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 A B S T R A C T

Plate and shell-like structures are widely used in the aerospace, marine, and renewable 
energy sectors. However, they are susceptible to various defects, especially cracks, during 
their operational lifespan. Although the inverse Finite Element Method (iFEM) offers significant 
advantages, such as real-time shape sensing capabilities, its current formulations cannot recon-
struct crack mechanics and analyze structures with preexisting cracks. Geometric discontinuities, 
such as cracks, present unique challenges that require special treatment in fracture mechanics. 
This study presents a novel inverse crack tip shell element for real-time reconstruction of full-
field displacement profiles and computation of Stress Intensity Factors (SIFs), addressing the 
limitations of current iFEM formulations. The proposed six-node triangular inverse element is 
flexible in mapping complex geometries and inherently ensures strain singularity at the crack tip 
by repositioning its mid-side nodes. The proposed inverse formulation is numerically validated 
against benchmark analytical and high-fidelity Finite Element Method (FEM) reference solutions 
for varying geometries and crack configurations subjected to different loading and boundary 
conditions. The study also introduces a variational technique for optimizing sensor locations 
within the inverse element domain to accurately compute Stress Intensity Factors (SIFs). The 
proposed inverse shell formulation is computationally efficient and seamlessly integrates within 
the iFEM framework for real-time shape sensing and Structural Health Monitoring (SHM) of 
shell structures with preexisting cracks.

. Introduction

Structural Health Monitoring (SHM) is an essential interdisciplinary technique that continually observes and analyzes structural 
ystems to detect changes in their behavior. The primary objective of any Structural Health Monitoring (SHM) system is to enhance 
oth man and machine safety while simultaneously reducing maintenance costs. Employment of the SHM system involves a periodic 
ollection of sensory data, such as strain measurements, to realize the current state of the engineering structure and to execute a 
rognosis of its future condition [1]. This prediction involves estimating the remaining useful life of a structure or identifying 
otential failure modes. The most challenging and pivotal aspect of a robust SHM system is its ability to access real-time structural 
ntegrity. Engineering structures are evaluated using various numerical techniques, such as finite element methods [2,3], semi-
nalytical methods [4,5], variational techniques [6], and more recently, peridynamics [7,8]. Assessment of structural integrity 
ecessitates reconstructing the full-field displacement and stress profiles from onboard sensor data. For example, in the aerospace 
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or naval sectors, this involves real-time analysis of the vehicle structure to detect any potential integrity issues during operation. 
Therefore, shape sensing capability is crucial to SHM applications, which poses an inverse problem that has intrigued researchers 
for their significant contribution to the literature.

Early research in shape sensing focused on applying Ko’s Displacement Theory [9] to reconstruct displacement profiles for 
beam structures. Specifically, Ko et al. [10] utilized the assumptions of Euler–Bernoulli beam theory to reconstruct aircraft wing 
deflection by strategically placing strain sensors along spar lines on the wing stations. Additional studies [11,12] have explored 
global and piecewise continuous basis functions for displacement reconstruction. Modal Transformation Theory (MTT) [13,14] has 
garnered significant attention for its ability to reconstruct displacement profiles from normal mode shapes using appropriate strain–
displacement relations. Shkarayev et al. [15] proposed a two-step least squares method for displacement reconstruction, which 
involves first reconstructing the applied loading on the structure and, subsequently, the displacement field.

More recent advancements have seen the employment of variational approaches to develop full-field shape sensing capabilities 
using numerical techniques based on the Finite Element Method (FEM). The framework, introduced by Tessler and Spangler [16], 
formulates a variational error functional using experimental strain data and FEM approximations to reconstruct displacement and 
stress profiles, thereby enabling real-time shape sensing capabilities during inverse analysis. Based on this framework, the inverse 
Finite Element Method (iFEM) has emerged as a powerful tool for shape sensing in SHM applications. It offers the potential for 
real-time damage assessment of various engineering structures.

Developing inverse elements tailored to specific structural configurations demonstrates the versatility of iFEM in ongoing SHM 
advancements. Tessler et al. [17] presented the first three-node inverse element (iMIN3) for shape sensing applications in plate 
and shell structures. Kefal et al. [18,19] developed quadrilateral inverse shell elements (iQS4, iCS8) for shape sensing of marine 
and offshore structures. Recently, Khalid et al. presented inverse plate and shell elements (iKP4, iKS3, and iKS4) to efficiently 
undertake the shape sensing, structural health monitoring, and damage assessment of thin plate and shell structures [20–22]. 
De Mooij et al. [23] formulated a twenty-node solid inverse element for the three-dimensional analysis of thick structures. The 
development of the i3-RZT inverse element [24], based on the Refined Zigzag Theory, has expanded the shape sensing capabilities 
of iFEM in layered structures, such as composite laminates and sandwich panels. Recently, iFEM has been studied by combining it 
with physics and statistical-based techniques to improve its full-field prediction capabilities [25,26].

The iFEM framework offers significant advantages from a structural health assessment and damage identification perspective. 
This framework has enabled precise detection, location, and quantification of localized defects in various structural configura-
tions [27,28]. Researchers have also employed iFEM methodology in combination with the power of Convolutional Neural Networks 
(CNN) and adaptive baseline modeling to enhance the defect characterization capabilities of iFEM [29,30]. Similarly, Data-driven 
approaches based on Machine Learning (ML) techniques also provide advantages in predicting structural behavior through advanced 
pattern recognition techniques [31–33]. Furthermore, probabilistic active learning frameworks [34,35] present an innovative 
approach to SHM by continuously updating the learning process with real-time data acquisition and analysis. As a result, these 
approaches present valuable alternatives for various practical SHM applications.

Analysis of cracks under various loading conditions is a critical area of research in understanding failure mechanisms and 
improving material performance. In literature, researchers have used the phase-field approach to effectively simulate the initiation 
and propagation of cracks in materials subjected to various loading conditions [36,37]. This approach models cracks as a continuous 
field, eliminating the need for explicit crack surface tracking and enabling seamless simulation of complex crack patterns [38,39]. By 
incorporating energy-based criteria, phase-field models accurately predict static and evolving cracks, capturing critical phenomena 
such as crack branching, deflection, and interactions with material heterogeneities [40,41].

A comprehensive literature review reveals that the effectiveness of iFEM analysis depends significantly on the underlying 
mechanics incorporated within the inverse formulation. Although numerous inverse elements are available for shape sensing and 
SHM applications, traditional inverse elements are inadequate for predicting the structural integrity of plate and shell structures 
with preexisting cracks. These elements cannot accurately capture the required strain singularity at the crack tip. Furthermore, the 
accurate computation of fracture parameters, such as the stress intensity factor (SIF), critically depends on the optimal placement 
of sensors around the crack tip. This aspect of sensor optimization has yet to be thoroughly explored in the existing literature for 
the health assessment of engineering structures with preexisting cracks.

Building on advancements in iFEM, this study introduces a new six-node triangular inverse crack-tip element (hereafter referred 
to as iTS6). This element extends iFEM capabilities in fracture mechanics and addresses the existing gap in evaluating the structural 
integrity of plate and shell structures with preexisting cracks. The iTS6 triangular inverse element enables native mapping to 
the crack tip, unlike quadrilateral elements necessitating degeneration, to ensure strain singularity by repositioning its mid-
side nodes. Triangular elements also provide superior flexibility for meshing complex geometries, particularly around irregular 
boundaries and crack tips, as compared to quadrilateral elements. The isoparametric inverse formulation of the iTS6 element is 
based on the kinematics of First-Order Shear Deformation Theory (FSDT). Formulations based on FSDT are often prone to induced 
mechanisms and locking issues. Therefore, the proposed inverse formulation employs an assumed linear shear strain field and 
a full Gauss integration scheme to mitigate these issues. The iTS6 inverse element seamlessly integrates with the iFEM existing 
framework, ensuring compatibility for shape sensing in both cracked and uncracked structures. A detailed numerical validation study 
demonstrates the effectiveness of the proposed formulation in full-field reconstruction of displacement profiles and key fracture 
parameters, i.e., Stress Intensity Factors (SIFs). The study also presents a variational methodology to optimize sensor placement 
around the cracks to maximize strain measurement precision and enhance the reliability of fracture parameter computations in 
SHM applications.
2 
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The rest of the article is structured as follows: The inverse element formulation is presented systematically, along with theoretical 
insights into finite element approximation, strain singularity, and the formulation of the iFEM weighted least squares functional. 
These insights are paramount to understanding the proposed formulation and its influence on iFEM analysis and interpretation 
of results. The numerical validation section evaluates the proposed inverse formulation against analytical and high-fidelity FEM 
reference solutions. This section demonstrates the practicality and effectiveness of the iTS6 inverse element in shape sensing and 
predicting key fracture parameters in real-world scenarios. A least squares variational study is also conducted in the numerical 
validation section to optimize sensor placement in structures with preexisting cracks. Finally, the conclusion section highlights the 
significant findings and the effectiveness of the proposed inverse element for real-time health assessment of engineering structures 
with preexisting cracks.

