with the TDSE
M for small and intermediate l transitions, but deviates for large 
uadrupole l-changing collisions. We also noticed that when restrict- 
ng the summation term to the first quadrupole multipole, the TDSE
M agrees approximately with the Born rate coefficient, including all 
ultipoles. This further agreement between the Born and the TDSE 

M approximations supports that the primary source of disagreement 
etween the latter for large l-changing collisions arises from the 
ontribution of higher multipoles to their respective summation 
erms. 
MNRAS 539, 2957–2966 (2025) 
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M

Table 2. Comparison table of dipole and quadrupole quantum me- 
chanical (QM) rate coefficients [cm 

3 s −1 ] for transitions starting at the 
same l for the same n , at T = 100 [K] and N e = 1 [cm 

3 ]. 

n l → l ′ Dipole l → l ′ Quadrupole 

10 1–2 1.08 ×10 1 1–3 2.04 ×10 −1 

10 4–5 7.11 ×10 0 4–6 1.15 ×10 −1 

10 7–8 3.39 ×10 0 7–9 4.54 ×10 −2 

30 1–2 7.20 ×10 2 1–3 1.72 ×10 1 

30 14–15 4.27 ×10 2 14–16 8.33 ×10 0 

30 27–28 7.97 ×10 1 27–29 1.10 ×10 0 

50 1–2 4.90 ×10 3 1–3 1.33 ×10 2 

50 25–26 2.79 ×10 3 25–27 6.11 ×10 1 

50 47–48 3.41 ×10 2 47–49 5.02 ×10 0 

100 1–2 6.40 ×10 4 1–3 2.13 ×10 3 

100 20–21 4.71 ×10 4 20–22 1.31 ×10 3 

100 50–51 3.76 ×10 4 50–52 9.80 ×10 2 

100 97–98 2.42 ×10 3 97–99 3.97 ×10 1 

250 1–2 1.75 ×10 6 1–3 8.34 ×10 4 

250 50–51 1.27 ×10 6 50–52 4.99 ×10 4 

250 125–126 1.10 ×10 6 125–127 3.83 ×10 4 

250 247–248 3.11 ×10 4 247–249 6.15 ×10 2 

500 1–2 1.90 ×10 7 1–3 1.33 ×10 6 

500 100–101 1.38 ×10 7 100–102 7.91 ×10 5 

500 250–251 1.12 ×10 7 250–252 6.31 ×10 5 

500 497–498 2.08 ×10 5 497–499 4.98 ×10 3 

 

o  

m  

b  

w  

Q

5
Q

R  

f  

l  

b  

r
 

c  

r  

r
 

d  

t  

n
 

r  

t  

S  

i  

w
 

a
N  

p  

o  

t  

Table 3. Table showing the maximum percentage change in emis- 
sivity due to the inclusion of quadrupole collision rates, at a selection 
of temperatures (K) and electron densities (cm 

3 ), and the upper, n u , 
and lower n l , principal quantum numbers of the transition for which 
it occurs. All transitions with n u ≤ 100 were searched. 

T (K) Electron Transition Maximum percentage 
density (cm 

3 ) n u − n l emissivity change 

10 2 10 2 35–2 6.0 
10 4 19–2 4.8 
10 6 12–11 3.7 
10 8 6–5 3.3 
10 10 5–4 2.3 

10 2 . 5 10 2 38–2 4.3 
10 4 20–2 3.7 
10 6 12–11 2.8 
10 8 6–5 2.3 
10 10 4–3 0.88 

10 3 10 2 43–2 2.9 
10 4 22–2 2.6 
10 6 13–12 2.0 
10 8 7–6 1.7 
10 10 4–3 0.66 

10 3 . 5 10 2 47–2 1.8 
10 4 23–2 1.7 
10 4 14–13 1.4 
10 4 7–6 1.3 
10 10 4–3 0.51 

10 4 10 2 53–2 1.0 
10 4 28–2 0.93 
10 6 14–13 0.90 
10 8 7–6 0.84 
10 10 4–3 0.35 

10 4 . 5 10 2 52–2 0.52 
10 4 29–2 0.47 
10 6 16–14 0.48 
10 8 8–7 0.44 
10 10 5–4 0.21 
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We find mathematical disagreement between the summation terms
f the Born ( 4 ) and the TDSE QM ( 11 ) approximations when higher
ultipoles start to contribute. The Born summation follows a pattern

ased on | l − l ′ | and extends up to l + l ′ in an alternating sequence,
hile there is no corresponding physical interpretation of the TDSE
M sum. 