2. Inverse element formulation

Plate theories are essential for the theoretical and numerical analysis of two-dimensional plate and shell structures. Classical Plate 
Theory (CPT) simplifies the analysis of thin plate problems with reasonable accuracy, but in practical applications, such as FEM, the 
𝐶1 continuity requirements of CPT make it challenging to achieve a conforming displacement field. Reissner and Mindlin addressed 
this complexity by relaxing one of CPT’s assumptions, allowing for transverse shear deformation effects analogous to Timoshenko 
beam theory. Their formulation assumes that normal material lines are not necessarily orthogonal to the mid-plane after deformation. 
First-order shear Deformation Theory (FSDT) extends these principles, providing a more accurate representation of shear strains 
through the plate thickness, often by incorporating a shear correction factor. The kinematics of FSDT are less stringent and versatile 
enough to undertake practical applications, i.e., FEM and iFEM, of thin and moderately thick plates made of homogeneous and 
composite materials.

2.1. Displacement field

The displacement field (𝐮) of a three-dimensional plate, according to the FSDT assumptions, can be expressed as: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) − 𝑧𝜃𝑥(𝑥, 𝑦) (1a)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) − 𝑧𝜃𝑦(𝑥, 𝑦) (1b)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑜(𝑥, 𝑦) (1c)

In these equations, the subscript 𝑜 indicates that the displacements are evaluated at the mid-plane of the plate at 𝑧 = 0. The variables 
𝑢𝑜 and 𝑣𝑜 correspond to in-plane displacements along the longitudinal and lateral directions of the plate, while 𝑤𝑜 represents the 
out-of-plane deflection. Alongside the transverse deflection, the angles 𝜃𝑥 and 𝜃𝑦 indicate rotations of the plate normal around the 
𝑦 and 𝑥 axes, respectively.

Inclusion of the independent rotations (𝜃𝑥, 𝜃𝑦) in the kinematic assumptions of FSDT enhances its ability to reconstruct 
displacement field under various physical conditions. These conditions include localized deformation effects caused by concentrated 
loads, which significantly influence strain distribution, and scenarios where transverse shear and bending interactions dominate, such 
as boundary-layer effects in moderately thick plates subjected to complex constraints.

2.2. Strain field

The strain–displacement relations for the FSDT are derived from the displacement field in Eq.  (1) using the theory of elasticity and 
the assumption of compatibility of strains. If we neglect insignificant strain components in the strain field, the strain displacement 
relations can be expressed as follows: 

𝜀𝑥𝑥 =
𝜕𝑢𝑜
𝜕𝑥

− 𝑧
𝜕𝜃𝑥
𝜕𝑥

(2a)

𝜀𝑦𝑦 =
𝜕𝑣𝑜
𝜕𝑦

− 𝑧
𝜕𝜃𝑦
𝜕𝑦

(2b)

𝛾𝑥𝑦 =
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

− 𝑧
(

𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦
𝜕𝑥

)

(2c)

𝛾𝑥𝑧 =
𝜕𝑤𝑜
𝜕𝑥

− 𝜃𝑥 (2d)

𝛾𝑦𝑧 =
𝜕𝑤𝑜
𝜕𝑦

− 𝜃𝑦 (2e)

In FSDT, the strain field includes all components of in-plane strains; two normal strains (𝜀𝑥𝑥, 𝜀𝑦𝑦) and a shear strain (𝛾𝑥𝑦). However, 
in the transverse direction, the normal transverse strain vanishes owing to general plate assumptions (𝜀𝑧𝑧 = 0), and transverse shear 
strains (𝛾 ,𝛾 ) are constant throughout the thickness.
𝑥𝑧 𝑦𝑧

3 
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The strain field in Eq.  (2) can be rewritten more conveniently by segregating the membrane, bending, and shear components 
separately. 

𝜺𝑜(𝐮) =
⎧

⎪

⎨

⎪

⎩

𝜀𝑜𝑥𝑥
𝜀𝑜𝑦𝑦
𝛾𝑜𝑥𝑦

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑢𝑜
𝜕𝑥
𝜕𝑣𝑜
𝜕𝑦

𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3)

where 𝜺𝑜(𝐮) represents the in-plane components of the membrane strains. These strains are derived from the displacement field in 
the 𝑥 and 𝑦 directions. 

𝜺𝜅 (𝐮) =
⎧

⎪

⎨

⎪

⎩

𝜺𝜅𝑥𝑥
𝜺𝜅𝑦𝑦
𝜺𝜅𝑥𝑦

⎫

⎪

⎬

⎪

⎭

= −

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝜃𝑥
𝜕𝑥
𝜕𝜃𝑦
𝜕𝑦

𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦
𝜕𝑥

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4)

𝜺𝜅 (𝐮) comprises the bending strains associated with bending curvatures. These are derived from the rotations about 𝑦 and 𝑥 axis, 
respectively. 

𝜸𝑜(𝐮) =
{

𝛾𝑜𝑥𝑧
𝛾𝑜𝑦𝑧

}

=

⎧

⎪

⎨

⎪

⎩

𝜕𝑤𝑜
𝜕𝑥

− 𝜃𝑥
𝜕𝑤𝑜
𝜕𝑦

− 𝜃𝑦

⎫

⎪

⎬

⎪

⎭

(5)

Likewise, the transverse shear strain components are represented as 𝜸𝑜(𝐮). These strains account for the out-of-plane deformations 
and rotations. In a more compact form, the strain field can be expressed as: 

𝜺(𝐮) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜺𝑜𝑥𝑥
𝜺𝑜𝑦𝑦
𝜸𝑜𝑦𝑧
𝜸𝑜𝑥𝑧
𝜸𝑜𝑥𝑦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+ 𝑧

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜺𝜅𝑥𝑥
𝜺𝜅𝑦𝑦
𝛾𝜅𝑦𝑧
𝛾𝜅𝑥𝑧
𝛾𝜅𝑥𝑦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

{

𝜺𝑜(𝐮)
𝜸𝑜(𝐮)

}

+ 𝑧

{

𝜺𝜅 (𝐮)
0

}

(6)

Here, 𝜺(𝐮) represents the strain field, which is the sum of the membrane strains 𝜺𝑜(𝐮) and the bending strains 𝜺𝜅 (𝐮), scaled by the 
distance from the mid-plane 𝑧. The transverse shear strains 𝜸𝑜(𝐮) are included directly, while their bending counterparts are assumed 
to be zero.

2.3. Stress–strain relations

Within the framework of FSDT, the constitutive relationship between non-zero stress and strain states can be established for a 
material exhibiting homogeneity and subjected to isothermal conditions. 

𝝈(𝐮) = 𝐷𝜺(𝐮) (7)

where 𝑫 is the constitutive matrix containing the material properties. Due to the plate theory assumptions, the normal stress in the 
thickness direction (𝜎𝑧𝑧 = 0) is zero. By substituting the previously derived expressions for membrane, bending, and shear strains 
into Eq.  (7), we can obtain the stress field as: 

𝝈(𝐮) =
⎡

⎢

⎢

⎢

⎣

𝑫1 ⋮ 0

⋯ ⋮ ⋯

0 ⋮ 𝑫2

⎤

⎥

⎥

⎥

⎦

(

{

𝜺𝑜(𝐮)
𝜸𝑜(𝐮)

}

+ 𝑧

{

𝜺𝜅 (𝐮)
0

}

)

(8)

The constitutive matrices 𝑫1 and 𝑫2 for an orthotropic material can be expressed as follows:

𝑫1 =
1

1 − 𝜈12𝜈21

⎡

⎢

⎢

⎢

⎣

𝐸1 𝜈21𝐸1 0

𝜈12𝐸1 𝐸2 0

0 0
(

1 − 𝜈12𝜈21
)

𝐺12

⎤

⎥

⎥

⎥

⎦

𝑫2 =

[

𝑠11𝐺13 0

0 𝑠22𝐺23

]

where 𝐸, 𝜈, and 𝐺 represent Young’s modulus, Poisson’s ratio, and Shear modulus of elasticity. In FSDT, 𝑠𝑖𝑗 signifies the shear 
correction parameters used to calculate the transverse shear stress components.
4 



I. Khalid et al. Mechanical Systems and Signal Processing 231 (2025) 112663 
Fig. 1. iTS6 element defined in the physical and natural coordinate system.

2.4. Finite element approximation

A six-node triangular element considered for the finite element approximation is defined in the physical coordinate system 
with all nodes located at the mid-plane, i.e., 𝑧 ∈

[

−𝑡∕2, 𝑡∕2
]

, where 𝑡 represents the thickness of the element, as shown in Fig.  1. A 
corresponding master element is defined in the triangular natural coordinate system (𝜉, 𝜂) with all nodes positioned at the mid-plane.

Quadratic basis functions are used to interpolate geometrical domains and generalized displacements for a six-node triangular 
element. These quadratic basis functions 𝑁𝑖(𝜉, 𝜂) maintain compatibility with linear interpolation along the edges of the triangle. 

𝑵(𝜉, 𝜂) =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂) (𝑖 = 1, 2,… , 6) (9)

Explicitly, for each node of the triangular element, the basis functions are defined as follows.

𝑁1 = 𝜉(2𝜉 − 1) 𝑁2 = 𝜂(2𝜂 − 1) 𝑁3 = 𝜁 (2𝜁 − 1)

𝑁4 = 4𝜉𝜂 𝑁5 = 4𝜂𝜁 𝑁6 = 4𝜉𝜁

where, 𝜁 = (1 − 𝜉 − 𝜂) in the area barycentric coordinates of a triangular element 𝜉, 𝜂, 𝜁 ∈ [0, 1].
Based on the displacement field given in Eq.  (1) and assumptions of FSDT, the nodal displacement vector is represented by five 

DOFs for the iTS6 inverse element. 