 TESTS  O N  T H E  R E L E VA N C E  O F  

UA D RU P O L E  RATES  

egardless of the discrepancies at high l, the fundamental question
or astrophysical applications is whether quadrupolar rates affect the
evel populations of spectroscopically important states, and should
e included in collisional-radiative models, alongside the dipolar
ates. 

To start with, we have compared the dipolar and quadrupolar rate
oefficients for transitions starting at the same l for the same n . A
ange of values is shown in Table 2 . It is clear that the quadrupolar
ates are typically 14–100 times weaker than the dipolar ones. 

Considering the limiting cases for both rates, we find that they
epend similarly on n and the nuclear charge, Z t . Hence, we expect
hat also for any other H-like atom or ion the quadrupole rates are
egligible compared to the dipolar rates. 
Still, one could wonder how much the inclusion of the quadrupolar

ate changes the populations of all the states. To answer this question,
he hydrogenic collisional radiative model, described in Hummer &
torey ( 1987 ) and based on Brocklehurst ( 1971 ), was modified to

nclude the BTM rates, chosen as an upper limit for the low- l states
hich pro v e to be most affected. 
Departure coefficients and line emissivities were compared with

nd without quadrupole transitions for 10 2 ≤ T[K] ≤ 10 6 , 10 2 ≤
 e [cm 

−3 ] ≤ 10 12 , and 2 ≤ n ≤ 100 in Case A and Case B, de-
ending on whether the Lyman lines were assumed optically thin
r thick, respectively. The largest effects were found at the lowest
emperatures and densities for Case A, where departure coefficients
NRAS 539, 2957–2966 (2025) 
hanged by up to 8 per cent, while emissivities changed by 5 per cent.
t typical nebular temperatures of 10 4 K no departure coefficients
r emissivity was changed by more than 1 per cent. We note that
 direct comparison of the quadrupole l → l + 2 with the dipole
→ l + 1 rate coefficient does not capture all the physics, since

he probability of population being transferred from a state nl to
 state nl + 2 via the dipole l → l + 1 → l + 2 collisional process
ust also take into account the probability of a radiative decay from

he nl + 1 state, which does not affect the quadrupole l → l + 2
rocess.
In general, the impact of quadrupole transitions is expected to be

reatest for those n abo v e which radiative processes dominate the
opulations and below which populations are statistically distributed
y rapid l-changing collisions. Thus the contribution of quadrupole
ates is less significant at n values abo v e and below this n regime,
hose position is a function of the ambient electron density. For ex-

mple Guzm ́an et al. ( 2019 ), state that the critical densities, at which
adiative and collisional processes are in balance, are 30 cm 

−3 and
.6 cm 

−3 , for n = 30 and n = 50, respectively. In Table 3 we show the
ransitions which exhibit the largest change when quadrupole transi-
ions are added, as a function of electron temperature and density, for
 range of conditions, including those typically found in photoionized
ebulae. 



H, He-like recombination spectra VI 2963

6

W  

l

p
b

 

f
c  

a

w
(  

d

a  

o
c  

f  

t
m  

c
Q
e
e  

d
d
G  

p  

i
d

 

t  

t  

i
s  

w
 

S  

(  

l  

(

A

T
c  

t
t
E  

s
s
c
U

D

R  

r

R

B
B  

B
B
B
B
B  

B  

C
E

G  

G  

G  

H
H
P
V  

V
V
V  

A

C
w

Q

 

a

F

V

φ

(

φ

C

 C O N C L U S I O N S  

e hav e dev eloped a simple analytic formula (BTM) for quadrupole
-changing collisions which will be of interest to model astrophysical
lasma emission, for example the hydrogen and helium-like recom- 
ination spectra (Guzm ́an et al. 2016 ; Badnell et al. 2021 ). 
We find a good agreement between this BTM formula and results

rom our quantal Born calculations using the AUTOSTRUCTURE 

ode, as well as between the SSC formula and the TDSE QM
pproximation. 

We also find good agreement between our Born results and those 
e obtain from the TDSE method (Vrinceanu et al. 2012 ) for small- l 

 << n ), but the two start to differ for intermediate- l ( ∼ n/ 2) and
iverge increasingly for large- l ( � n/ 2).

The source of the disagreement between the two quantal results 
ppears to lie with their representation of the higher ( > 2) terms
f the multipole expansion, which is much larger in the quadrupole 
ase than the dipole one. There is a much larger relative contribution
rom the higher pseudo-multipole terms ( L = 2 , 3 , 4 , . . . n/ 2) on
he TDSE QM total, compared with the contribution of the higher 

ultipoles ( λ = 2 , 4 , 6 , . . . l + l ′ ) to the Born one. Higher multipoles
ontribute significantly (approximately 90 per cent) to the TDSE 

M approximation, while applying limiting parameters on multipole 
xpansion terms restricts their contribution and allows for a closer 
xamination of rate coef ficient v ariations. At this e v aluation le vel,
iscrepancies between the TDSE and Born approximations highlight 
if ferences in ho w quadrupole l-changing collisions are treated. 
iven that TDSE is a full quantum approach, it is expected to
rovide a more rigorous description. Ho we ver , further in vestigation
s needed to fully understand the physical implications of these 
ifferences. 
Ho we v er, re gardless of the reason for the discrepancy, it is clear

hat the quadrupolar rates are al w ays going to be significantly lower
han the dipolar ones, by typically two orders of magnitude. Their
nclusion in a hydrogenic collisional radiative model for hydrogen 
hows minimal changes (a few per cent) in the line emissivities,
hich we consider negligible for most astrophysical applications. 
This is the last of a series of papers that began with Pengelly &

eaton ( 1964 ), advanced to the work of Vrinceanu & Flannery
 2001 ), Vrinceanu et al. ( 2012 , 2017 ), and Vrinceanu et al. ( 2019 )
eading to our studies Guzm ́an et al. ( 2016 , 2017 ); Guzm ́an et al.
 2019 ); Badnell et al. ( 2021 ). 
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PPENDI X  A :  B O R N  APPROXIMATION  BY  N R B  

onsider a transition q − q ′ between atomic states of hydrogen, 
here q = nlm , ignoring spin. Then, 

 ( q → q ′ ) = 

K q ′ 

K q 

∫ 
| F q ′ q ( K q , K q ′ ) | 2 d �, (A1) 

where K q is the initial momentum of the free electron. In the Born
pproximation the scattering amplitude is given by 

 

B 
q ′ q ( K q , K q ′ ) = 

1 

2 π

∫ 
φK q ′ ( r 2 ) V q ′ q ( r 2 ) φK q ( r 2 ) d r 2 , (A2) 

where V q ′ q is given by 

 q ′ q ( r 2 ) = 

∫ 
φ∗

q ′ ( r 1 ) 
(

1

r 12 
− 1

r 2 

)
φq ( r 1 ) d r 1 , (A3) 

where 

K q ( r ) = e i K q ·r , (A4) 

is a plane wave solution of 

 ∇ 

2 + K 

2 
q ) φK q = 0 , (A5) 

and φq ( r) are atomic wavefunctions of the form 

q ( r ) = Y lm 

( ̂ r ) 
P nl ( r) 

r 
, (A6) 

where Y lm 

( ̂ r ) is a spherical harmonic and 

1 

r 12 
= 

1 

| r 1 − r 2 | . (A7) 

To see a formal (partial wave) solution with application to 
oulomb Born, see Burgess, Hummer & Tully ( 1970 ), pp 226–230. 
MNRAS 539, 2957–2966 (2025) 
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To proceed with the Born solution we do not need to make a
artial wave analysis. Substituting equation ( A3 ) into equation ( A2 ),
e obtain, 

 

B 
q ′ q ( K q , K q ′ ) = − 1 

2 π

∫ 
φ∗

q ′ ( r 1 ) φq ( r 1 ) 

×
∫ (

1

r 12 
− 1

r 2 

)
e i K ·r 2 d r 2 d r 1 , (A8) 

where K = K q − K q ′ is the momentum transfer 
A standard result in the literature comes from Bethe ( 1930 )

nte gral, giv en by ∫ 
e i K ·r 2 

| r 1 − r 2 | d r 2 = 

4 π

K 

2 
e i K ·r 1 and 

∫ 
e i K ·r 2 

r 2 
d r 2 = 

4 π

K 

2 
. (A9) 