𝐮𝑒𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑢𝑜
)

𝑖
(

𝑣𝑜
)

𝑖
(

𝑤𝑜
)

𝑖
(

𝜃𝑥
)

𝑖
(

𝜃𝑦
)

𝑖

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(𝑖 = 1, 2,… , 6) (10)

For the 𝑖th node of inverse element, (𝑢𝑜, 𝑣𝑜, 𝑤𝑜) are the nodal displacements, and (𝜃𝑥, 𝜃𝑦) are the bending rotations along the 𝑦 and 
𝑥 axis, respectively. During iFEM analysis, these unknown nodal displacements are computed and then interpolated over the entire 
elemental domain 𝛺𝑒𝑙 to accomplish displacement distribution over the entire element. Following the conventional finite element 
methodology, the strain gradient matrices for the iTS6 inverse element are formulated using membrane, bending, and shear strain 
components.

The in-plane translational displacement variables 𝑢𝑜 and 𝑣𝑜 in Eq.  (1) can be independently interpolated in terms of nodal 
displacements 𝑢 and 𝑣 using quadratic basis functions expressed in Eq.  (9).

𝑢 =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝑢𝑜
)

𝑖 (11)

𝑣 =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝑣𝑜
)

𝑖 (12)

Then, the element membrane strains 𝜺𝑜(𝐮𝑒) can be computed using Eqs. (11) and (12) in Eq.  (3). 

𝜺𝑜(𝐮𝑒) = 𝑩𝑚𝐮𝑒 (13)
5 
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where 𝑩𝑚 represents the element membrane gradient matrix, which can be written as follows for the 𝑖th node. 

𝑩𝑚
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝑥

0 0 0 0

0
𝜕𝑁𝑖
𝜕𝑦

0 0 0

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(𝑖 = 1, 2,… , 6) (14)

The complete element membrane gradient matrix can now be populated by substituting 𝑩𝑚
𝑖  for all element nodes (𝑖 = 1, 2, 3...6). 

𝑩𝑚 =
[

𝑩𝑚
1 𝑩𝑚

2 𝑩𝑚
3 𝑩𝑚

4 𝑩𝑚
5 𝑩𝑚

6
]

(15)

In contrast to CPT, the bending variables of FSDT necessitates 𝐶𝑜 continuity at the element edges; therefore, the bending rotations 
can be defined using the same basis functions presented in Eq.  (9).

𝜃𝑥 =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝜃𝑥
)

𝑖 (16)

𝜃𝑦 =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝜃𝑦
)

𝑖 (17)

Similar to the membrane part, element strains for the bending part 𝜺𝜅 (𝐮𝑒) can be computed using Eqs. (16) and (17) in Eq.  (4). 
𝜺𝜅 (𝐮𝑒) = 𝑩𝑏𝐮𝑒 (18)

where 𝑩𝑏 represents the element bending gradient matrix, and its nodal components 𝑩𝑏
𝑖  for the 𝑖th node can be expressed as: 

𝑩𝑏
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −
𝜕𝑁𝑖
𝜕𝑥

0

0 0 0 0 −
𝜕𝑁𝑖
𝜕𝑦

0 0 0 −
𝜕𝑁𝑖
𝜕𝑦

−
𝜕𝑁𝑖
𝜕𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(𝑖 = 1, 2,… , 6) (19)

Consequently, the element bending gradient matrix 𝑩𝑏 can be populated using 𝑩𝑏
𝑖  for each node (𝑖 = 1, 2,… , 6) of the iTS6 inverse 

element. 
𝑩𝑏 =

[

𝑩𝑏
1 𝑩𝑏

2 𝑩𝑏
3 𝑩𝑏

4 𝑩𝑏
5 𝑩𝑏

6
]

(20)

Finally, the element shear strain includes transverse deflection and bending rotations. Transverse deflection is interpolated using 
nodal deflections defined in terms of element basis functions. 

𝑤 =
6
∑

𝑖=1
𝑁𝑖(𝜉, 𝜂)

(

𝑤𝑜
)

𝑖 (21)

Elemental shear strains 𝜸𝑜(𝐮𝑒) can now be computed using Eqs. (16), (17), and (21) in Eq.  (5). 
𝜸𝑜(𝐮𝑒) = 𝑩𝑠𝐮𝑒 (22)

where 𝑩𝑠 represents the element shear gradient matrix and its component for the 𝑖th node can be written as: 

𝑩𝑠
𝑖 =

⎡

⎢

⎢

⎢

⎣

0 0
𝜕𝑁𝑖
𝜕𝑥

−𝑁𝑖 0

0 0
𝜕𝑁𝑖
𝜕𝑦

0 −𝑁𝑖

⎤

⎥

⎥

⎥

⎦

(𝑖 = 1, 2,… , 6) (23)

Finally, the complete element shear gradient matrix 𝑩𝑠 can be computed by concatenating 𝑩𝑠
𝑖  for each node of the inverse 

element. 
𝑩𝑠 =

[

𝑩𝑠
1 𝑩𝑠

2 𝑩𝑠
3 𝑩𝑠

4 𝑩𝑠
5 𝑩𝑠

6
]

(24)

An element based on FSDT assumptions, utilizing 𝑩𝑠 as the element shear strain gradient matrix, is susceptible to shear locking. 
Shear locking occurs when the element formulation assumes uniform shear strains through the thickness, which is an unrealistic 
assumption for thin plates. This phenomenon results in an artificially stiff response in bending, leading to inaccurate predictions of 
bending deformations.

2.5. Assumed shear strain field

Elements based on the FSDT often suffer from shear locking, and numerical results degrade significantly for thin plates. An easy 
workaround is to follow selective or reduced integration techniques; however, these techniques induce spurious mechanisms that 
can propagate themselves in the discretized domain. Therefore, the element can undergo deformations consistent with boundary 
6 
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Fig. 2. Sampling points for assumed shear strain field.

conditions without consuming strain energy. Another tractable approach uses the assumed shear strain methodology [42–44] in 
formulating plate and shell elements. This approach has certain analogies with reduced integration techniques; however, full 
numerical integration, i.e., the Full Gauss Quadrature rules for triangles, helps overcome induced mechanisms and locking. The 
methodology involves sampling the original shear strain field at Gauss integration points and enforcing Kirchhoff’s assumptions.

Building upon Zienkiewicz’s formulation [42], transverse deflection and bending rotations are independently interpolated using 
standard quadratic basis functions. However, the transverse shear strain field is assumed to be linear and is interpolated using the 
following linear trial functions.

𝛾𝜉 = 𝛼1 + 𝛼2𝜉 + 𝛼3𝜂 (25)

𝛾𝜂 = 𝛼4 + 𝛼5𝜉 + 𝛼6𝜂 (26)

The coefficients 𝛼𝑖 are evaluated by sampling the original shear strain field at the sampling points 𝛾𝑠 shown in Fig.  2. Following 
Zienkiewicz’s methodology [42], the substitutive transverse shear strain matrix can be expressed as follows: 

𝐵𝑠
𝛾 = 𝑵𝛾𝑩𝑠 (27)

Here, 𝑩𝑠
𝛾 is the substitutive matrix, and 𝑵𝛾 represents the sampling-point basis function matrix which acts as an interpolation 

operator. It maps the values of the original element shear strain gradients 𝑩𝑠, sampled at designated points within the element (as 
illustrated in Fig.  2), onto the linear variation defined by the trial functions 𝛾𝜉 and 𝛾𝜂 .

The substitutive matrix 𝑩𝑠
𝛾 now represents the modified element shear strain gradient matrix. The explicit form of the 

sampling-point basis functions 𝑵𝛾 can be readily obtained from [42] or derived using the methodology outlined in Section 6.3.3 
of [45].

2.6. Crack tip strain singularity

In computational fracture mechanics, specific element configurations can produce strain singularities and can be used to model 
crack tip behavior. Roshdy S. Barsoum [46] first presented this idea in quadratic isoparametric elements. Strain singularity refers 
to a situation where the strain field becomes infinite or undefined at a particular point within the finite element. While generally 
undesirable for most analyses, this behavior proves advantageous for problems involving elastic cracks.

An iTS6 inverse element can exhibit a 1∕√𝑟 strain singularity by strategically repositioning mid-side nodes at the quarter points 
near the node 3 (as shown in Fig.  3). In an isoparametric element, the strain–displacement relation in terms of the element strain 
gradient matrix can be written as: 

{𝜺𝑒} = [𝑱 ]−1𝑩𝑒{𝐮𝑒} (28)

where 𝜺𝑒 and 𝐮𝑒 represent element strain and displacement fields, and 𝑩𝑒 shows the element general strain gradient matrix. In the 
above expression, the inverse of the Jacobian [𝑱 ]−1 maps the generalized displacements defined in the natural coordinate system 
(𝜉, 𝜂) to the global coordinate system (𝑥, 𝑦) by the following mathematical expression. 

⎧

⎪

⎨

⎪

⎩

𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦

⎫

⎪

⎬

⎪

⎭

= [𝑱 ]−1
⎧

⎪

⎨

⎪

⎩

𝜕𝑁𝑖
𝜕𝜉
𝜕𝑁𝑖
𝜕𝜂

⎫

⎪

⎬

⎪

⎭

(29)

In Eq.  (28), the displacements 𝐮𝑒 are bounded, and the general strain gradient matrix 𝑩𝑒 is defined using non-singular basis 
functions. Therefore, for strain singularity to exist, the singularity must arise from [𝑱 ]−1. If the mid-side nodes are moved to the 
7 
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Fig. 3. Repositioning of mid-side nodes in the iTS6 master element.

Fig. 4. Arrangement of quarter-point iTS6 inverse elements around the crack tip.

quarter point near node 3, located at the crack tip (as shown in Fig.  4), the Jacobian of the inverse element can be expressed as 
follows: 

𝑱 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

⎤

⎥

⎥

⎥

⎦

=

[

1 − 𝜂𝑖 −𝜉𝑖
0 2(1 − 𝜂𝑖)

]

(30)

In this equation, 𝑱  is Jacobian matrix, and (𝜉𝑖, 𝜂𝑖) represents the nodal coordinates. The requirement of strain singularity can be 
achieved if the determinant of Jacobian is equal to zero for given nodal coordinates, which leads to 𝑱−1 = 0. 

|𝑱 | = 𝜕(𝑥, 𝑦)
𝜕(𝜉, 𝜂)

= 0 (31)

Evaluating the determinant of the Jacobian at all six nodal coordinates will result in singularity only at node-3 with nodal 
coordinates (𝜉𝑖 = 0 and 𝜂𝑖 = 1) as depicted in Fig.  3. This precisely controlled singularity significantly enhances accuracy in crack 
tip analysis, eliminating the need for excessively refined meshes near the crack tip. It is important to note that the singularity is 
strictly confined to the nodal point at the crack tip, and the strain variation within the inverse element is finite.

2.7. Strain sensor data

Strain sensor data is an integral part of any SHM methodology. The strain data obtained from onboard sensors represents the 
structural response to in-service operational and environmental loading conditions. This information is crucial in accessing structural 
integrity and implementing an effective SHM system. Since the iTS6 inverse shell element is developed for general loading conditions, 
8 
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Fig. 5. Strain rosettes at discrete locations (𝑥𝑗 , 𝑦𝑗 ,± 𝑡
2
).

the strain data from the top and bottom surface strain sensors are needed for general iFEM analysis. In contrast, strain sensors on 
either the top or bottom sides can suffice the requirements for pure in-plane and out-of-plane loading conditions.

In-situ strain data from onboard strain sensors (as shown in Fig.  5) can be represented in vector forms, constituting discrete 
strain measurements for membrane and bending strains. 

𝒆∗𝑗 = 1
2

⎧

⎪

⎨

⎪

⎩

𝜀+𝑥𝑥 + 𝜀−𝑥𝑥
𝜀+𝑦𝑦 + 𝜀−𝑦𝑦
𝛾+𝑥𝑦 + 𝛾−𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(32)

𝜿∗
𝑗 = 1

𝑡

⎧

⎪

⎨

⎪

⎩

𝜀+𝑥𝑥 − 𝜀−𝑥𝑥
𝜀+𝑦𝑦 − 𝜀−𝑦𝑦
𝛾+𝑥𝑦 − 𝛾−𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(33)

where 𝒆∗𝑗  and 𝜿∗
𝑗  represent discrete strain measures available via onboard strain sensors as compared to their numerically computed 

membrane and bending strain counterparts 𝜺𝑜(𝐮𝑒) and 𝜺𝜅 (𝐮𝑒). The superscripts (+) and (−) associate the strain measures with the 
strain rosettes located on the top and bottom surfaces of the plate, respectively.

In-situ strain measurements obtained from onboard strain sensors are pivotal in iFEM formulation. Experimental section strains 
can be computed using these measurements at discrete locations within the elemental geometric domain (𝑥𝑗 , 𝑦𝑗 ) at the mid-plane. 
Due to their negligible effect, experimental transverse shear strains 𝜞 ∗

𝑗  are typically neglected for thin plate and shell structures. 
However, when transverse deformation effects are considered, transverse shear strains can be readily calculated using in-situ strain 
measurements (𝒆∗𝑗 ,𝜿∗

𝑗 ) in conjunction with the equilibrium equations provided by First-order Shear Deformation Theory (FSDT).

2.8. Weighted least squares functional

The iFEM framework is built on the principle of the variational method which reconstructs the displacement field by minimizing 
the weighted least squares error functional. The error functional is formulated using discrete strain measures and their corresponding 
numerical counterparts in a discretized geometric domain. A significant benefit of the iFEM scheme is its independence from elastic 
or inertial material properties and loading conditions for full-field shape reconstruction.

The weighted least squares functional for the proposed iTS6 inverse element is defined as the sum of the error terms between 
the numerically computed strains and the discretely measured strain values over the discretized element domain. 

𝜙(𝐮𝑒) = 𝜙𝑚(𝐮𝑒) + 𝜙𝑏(𝐮𝑒) + 𝜙𝑠(𝐮𝑒) (34)

where

𝜙𝑚(𝐮𝑒) = 𝑤𝑒
‖

‖

𝜺𝑜(𝐮𝑒) − 𝑒∗‖
‖

2

𝜙𝑏(𝐮𝑒) = 𝑤𝜅
‖

‖

𝜺𝜅 (𝐮𝑒) − 𝜅∗
‖

‖

2

𝜙𝑠(𝐮𝑒) = 𝑤𝛤
‖

‖

𝜸𝑜(𝐮𝑒) − 𝛤 ∗
‖

‖

2

Here 𝑤𝑒, 𝑤𝜅 , and 𝑤𝛤  are the weighting coefficients associated with the functional error corresponding to the membrane, bending, 
and shear errors, respectively. Each of the squared norms defined in Eq.  (34) can be further expressed over the inverse element 
domain 𝛺𝑖𝑒𝑙 as:

‖

‖

𝜺𝑜(𝐮𝑒) − 𝑒∗‖
‖

2 = ∬𝐴𝑒

(

𝜺𝑜(𝐮𝑒) − 𝒆∗
)2

d𝑥d𝑦

‖

‖

𝜺𝜅 (𝐮𝑒) − 𝜅∗
‖

‖

2 = ∬𝐴𝑒

(

𝜺𝜅 (𝐮𝑒) − 𝑡2𝜿∗
)2

d𝑥d𝑦

‖

‖

𝜸𝑜(𝐮𝑒) − 𝛤 ∗
‖

‖

2 = ∬𝐴𝑒

(

𝜸𝑜(𝐮𝑒) − 𝜞 ∗
)2

d𝑥d𝑦
9 
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where 𝐴𝑒 is the area of the inverse element.
The weighting coefficients 𝑤𝑒, 𝑤𝜅 , and 𝑤𝛤  defined in error functional balance the influence of available discrete strain measures 

in the closed-form solution. Setting the coefficients to unity gives equal importance to all data points, known with certainty when 
the strain measures are available. In contrast, setting the coefficients to a minimal value (10−3−10−6) when the strain data is missing 
reduces the impact of these missing data points during the error minimization process, preventing them from unduly affecting the 
overall result. This approach helps to ensure that the iFEM algorithm exhibits robustness and reliability in computing displacement 
profiles even with sparse arrangements of strain sensors, making them valuable for real-world shape sensing and SHM applications.

Minimizing the weighted least squares error functional in Eq.  (34) with respect to the unknown nodal displacements 𝐮𝑒 of an 
inverse element reduces to the normal equation of the form: 

𝜕𝜙(𝐮𝑒)
𝜕𝐮𝑒

= 𝒎𝑒𝐮𝑒 − 𝒔𝑒 = 0 (35)

and the equilibrium equation can now be written as: 
𝒎𝑒𝐮𝑒 = 𝒔𝑒 (36)

where 𝒎𝑒 represents the error minimization matrix, 𝒔𝑒 is the measured strain vector comprising discrete strain measures obtained 
from the onboard strain sensors, and 𝐮𝑒 is the unknown nodal displacements to be determined after prescribing necessary 
displacement boundary conditions.

The mathematical expression for 𝒎𝑒 and 𝒔𝑒 can be further derived by substituting Eqs. (13), (18) and (22) in Eq.  (35). 
𝒎𝑒 = 𝒎𝑒

𝑚 +𝒎𝑒
𝑏 +𝒎𝑒

𝑠 (37)

where

𝒎𝑒
𝑚 = ∬𝐴𝑒

(

𝑤𝑒(𝑩𝑚)T𝑩𝑚
)

d𝑥d𝑦

𝒎𝑒
𝑏 = ∬𝐴𝑒

(

(𝑡2)𝑤𝜅 (𝑩𝑏)T𝑩𝑏
)

d𝑥d𝑦

𝒎𝑒
𝑠 = ∬𝐴𝑒

(

𝑤𝛤 (𝑩𝑠
𝛾 )

T𝑩𝑠
𝛾

)

d𝑥d𝑦

Notably, error minimization matrices (𝒎𝑒
𝑚,𝒎

𝑒
𝑏,𝒎

𝑒
𝑠) are independent of material properties. The measured strain vector 𝒔𝑒 is written 

as: 
𝒔𝑒 = 𝒔𝑒𝑚 + 𝒔𝑒𝑏 + 𝒔𝑒𝑠 (38)

where

𝒔𝑒𝑚 = ∬𝐴𝑒

(

𝑤𝑒(𝑩𝑚)T𝒆∗
)

d𝑥d𝑦

𝒔𝑒𝑏 = ∬𝐴𝑒

(

(𝑡2)𝑤𝜅 (𝑩𝑏)T𝜿∗
)

d𝑥d𝑦

𝒔𝑒𝑠 = ∬𝐴𝑒

(

𝑤𝛤 (𝑩𝑠
𝛾 )

T𝜞 ∗
)

d𝑥d𝑦

Eq. (37) computes the elemental equations for the iTS6 inverse element. For global analysis, these equations are compiled into a 
global system of equations after necessary transformations from local to global coordinate system.