Also, we al w ays use orthonormal atomic wavefunctions ∫ 
φ∗

q ′ ( r 1 ) φq ( r 1 ) d r 1 = δq q ′ . (A10) 

Using equation ( A9 ) and equation ( A10 ) in equation ( A8 ), we
btain, 

 

B 
q ′ q ( K ) = − 2 

K 

2 

[∫ 
e i K ·r φ∗

q ′ ( r 1 ) φq ( r 1 ) d r 1 − δq q ′ 

]
, (A11) 

where 

 . . . ] = 〈 q ′ | e i K ·r 1 − 1 | q〉 . (A12) 

We can re-write the solid angle as 

 � = d φ sin θd θ . (A13) 

Since we orientate K q along the z-axis, then 

 

2 = K · K = ( K q ′ − K q ) · ( K q ′ − K q ) 

= K 

2 
q ′ + K 

2 
q − 2 K q K q ′ cos θ. (A14) 

So, 

 K d K = 2 K q K q ′ sin θ d θ (A15) 

and 

 q K q ′ 

∫ 
sin θ d θ = 

∫ 
K d K . (A16) 

Hence, using equation ( A11 ) and equation ( A16 ) into equation
 A1 ), we obtain, 

 ( q → q ′ ) = 

π

K 

2 
q 

∫ 
d φ

2 π

∫ 
8 d K 

K 

3 

∣∣〈q ′ ∣∣e i K ·r 1 − 1 
∣∣ q 〉∣∣2 

. (A17) 

The collision strength �q ′ q is defined from, 

 q ′ q = Q ( nlm → n ′ l ′ m 

′ ) = 

π

K 

2 
q 

�q ′ q . (A18) 

In order to match results obtained by Burgess et al. ( 1997 ), expand
he plane wave in spherical harmonics (Edmonds 1996 ), then 

 

i K ·r = 4 π
∑ 

λμ

i λ j λ( K r ) Y 

∗
λμ( ˆ K ) Y λμ( ̂ r ) . (A19) 

Then, 

q ′ q = 8 
∫ 

d K 

K 

3 
| E q ′ q ( K) | 2 , (A20) 

here 

 q ′ q ( K) = 4 π
∑ 

λμ

i λ Y 

∗
λμ( ˆ K ) 〈 q ′ | B λμ| q〉 (A21) 
NRAS 539, 2957–2966 (2025) 
nd 

 λμ = Y λμ( ̂ r ) ( j λ( K r ) − δλ0 ) . (A22) 

hen 

 E q ′ q ( K) | 2 = 4 π
∑ 

λμ

| < q ′ | B λμ| q > | 2 , (A23) 

which still includes the magnetic quantum numbers m, m’. 
The Wigner–Eckart theorem (Edmonds 1996 ) enables us to factor

ur the magnetic quantum numbers. Hence, 

< n ′ l ′ m 

′ | B λμ| nlm > = ( −1) l 
′ −m 

′
(

l ′ λ l 

−m 

′ μ m

)
× < n ′ l ′ ‖ B λ ‖ nl > (A24) 

and reduces the B λμ dependence to B λ, as μ is the ’magnetic’
omponent of Y λμ. Then the reduced matrix element is 

< n ′ l ′ ‖ B λ ‖ nl > = ( −1) l 
′
[

(2 l + 1)(2 λ + 1)(2 l ′ + 1) 

4 π

]1 / 2

×
(

l ′ λ l 

0 0 0 

)
< l ′ ‖ j λ ‖ l > , (A25) 

where 

< l ′ ‖ j λ ‖ l > =
∫ ∞ 

0
d r P n ′ l ′ ( r )[ j λ( K r ) − δλ0 ] P nl ( r) . 

(A26) 

The Wigner 3-j symbol (Edmonds 1957, p.125) is given by, 

l ′ λ l 

0 0 0 

)
= ( −1) L/ 2 

[
( l ′ + λ − l )( l ′ + l − λ)! 

(l ′ + λ + l + 1)!

]1 / 2

×
[

( L/ 2)!

( L/ 2 − l ′ )!( L/ 2 − λ)!( L/ 2 − l)! 

]1 / 2

, (A27) 

where L = l ′ + λ + l 

The magnetic quantum numbers are then easily eliminated as in
urgess & Tully ( 2005 ), given also that, 

∑ 

m′ mμ

(
l ′ λ l 

m μ m 

′ 

)2

= 1 . (A28) 

Which finally leaves us with equations ( 2 ) and ( 3 ) as presented in
he paper. 