2.9. Coordinate transformation system

Shell elements help model curved surfaces by combining flexural and in-plane behavior. If the shell elements are two-dimensional, 
the flexural and in-plane states are naturally decoupled at the element level for homogeneous materials. However, flexural-membrane 
coupling emerges when the global coordinate system assembles flat elements meeting at different angles, as shown in Fig.  6. Despite 
being inherently two-dimensional, these elements can effectively approximate curved surfaces in a discretized space. Typically, 
two-dimensional shell elements, formulated by superpositioning membrane and bending elements, are computationally efficient 
and have reduced complexity. Therefore, the transformation between the element local and global coordinate system is crucial to 
two-dimensional shell formulations, i.e., the proposed inverse shell element.

Consider the iTS6 element defined in a local coordinate system, as illustrated in Fig.  1. Knowing the position vectors defined by 
any two nodes within the element, the unit vectors representing the local coordinate system (𝑥′, 𝑦′, 𝑧′) can be readily determined 
using vector calculus. 

𝐕𝑒
𝑖𝑗 =

⎧

⎪

⎨

⎪

𝑥𝑗 − 𝑥𝑖
𝑦𝑗 − 𝑦𝑖

⎫

⎪

⎬

⎪

𝑒

=

⎧

⎪

⎨

⎪

𝑥𝑖𝑗
𝑦𝑖𝑗

⎫

⎪

⎬

⎪

𝑒

(39)
⎩
𝑧𝑗 − 𝑧𝑖⎭ ⎩

𝑧𝑖𝑗⎭

10 
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Fig. 6. Shell element defined in local coordinate system.

The unit vector is 

�̂�𝑒𝑖𝑗 =
1
𝑙𝑒𝑖𝑗

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑗
𝑦𝑖𝑗
𝑧𝑖𝑗

⎫

⎪

⎬

⎪

⎭

𝑒

=
𝐕𝑒
𝑖𝑗

‖𝐕𝑒
𝑖𝑗‖

(40)

where the length of side 𝑖𝑗.

𝑙𝑒𝑖𝑗 =
√

(

𝑥2𝑖𝑗 + 𝑦2𝑖𝑗 + 𝑧2𝑖𝑗
)𝑒

Let us start from the unit normal along the local 𝑧′ axis. For the iTS6 inverse element, the transverse local unit vector is 
determined using Eqs. (39) and (40). 

�̂�𝑒𝑧′ =
𝐕𝑒
12 × 𝐕𝑒

13
‖𝐕𝑒

12 × 𝐕𝑒
13‖

=

⎧

⎪

⎨

⎪

⎩

𝜆𝑧′𝑥
𝜆𝑧′𝑦
𝜆𝑧′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(41)

where 𝐕12 and 𝐕13 represent in-plane position vectors along nodes 1–2 and 1–3, respectively. The local 𝑦′ axis is now defined by 
intersecting the element with a plane parallel to the global 𝑦𝑧 plane, as shown in Fig.  6. 

�̂�𝑒𝑦′ =
⎧

⎪

⎨

⎪

⎩

0

𝜆𝑦′𝑦
𝜆𝑦′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(42)

where the projection of 𝑥′ along the global 𝑦 axis is zero. The unknown components (𝜆𝑦′𝑦, 𝜆𝑦′𝑧) of the unit vector �̂�𝑒𝑦′  along 𝑦′ and 
𝑧′ axis can now be determined from the facts that the length of this vector is unity. 

(

𝜆𝑒𝑦′𝑦
)2

+
(

𝜆𝑒𝑦′𝑧
)2

= 1 (43)

and the second necessary equation comes from the condition that the scalar product of the unit vectors 𝐯𝑒𝑦′  and 𝐯𝑒𝑧′  is zero. 

𝜆𝑒𝑦′𝑦𝜆
𝑒
𝑧′𝑦 + 𝜆𝑒𝑦′𝑧𝜆

𝑒
𝑧′𝑧 = 0 (44)

From Eqs.  (43) and (44), the unknown components (𝜆𝑦′𝑦, 𝜆𝑦′𝑧) of the unit vector �̂�𝑒𝑦′  can be obtained easily.

𝜆𝑒𝑦′𝑦 =
1

√

1 +
(

𝜆𝑧′𝑧
𝜆𝑒
𝑧′𝑦

)2

𝜆𝑒𝑦′𝑧 =
1

√

1 +
(

𝜆𝑒
𝑧′𝑦

𝜆𝑒
𝑧′𝑧

)2

Consequently, the unit vector in the direction of local 𝑥′ axis is obtained by the cross product of �̂�𝑒𝑦′  and �̂�𝑒𝑧′ . 

�̂�𝑒𝑥′ = �̂�𝑒𝑦′ × �̂�𝑒𝑧′ =
⎧

⎪

⎨

⎪

⎩

𝜆𝑥′𝑥
𝜆𝑥′𝑦
𝜆𝑥′𝑧

⎫

⎪

⎬

⎪

⎭

𝑒

(45)

The local unit vectors (�̂�𝑒𝑥′ , �̂�𝑒𝑦′ , �̂�𝑒𝑧′ ) are essentially the direction cosines that describe the orientation of the local coordinate system 
[𝑥′, 𝑦′, 𝑧′] relative to the global coordinate system [𝑥, 𝑦, 𝑧]. Finally, the transformation matrix can be populated using the direction 
11 
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cosines presented in Eqs. (41), (42), and (45) as: 

𝑻 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜆𝑒𝑥′𝑥 𝜆𝑒𝑥′𝑦 𝜆𝑒𝑥′𝑧
𝜆𝑒𝑦′𝑥 𝜆𝑒𝑦′𝑦 𝜆𝑒𝑦′𝑧
𝜆𝑒𝑧′𝑥 𝜆𝑒𝑧′𝑦 𝜆𝑒𝑧′𝑧

⎞

⎟

⎟

⎟

⎟

⎠

(46)

Here, 𝑻  is a 3 × 3 transformation matrix for the transformation of global coordinates [𝑥, 𝑦, 𝑧] to the local coordinates, i.e., [𝑥′, 𝑦′, 𝑧′] =
𝑻 [𝑥, 𝑦, 𝑧]. This transformation is pivotal to two-dimensional shell formulations to ensure accurate alignment of the local and global 
coordinate systems.

In the iTS6 inverse element, the presence of mid-side nodes enhances interpolation capabilities and implicitly provides additional 
degrees of freedom to improve interelement continuity and compatibility. To undertake the iFEM analysis of buildup structures, 
introducing artificial inplane rotation DOF effectively addresses the challenges associated with quasi-coplanar nodes in mapping 
buildup structures with two-dimensional shell elements. This approach ensures computational efficiency while maintaining the 
accuracy and stability of the iTS6 inverse element in capturing the complex behavior of curved shell structures. Following this 
technique, the local displacement field for the proposed inverse element can be rewritten in the local coordinate system by including 
additional artificial rotation 𝜃′𝑧 as: 

�̄�′𝑒𝑖 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

𝑢′𝑜
)

𝑖
(

𝑣′𝑜
)

𝑖
(

𝑤′
𝑜
)

𝑖
(

𝜃′𝑥
)

𝑖
(

𝜃′𝑦
)

𝑖
(

𝜃′𝑧
)

𝑖

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(𝑖 = 1, 2,… , 6) (47)

In order to maintain 6-DOFs at all nodes, an arbitrary coefficient 𝒎′
𝜃𝑧
 is added to the diagonal term of the local numerical shape 

matrix already defined in Eq.  (37). 

�̄�′𝑒
𝑖𝑗6×6

=

⎡

⎢

⎢

⎢

⎣

𝒎′𝑒
𝑖𝑗5×5

⋮ 0

⋯ ⋮ ⋯

0 ⋮ 𝒎′
𝜃𝑧

⎤

⎥

⎥

⎥

⎦

(48)

The value of the artificial stiffness matrix 𝒎′
𝜃𝑧
 is typically chosen in the order of 𝐸𝑡𝐴𝑒 [47]. The numerical results have consistently 

established minimal sensitivity to the artificial rotation stiffness due to its uncoupled contribution in the shape matrix presented 
in Eq.  (48). The modified local numerical shape matrix �̄�′𝑒

𝑖𝑗  is then transformed into global axes using the standard method, resulting 
in non-singular global equations. 

𝒎𝑒
𝑖𝑗 =

[

𝑻 𝑒]T �̄�′𝑒
𝑖𝑗6×6

[

𝑻 𝑒] (49)

where 𝑻 𝑒 represents an element transformation matrix. For the entire iTS6 inverse shell element, which now has six DOFs per node, 
the complete element transformation matrix can be formulated as: 

𝑻 𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑻

𝑻 0

𝑻

𝑻

𝑠𝑦𝑚 𝑻

𝑻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(50)

The element transformation matrix 𝑻 𝑒 is a block-diagonal matrix used to transform local element stiffness matrices to the global 
coordinate system, and the transformation matrix 𝑻  is already defined in Eq.  (46). The element transformation matrix’s 36 × 36
structure is essential for accurately mapping the local stiffness contributions to the global system, especially in three-dimensional 
problems where each node has six DOFs (three translations and three rotations).

2.10. Global assembly and solution

The element contributions defined in Eqs. (37) and (38) can be assembled in the global system after appropriate coordinate 
transformations as: 

𝑴𝐔 = 𝑺 (51)

and 𝑴 =
𝑁𝑖𝑒𝑙
∑

𝒎𝑒, 𝐔 =
𝑁𝑖𝑒𝑙
∑

𝐮𝑒, 𝑺 =
𝑁𝑖𝑒𝑙
∑

𝒔𝑒

𝑒=1 𝑒=1 𝑒=1

12 
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Fig. 7. Crack tip displacement path for a full-model crack.

Consequently, 𝑴 , 𝐔, and 𝑺 imply the global error minimization matrix, unknown displacement vector, and measured strain vector 
in iFEM formulation. 𝑁𝑖𝑒𝑙 represents the total number of inverse elements in the discretized structural domain. After prescribing the 
essential boundary conditions, the partitioned global system of equations can be written as: 

𝑴𝑝𝐔𝑝 = 𝑺𝑝 (52)

In the end, unknown nodal displacements 𝐔𝑝 can be computed by solving a pertained system of equations via conventional FEM 
solution techniques to realize full-field reconstruction displacement profiles.

After obtaining the displacement field, we can use the nodal displacements to calculate the stress intensity factors (SIFs). For the 
proposed iTS6 inverse shell element, three types of Stress Intensity Factors (SIFs) can be calculated at a crack tip: the opening SIF 
𝐾𝐼 , which results from normal stress causing the crack faces to separate perpendicularly (Mode I); the in-plane shear SIF 𝐾𝐼𝐼 , which 
arises from shear stress causing the crack faces to slide over each other within the plane of the crack (Mode II); and the tearing SIF 
𝐾𝐼𝐼𝐼 , which is due to out-of-plane shear stress causing the crack faces to slide relative to each other in a direction perpendicular to 
the crack plane (Mode III). These SIFs are crucial for quantifying the stress state near the crack tip, enabling accurate predictions 
of crack growth and potential failure.

Fig.  7 shows the crack tip displacement path for a full crack model, illustrating the nodes around the crack tip in a planar element. 
The diagram shows several key nodes labeled 𝑖, 𝑗, 𝑘, 𝑚, and 𝑛, with the crack tip located at node 𝑘. The crack tip is situated at the 
origin of the local cylindrical coordinate system, where the radial distance 𝑟 = 0 and the angle 𝜃 are measured from the positive 
𝑥-axis. Now, for the nodes positioned on the crack surface, specifically at 𝜃 = 180◦ (directly on the opposite side of the crack plane), 
the SIFs can be calculated using displacement extrapolation method [48]. 

𝐾𝐼 =
√

2𝜋 𝐺
1 + 𝐸𝑏

|𝛥𝑉 |

√

𝑟
(53)

𝐾𝐼𝐼 =
√

2𝜋 𝐺
1 + 𝐸𝑏

|𝛥𝑈 |

√

𝑟
(54)

𝐾𝐼𝐼𝐼 =
√

2𝜋 𝐺
1 + 𝐸𝑏

|𝛥𝑊 |

√

𝑟
(55)

where 𝐾𝐼 , 𝐾𝐼𝐼 , and 𝐾𝐼𝐼𝐼  represent the stress intensity factors for Modes I, II, and III, respectively. The terms 𝛥𝑈 , 𝛥𝑉 , and 𝛥𝑊
represent the relative displacements along the horizontal, lateral, and transverse directions for the nodes adjacent to the crack tip. 
The shear modulus 𝐺 can be calculated using the elastic modulus 𝐸 and Poisson’s ratio 𝜈. The bulk modulus 𝐸𝑏 differs depending 
on the in-plane loading conditions: for plane stress 𝐸𝑏 = (3 − 𝜈)∕(1 + 𝜈) and plane strain, 𝐸𝑏 = 3 − 4𝜈. The crack propagation angle 
in terms of SIFs can be expressed as: 

𝜃 = cos−1
⎛

⎜

⎜

⎜

⎝

3𝐾2
𝐼𝐼 +𝐾𝐼

√

𝐾2
𝐼 + 8𝐾2

𝐼𝐼

𝐾2
𝐼 + 9𝐾2

𝐼𝐼

⎞

⎟

⎟

⎟

⎠

(56)

The G-criterion is used to predict material failure by relating the critical stress intensity factor (𝐾𝑐) to the stress intensity factors 
for different crack loading modes. The criterion is expressed by the following equation: 

𝐾2
𝑐 = 𝐾2

𝐼 +𝐾2
𝐼𝐼 +

𝐸′

2𝐺
𝐾2

𝐼𝐼𝐼 (57)

where the effective modulus 𝐸′ is given by 𝐸′ = 𝐸∕(1 − 𝜈2) for plane strain conditions and 𝐸′ = 𝐸 for plane stress conditions. This 
criterion enables accurate failure prediction by integrating the effects of different loading modes, considering the material’s response 
under varying stress conditions.

The terms |𝛥𝑉 |∕
√

𝑟, |𝛥𝑈 |∕
√

𝑟 and |𝛥𝑊 |∕
√

𝑟 defined in Eqs. (53), (54), and (55) are assumed to be linear at the crack surface 
and can be obtained at 𝑟 → 0 for the crack tip as:

|𝛥𝑉 |

√
=

|𝛥𝑉𝑖𝑚|(𝑑2)
3
2 − |𝛥𝑉𝑗𝑛|(𝑑1)

3
2

√

𝑟 𝑑1𝑑2(𝑑2 − 𝑑1)
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|𝛥𝑈 |

√

𝑟
=

|𝛥𝑈𝑖𝑚|(𝑑2)
3
2 − |𝛥𝑈𝑗𝑛|(𝑑1)

3
2

√

𝑑1𝑑2(𝑑2 − 𝑑1)

|𝛥𝑊 |

√

𝑟
=

|𝛥𝑊𝑖𝑚|(𝑑2)
3
2 − |𝛥𝑊𝑗𝑛|(𝑑1)

3
2

√

𝑑1𝑑2(𝑑2 − 𝑑1)

For a full crack model (as shown in Fig.  7), the relative displacements are calculated as 𝛥𝑉𝑖𝑚 = 𝑣𝑖 − 𝑣𝑚, 𝛥𝑈𝑖𝑚 = 𝑢𝑖 − 𝑢𝑚 and 
𝛥𝑊𝑖𝑚 = 𝑤𝑖 − 𝑤𝑚, where (𝑢𝑖, 𝑣𝑖), (𝑢𝑚, 𝑣𝑚) and (𝑤𝑚, 𝑤𝑚) are the horizontal, lateral, and transverse displacements computed at nodes 
𝑖 and 𝑚 via iFEM analysis. Similarly, the relative displacements 𝛥𝑈𝑗𝑛, 𝛥𝑉𝑗𝑛, and 𝛥𝑊𝑗𝑛 can be calculated. Here, 𝑑1 is the distance 
between nodes 𝑘 and 𝑖 (or 𝑘 and 𝑚), and 𝑑2 is the distance between nodes 𝑘 and 𝑗 (or 𝑘 and 𝑛).

Displacement-based SIF calculation is particularly suited for shape sensing analysis because it directly uses measurements 
obtained from reconstructed displacement fields. This approach integrates seamlessly within the framework of iFEM, eliminating the 
need for additional transformations and enabling immediate interpretation of sensor data in real-time SHM applications, providing 
timely insights about structural health.

3. Numerical validation and analysis

The iFEM formulation of the proposed inverse element is numerically validated by considering various cases in the following 
section. Since all numerical models are based on certain assumptions or simplifications, their validation against analytical solutions 
helps to verify the validity of these assumptions and ensures that they do not introduce significant errors. On the contrary, if 
analytical solutions are not readily available, establishing an equivalent structural state is mandatory for numerical validation. As 
a consequence, the computation of equivalent displacements can help to validate iFEM results against FEM reference solutions 
to ensure that the numerical results are reliable and can be used confidently for real-world applications. The total equivalent 
displacement can be computed as: 

𝑈𝑒𝑞 =
√

𝑢2 + 𝑣2 +𝑤2 (58)

where 𝑢, 𝑣, and 𝑤 are the longitudinal, lateral, and transverse displacements along 𝑥, 𝑦, and 𝑧 axis, respectively. Furthermore, 
to investigate the accuracy of iFEM results, the percent-difference between the reconstructed displacements (i.e., equivalent 
displacements) and FEM reference solution can be calculated as: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) =
|

|

|

|

|

|

𝑈 𝑖𝐹𝐸𝑀
𝑒𝑞 − 𝑈𝑅𝑒𝑓

𝑒𝑞

𝑈𝑅𝑒𝑓
𝑒𝑞

|

|

|

|

|

|

× 100 (59)

and variables 𝑈 𝑖𝐹𝐸𝑀
𝑒𝑞  and 𝑈𝑅𝑒𝑓

𝑒𝑞  imply equivalent displacements computed via iFEM analysis and its reference solution computed 
through high-fidelity FEM analysis.

The availability of discrete surface strain measures is an integral part of the iFEM analysis, and the kind of data is obtained 
from the onboard strain sensors installed on the engineering structures. In contrast, synthetic strain data can be obtained through 
high-fidelity forward FEM analysis. Under similar loading and boundary conditions, the strain data acquired through FEM analysis 
can reliably duplicate the experimental strain data obtained from the experimental setup. Since FEM is a well-established analysis 
technique, the numerical validation of inverse formulations via synthetic strain data is widely accepted in the literature. In the 
current study, discrete strain measures are obtained via high-fidelity FEM simulations, which is equivalent to the placement of the 
strain rosette at an appropriate location in the iFEM discretized element.