PPENDI X  B:  BTM  APPROXIMATION  BY  N R B  

n this appendix we describe the modifications made to the Burgess &
ully ( 2005 ) approximation, which we now called BTM (Burgess and
ully Modified), especially for the analytic form of the quadrupole

ine strength of the target ( S 2 ), given in equation ( 8 ) in the paper. 
Looking at equation ( 17 ), equation (31) and equation (33) from

he Burgess & Tully ( 2005 ) that present the collision strength, there
ad to be modifications to the quadrupole line strength of the target
erm, S 2 . Also, the rate coefficients are given in terms of energy,
o we v er zero e xcitation energy is assumed for quadrupole l-changing
ollisions. 

Burgess & Tully ( 2005 ) present the collision strength in their
quation (33) as, 

ij = 

(
2

15 

)
M 

2 Z 

2 
p S 2 

(
α

r 0 

)2

, (B1) 

where α2 = 6 agrees with equation (17) from the Burgess & Tully
 2005 ) paper and r 0 can be determined by infinite energy or by
 0 = 

c 0 n 
2

Z t 
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The quadrupole line strength for the target transition, S 2 is given 
y, 

 2 ( nl ′ , nl ′ = l ± 2) = (2)(2 l + 1)(2 l ′ + 1)

(
l 2 l ′

0 0 0

)

×
∣∣∣∣
∫ 

P nl r 
2 P nl ′ d r 

∣∣∣∣
2

, (B2) 

where 

2)(2 l + 1)(2 l ′ + 1) 

(
l 2 l ′ 

0 0 0

)2

= 

3 l > 

( l > 

− 1) 

(2 l > 

− 1) 
(B3) 

and ∣∣∣∣
∫ 

P nl r 
2 P nl ′ d r 

∣∣∣∣
2

= 100 

(
na a 

2 Z t 

)2

( n 2 − l 2 > 

) 2 ( n 2 − ( l > 

− 1) 2 ) . 

(B4) 

Hence, we obtain the quadrupole line strength of the target term, 
 2 , as we presented in equation ( 8 ) in the paper, which is, 

 2 = 

(
300 

2 

)(
n 

2 Z t 

)4 (
l > 

( l > 

− 1) 

(2 l > 

− 1) 

)
( n 2 − l 2 > 

)( n 2 − ( l > 

− 1) 2 ) . 

(B5) 

Assuming that l >> 1, and given that l ′ = l ± 2 then equa-
ion ( B5 ) simplifies to 

 2 = 

300 

2 

(
n 

2 Z t 

)4

l ( n 2 − l 2 ) 2 . (B6) 

PPENDIX  C :  A NA LY T I C  EVALUATION  

he analytic rate coefficient of BTM is given by substituting the 
ollision strength, quadrupole line strength, and the ef fecti ve size of
he atom, as follows, 

 

BT 
nl → nl ′ = 

2 
√ 

πM √
kT ( Ryd) 

(
12

15 

)(
Z t 

c 0 n 2 

)2 (300

2 

)(
n 4 

16 Z 

4
t 

)
(

l > 

( l > − 1)

(2 l > 

− 1) 

)
× ( n 2 − l 2 > 

)( n 2 − ( l > 

− 1) 2 ) 

× 1 

(2 l + 1) 

a 30 

τ0 
, (C1) 

which is expressed in atomic units while the temperature ( T ) is
xpressed in Rydberg units. Burgess & Tully ( 2005 ) use 

 π1 / 2

(
a 3 0

τ0 

)
= 2 . 17167 × 10 −8 [cm 

3 s −1 ] , (C2) 

to convert atomic units to cgs units, which we follow as the SSC
ate coefficient expression is given in cgs units. By making use of
he appropriate values for constants, and for T = 100 K, we simplify
quation ( C1 ) as a numerical part, times an expression only written
n terms of n and l, given by 

 

BT 
nl → nl ′ = 4 . 90 × 10 −5 ×

[
1 

2 l + 1 
× l > 

( l > − 1)

2 l > 

− 1 

×( n 2 − l 2 > 

)( n 2 − ( l > 

− 1) 2 )
]

[cm 

3 s −1 ] . (C3) 