In industrial applications, the decision on the number of sensors needed for shape sensing is governed by several factors. These 
include space availability for sensor installation, financial constraints, existing health of the structural systems, computational 
accuracy, and efficiency requirements. Optimal sensor arrangement can be achieved by optimizing the iFEM scheme for inverse 
element discretization, sensor locations within the inverse element spatial domain, and weighting functions associated with the 
weighted least squares error functional. Additionally, techniques such as sensor fusion and advanced signal processing can further 
enhance the robustness of iFEM analysis with fewer sensors. It is important to note that these optimizations are specific to each 
structural system, and therefore, a unique closed-form solution does not exist to obtain an optimal sensor arrangement.

In this study, the numerical validation considered two sensor arrangements, which are identified as dense and sparse sensor 
arrangements. These sensor arrangements are utilized to validate the proposed inverse formulation through iFEM analysis. In dense 
sensor arrangements, strain rosettes are assumed to be present in the elemental domain of each inverse element within the discretized 
space. In this case, the iFEM setup represents a typical inverse problem, and the variational principle does not govern the analysis 
because none of the sensors is missing in any elemental domain. Therefore, the iFEM results obtained with dense sensor arrangement 
are used to validate the accuracy of the inverse formulation against reference solutions. Meanwhile, sparse sensor arrangements 
arbitrarily represent a real-world scenario where few sensors cover the entire discretized space, and most inverse elemental domains 
are empty. The iFEM analysis for sparse arrangement is dominated by variational weighted least squares functional, and the iFEM 
results obtained via this arrangement are used to validate the robustness of the iFEM formulation by arbitrarily employing fewer 
sensors.
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Fig. 8. Case I: Cantilevered beam with free edge under shear load and discretized geometric domain.

A detailed numerical validation plan includes iFEM analysis of structures with and without preexisting cracks. First, benchmark 
cases without cracks will be evaluated to assess the accuracy of the proposed inverse formulation for reconstructing longitudinal, 
lateral, and transverse deformation profiles. Next, two cases with preexisting cracks will be assessed to extend the application of 
iFEM analysis in fracture mechanics. This comprehensive approach will verify the shape sensing capability of the iTS6 inverse 
element for real-time SHM applications in shell structures, both with and without existing cracks.

3.1. Structures without crack

It is essential to emphasize that the location of strain sensors within the inverse element domain and the values of weighting 
coefficients 𝑤𝑒, 𝑤𝑘, and 𝑤𝛤  are critical to the variational formulation of iFEM. In subsequent numerical validation cases, the 
location of the strain sensors is fixed at the centroid of each inverse element. Also, for missing in-situ discrete strain measures, 
the values for weighting coefficients are set to 𝑤𝑒 = 𝑤𝑘 = 𝑤𝛤 = 10−4 to ensure standardization in the analysis setup. Sparse sensor 
arrangements are assumed to have significantly fewer sensors than dense arrangements. The aim, however, remains to analyze the 
accuracy and robustness of the proposed inverse formulation using fewer sensors while keeping all other variable factors constant, 
i.e., discretization, sensor locations, and weighting functions. This approach minimizes variations and simplifies comparative analysis 
of iFEM results across different numerical validation cases.

3.1.1. Beam under inplane loading (Case I)
In the literature, the shear-loaded cantilever beam presented by Timoshenko [49] is commonly used as a benchmark problem 

to validate the in-plane response of new elements. In this context, we are revisiting this problem to assess the inplane response 
capability of the newly developed inverse element.

Consider a rectangular beam with length 𝑎 = 1.2192 m and width 𝑏 = 0.3048 m, as illustrated in Fig.  8. The beam has a constant 
cross-sectional area with a thickness of 𝑡 = 25.4 mm. The left edge of the beam is fixed, and the right edge is subjected to a resultant 
shear loading of 𝑃 = 177.929 kN. The beam is made of a uniform and isotropic material with the elastic modulus 𝐸 = 206.84 GPa
and Poisson’s ratio 𝜈 = 0.25. According to the elasticity solution, the maximum lateral displacement at the upper corner of the free 
edge beam is given as: 

𝑣𝑦 =
4𝑃𝑏3

𝐸𝑡𝑎3
+

2(4 + 5𝜈)𝑃𝑏
4𝐸𝑡𝑎

= 9.025 mm (60)

First, a high-fidelity FEM analysis is performed using an in-house solver with a structured mesh of 256 uniformly distributed 
triangular elements. The maximum lateral displacement of 𝑣𝑦 = 9.053 mm is observed at the right top corner of the beam (as 
shown in Fig.  9a), which is in close agreement with the elasticity solution mentioned in Eq.  (60). Also, the maximum longitudinal 
displacement of 𝑣𝑦 = 1.632 mm is observed at the free end of the beam (as shown in Fig.  10a). The displacement profiles from the 
FEM solution are then used to synthesize the strain data measures for subsequent shape sensing analysis within the framework of 
iFEM.

In dense sensor arrangement, strain rosettes are placed in all inverse elements in the entire geometric domain, as shown in Fig. 
8. Whereas, in a sparse sensor arrangement, strain sensors are placed at specific inverse elements along the highlighted yellow path. 
The results from both iFEM scenarios accurately reconstruct deformation profiles, and the maximum lateral displacements closely 
match the reference solution. The errors are 0.93% and 2.32% for dense and sparse iFEM analyses (as shown in Fig.  9b and c), 
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Fig. 9. Case I: Lateral displacement profiles for FEM reference solution, iFEM solution (dense-sensor), iFEM solution (sparse-sensor), and iFEM convergence chart 
for the lateral reconstructed displacement profile.

respectively, when compared to the analytical results. Additionally, the lateral displacement contours from both FEM and iFEM 
analyses are indistinguishable, showing maximum deflection at the right edge of the cantilever beam.

The longitudinal displacement profiles for dense and sparse sensor arrangements are similar to the reference solution (as shown 
in Fig.  10). The reconstructed displacement contours of 𝑢𝑥 accurately predict symmetric squeezing and stretching along the upper 
and lower edges of the cantilever beam under an upward shear load at the free edge. Maximum longitudinal displacements for the 
dense and sparse iFEM analyses are 1.623 mm and 1.616 mm (as shown in Fig.  10b and c), respectively, compared to the maximum 
longitudinal displacement of 1.632 mm obtained in the reference solution.

The influence of discretization on iFEM analysis is studied (as shown in Figs.  9d and 10d) to evaluate how different mesh densities 
effect the displacement reconstruction accuracy. The convergence charts for longitudinal and lateral displacements indicate that the 
iFEM solutions consistently approach the reference solutions as the number of inverse elements increases. The iFEM mesh with 
16 × 8 inverse elements per side (with 256 inverse elements) converges monotonically to the reference solution.
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Fig. 10. Case I: Longitudinal displacement profiles for FEM reference solution, iFEM solution (dense-sensor), iFEM solution (sparse-sensor), and iFEM convergence 
chart for the longitudinal reconstructed displacement profile.

Furthermore, the iFEM convergence graph demonstrates that an 8 × 4 discretization arrangement with 64 inverse elements 
can reconstruct displacement profiles with over 95% accuracy. This configuration reduces the sensor count by approximately 75%, 
significantly decreasing computational effort while maintaining acceptable accuracy. Optimized discretization is essential for the 
practical applicability and computational feasibility of iFEM analysis in real-time shape sensing and SHM applications. The in-plane 
response of the iTS6 inverse element is successfully validated in the current case, and details for the given case are summarized in 
Table  1.

3.1.2. Radial loading on cylindrical shell (Case II)
The pinched cylinder with a diaphragm is a well-known benchmark and is considered one of the most severe tests for both 

inextensional bending modes and complex membrane states. It is also part of the ‘‘obstacle course for shell elements’’ [50]. The 
cylinder, with a length 𝑙 = 600, radius 𝑟 = 300, and thickness 𝑡 = 3, is subjected to a unit point load 𝑃 = 1 at the center on opposite 
sides, as illustrated in Fig.  11. The cylinder has rigid end diaphragms; its material properties are 𝐸 = 3.0 × 106 and 𝜈 = 0.3.
17 
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Table 1
Analysis details of Case - I.
 Analysis Sensor max 𝑢𝑥 max 𝑣𝑦 Err 𝑢𝑥 Err 𝑣𝑦  
 (Type) (Arrangement) (mm) (mm) (Abs%) (Abs%) 
 iFEM Dense 1.623 8.948 0.56 0.93  
 iFEM Sparse 1.616 8.823 0.97 2.32  
 Reference Solution
 Analysis Elements u max v max  
 FEM 224 1.632 mm 9.053 mm  
 Analytical – – 9.025 mm [49]  

Fig. 11. Case II: Pinched cylinder benchmark test and discretized geometry depicted with loading and boundary conditions.

Due to the problem’s symmetry, only one octant of the cylinder is analyzed using FEM and iFEM analysis (as shown in Fig.  11). 
The discretized geometry is subjected to symmetric boundary conditions along the sides AB, BC, and CD, whereas it is subjected 
to rigid diaphragm boundary conditions along the AB end. A radial point load of −0.25 is applied on the corner at point C. The 
analytical solution for this case results in a maximum transverse displacement of 𝑤𝑧 = −1.8248×10−5 at the point of load application.