We first consider approximate expressions for the case of interme- 
iate l values, such that 1 << l << n . For l >> 1 we then have, 

 

BT 
nl → nl ′ = 4 . 90 × 10 −5 l > 

( n 2 − l 2 > 

) 2 

2(2 l > 

+ 1) 
[cm 

3 s −1 ] , (C4) 
which further simplifies to 

 

BT 
nl → nl ′ = 1 . 23 × 10 −5 × ( n 2 − l 2 ) 2 [cm 

3 s −1 ] . (C5) 

Now, the full SSC simple rate coefficient, from Vrinceanu et al.
 2012 ) is given by, 

q S S C nl → nl ′ = 1 . 294 × 10 −5 

√ 

M 

m e 

Z 

2 
p√
T 

×

n 2 [ n 2 ( l + l ′ ) − l 2 < 

( l + l ′ + 2 | �l| )] 
( l + 1 / 2) | �l| 3 [cm 

3 s −1 ] . (C6) 

Then, we can multiply equation ( 15 ) by a factor of 2 / 2 so that the
enominator can be easily aligned in a way that it matches the initial
tatistical weight of the BT rate coefficient of the form 1 / (2 l + 1).
e then obtain, 

q S S C nl → nl ′ = 3 . 9213 × 10 −5 ×
n 2 [ n 2 ( l > 

− 1) − ( l > 

− 2) 2 ( l > 

+ 1)] 

2(2 l + 1) 
[cm 

3 s −1 ] . (C7) 

Then, similarly with the BTM e v aluation, we can take the limit
here l >> 1 and simplify the SSC rate coefficient as, 

 

S S C 
nl → nl ′ = 9 . 8 × 10 −6 × n 2 

[
n 2 − l 2 

]
[cm 

3 s −1 ] . (C8) 

If in addition l << n , then the expression further simplifies to
etermine the final results of the analytic comparison for intermediate 
-changing transitions.

 

SSC 
nl → nl ′ = 9 . 8 × 10 −6 × n 4 [cm 

3 s −1 ] (C9) 

nd 

 

BT 
nl → nl ′ = 1 . 23 × 10 −5 × n 4 [cm 

3 s −1 ] . (C10) 

The SSC and the BTM expressions are finally compared for large
-changing transitions where the biggest disagreement is observed
oth numerically and analytically. The assumptions that hold for
arge l-changing transitions are slightly different from intermediate
-changing transitions. For large transitions, the SSC is in a highly
ccurate agreement with the TDSE QM. Additionally, numerical 
esults show the highest level of agreement between the BTM and
he Born. If we take n = l > 

+ 1, the initial SSC approximation,
quation ( 15 ), for the large l-changing transitions is simplified into
quation ( C11 ). 

 

S S C 
nl → nl ′ = 3 . 92 × 10 −5 × 2 

2 
×

n 2 [2 n 2 ( l > 

− 1) − 2( l > 

− 2) 2 ( l > 

+ 1)] 

8( l > 

+ 1 / 2) 
[cm 

3 s −1 ] 

= 3 . 92 × 10 −5 × 1 

2 
×

( l > + 1) 3 × [( l 2 > 

− 1) − ( l > 

− 2) 2 ]

(2 l > 

+ 1) 
[cm 

3 s −1 ] . (C11) 

The same assumption holds for the BT rate coefficient expression 
 v aluated on large l-changing transitions, so equation ( C3 ) is further
implified into equation ( C12 ). 

 

BT 
nl → nl ′ = 4 . 90 × 10 −5 × 4 l 2 > 

(2 l > 

+ 1)( l > 

− 1) 

(2 l + 1)(2 l > 

− 1) 
[cm 

3 s −1 ] . 

(C12) 
MNRAS 539, 2957–2966 (2025) 
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Also, for large l transitions, the assumption that l >> 1 still
olds therefore SSC and BT expressions are further simplified into
quations ( 19 ) and ( 18 ), respectively, which are the final analytic
esults for the e v aluation of large l transitions. 

 

SSC 
nl → nl ′ = 3 . 92 × 10 −5 × l 3 > [cm 

3 s −1 ] (C13) 

nd 
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BT 
nl → nl ′ = 9 . 80 × 10 −5 × l 2 > 

× [cm 

3 s −1 ] . (C14) 

Therefore the final ratio of SSC/BT for large l transitions is
pproximately 0 . 4 l > 

. 
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