High-fidelity FEM analysis is conducted using a structured discretization of 1152 uniformly distributed triangular elements to 
replicate the analytical result. The numerical solution successfully convergences to the analytical solution and shows the maximum 
transverse displacement of −1.821 × 10−5. The maximum displacement appears at a highly localized place (as depicted in Fig.  12a), 
precisely at the node where the radial point load is applied. This localized displacement is due to the concentrated nature of the 
load, which causes a significant deformation at the point of application. Synthetic strain data is generated based on the displacement 
profile obtained from the high-fidelity model for subsequent shape sensing analysis. Two iFEM scenarios, using dense and sparse 
sensor arrangements, are considered to evaluate the accuracy and robustness of the proposed inverse formulation, respectively. 
The dense arrangement assumes that synthetic strain measures are available to all inverse elements in the discretized geometry (as 
shown in Fig.  11), and for sparse arrangement, the synthetic strain sensors are assumed to be placed only in the inverse elements 
highlighted in yellow.

The shape sensing displacement profile reconstructed during the iFEM analysis for both dense and sparse sensor arrangements 
closely matches the reference displacement profile obtained from the high-fidelity model. The maximum transverse deflection 
observed for the dense sensor arrangement is 1.754×10−5, (as shown in Fig.  12b). Given the complexity and nature of the problem, the 
iFEM result correlates well with the analytical solution, with an observed absolute error of 3.88%. In the sparse sensor arrangement, 
less than 25% of strain sensors are used to reconstruct the full-field displacement profile. The transverse displacement obtained 
from the sparse sensor arrangement is 1.724 × 10−5, with an observed absolute error of 5.523%, (as shown in Fig.  12c). The iFEM 
displacement contours from dense and sparse sensor arrangements are indistinguishable from the reference solution.

The effect of inverse discretization on the reconstruction of displacement profiles is also studied, and the iFEM convergence chart 
is presented in Fig.  13. Since the maximum displacement occurs at a highly localized place, minor differences in the results can 
arise from the interpolation of synthetic strain measures (at centroids) to other places within the inverse elements. The convergence 
graph illustrates consistent convergence of iFEM results towards the analytical solution with the increase in inverse elements. 
Even with the coarse discretization of 16 × 16 inverse elements per side, the iFEM results are experiencing minimal deviations 
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Fig. 12. Case II: Transverse displacement profiles for FEM reference solution, iFEM solution (dense-sensor), and iFEM solution (sparse-sensor).

(approximately 7% absolute error) from the reference solution. Therefore, if optimized, sensor locations and weighting functions 
allow for the implementation of inverse formulation with much coarser discretizations. In the subsequent numerical cases, sensor 
placement optimization within the inverse element domain 𝛺𝑖𝑒𝑙 is discussed in detail. For the given case, evaluating the iTS6 inverse 
element through a rigorous benchmark test for shell elements reveals its superior accuracy and robustness for shape sensing and 
SHM applications.
19 



I. Khalid et al. Mechanical Systems and Signal Processing 231 (2025) 112663 
Fig. 13. Case II: iFEM convergence chart for the transverse reconstructed displacement profile.

3.2. Structures with preexisting crack

In the aerospace and naval sectors, stiff structural arrangements are used to reduce weight and enhance the overall strength-
to-weight ratio of the structural assembly. Most of these engineering structures can be modeled as plate and shell structures, 
prone to through-thickness cracks due to fatigue and impact. Other reasons for cracks in these structures include thermal stresses, 
manufacturing defects, corrosion, and material degradation over time. Additionally, this section introduces a variational technique 
for optimizing the placement of strain sensors around the crack tip for efficient and effective iFEM analysis.

The current framework depends on accurate knowledge of crack geometry, typically obtained using Von Mises strain criteria in 
iFEM shape sensing applications. The proposed methodology specifically targets cracks that have the potential to grow significantly 
under given loading and boundary conditions, but it does not consider crack nucleation or propagation. For instance, if a crack 
shows an increasing risk, necessary preventive measures can be taken, e.g., reducing operational loads or scheduling maintenance 
to slow down or stop crack propagation. This proactive strategy effectively manages cracks before they become critical, reducing 
structural failure risk. The framework ensures repair effectiveness by verifying that repair schemes have successfully reduced stress 
concentrations. In the event of crack propagation, accurately computing SIFs becomes challenging due to changes in crack geometry. 
Structural assessment transitions to conventional Damage Index (DI) criteria in such cases, allowing continuous monitoring without 
needing immediate manual inspections. This approach ensures that structural integrity assessments remain uninterrupted while 
necessary model updates are scheduled for upcoming maintenance, eliminating the risk of unexpected asset downtime.

3.2.1. Cracked bar in mixed loading (Case III)
Consider a rectangular bar with a length of 𝑙 = 6 m and a width of 𝑤 = 1 m, having a preexisting crack of length 𝑎 = 𝑤∕2, 

with the crack tip located at the center of the bar, as illustrated in Fig.  14. The bottom end of the bar is fixed, while point loads 
𝐹𝑥 = 𝐹𝑦 = 100 kN are applied at the top right corner along the 𝑥 and 𝑦 axis, respectively. As a result, the crack experiences both 
opening (Mode I) and sliding (Mode II) due to the mixed loading directions, necessitating the simultaneous consideration of both 
𝐾𝐼  and 𝐾𝐼𝐼  stress intensity factors (SIFs) in the analysis. Isotropic material properties for the bar are 𝐸 = 210 GPa and 𝜈 = 0.3.

A high-fidelity FEM analysis is conducted using an unstructured discretization comprising 224 triangular elements, including 
12 quarter-point elements at the crack tip (as shown in Fig.  14). The unstructured discretization enables the elements to adapt 
to complex crack surfaces without imposing stringent constraints on the element geometry. This flexibility is advantageous for 
implementing quarter-point elements at the crack tip. Under given in-plane loading conditions, the maximum longitudinal and 
lateral displacements of 𝑢𝑥 = 5.35 mm and 𝑣𝑦 = 0.88 mm are observed at the top left corner of the bar along 𝑥 and 𝑦 axis, respectively 
(as shown in Figs.  15 and 16). The SIFs for mixed-mode loading using the FEM displacement field are computed as 𝐾𝐼 = 3.16 × 107

and 𝐾𝐼𝐼 = 1.70 × 106, respectively. Synthetic strain data for subsequent iFEM analysis is generated using the displacement profiles 
obtained from the high-fidelity FEM model. Two iFEM scenarios are again considered for this case to evaluate the accuracy and 
robustness of the iTS6 inverse element in dealing with structures with preexisting cracks. In a dense sensor arrangement, strain 
measurements are assumed to be available for all inverse elements in the discretized geometry, as shown in Fig.  14. In contrast, in 
a sparse sensor arrangement, strain sensors are assumed to be placed only in the inverse elements highlighted in yellow.

First, the iFEM analysis uses a dense sensor arrangement, and the reconstructed displacement contours closely conform with 
the reference solution. The absolute errors observed for the maximum displacements are only 1.68% along the longitudinal axis 
and less than 0.1% along the lateral directions of the bar. After the displacement field reconstruction, the mixed-mode SIFs are 
computed using the Eqs. (53) and (54) for the full crack model. Since the synthetic strain sensors are assumed to be placed at the 
centroid of the inverse elements, strain interpolation to other locations may introduce interpolation errors, especially in regions with 
high-stress gradients, such as near crack tips. Consequently, these induced errors may lead to inaccuracies in computing SIFs via 
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Fig. 14. Case III: Cracked rectangular bar in mixed loading and discretized geometry.

Fig. 15. Case III: Comparison of longitudinal displacement profiles between the FEM reference solution and the iFEM reconstructed solution (dense sensor).

displacement-based methods. Strain rosettes can be positioned anywhere within the inverse element domain, with common choices 
including Gauss point locations based on Gauss Quadrature rules for triangles and prescribed element domains, as illustrated in Fig. 
17.

In a dense sensor arrangement, the variational component of the iFEM formulation is inactive, and the analysis represents an 
inverse problem. In such a scenario, interpolation errors can be minimized by strategically placing crack-tip sensors near the nodes 
(𝑖, 𝑗, 𝑘, 𝑚, 𝑛), which form the crack-tip displacement path for a full crack model (already shown in Fig.  7). One practical approach is 
to reposition sensors to Gauss location 3 using rule 6 of the numerical integration for triangles, as shown in Fig.  18. The referenced 
figure illustrates major Gauss locations following rule 6, and a triangular arrow at the center depicts the node numbering sequence 
for the inverse element vertices. Since location 3 is between nodes 𝑖𝑗 and 𝑚𝑛 on the crack-tip displacement path, it is expected 
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Fig. 16. Case III: Comparison of lateral displacement profiles between the FEM reference solution and the iFEM reconstructed solution (dense sensor).

Fig. 17. Major Gauss locations in the master element for placement of sensors.

to minimize synthetic strain interpolation errors, leading to accurate computation of SIFs. Computation of SIFs at modified sensor 
positions (Rule 6, Gauss Location 3) under a dense sensor arrangement significantly reduces the absolute errors for the mixed-mode 
SIFs to 3.63% for Mode I and 1.73% for Mode II without noticeably affecting the reconstruction of displacement profiles.

On the other hand, in sparse sensor arrangements, strain sensors are placed in only a few selected inverse elements (highlighted 
in yellow in Fig.  14). In this scenario, the iFEM formulation is significantly influenced by the variational function; therefore, it is 
crucial to identify the most effective locations for strain sensors within the inverse element domains to improve shape sensing and 
SIF computations in the iFEM analysis. To address these challenges, this research presents a variational least squares methodology to 
optimize sensor locations within the inverse element domains, aiming to improve shape sensing and health assessment of engineering 
structures with preexisting cracks.
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Fig. 18. Case III: Gauss location 3 following rule 6 for repositioning of the strain sensor under dense sensor arrangement.

Fig. 19. Least squares effect summary for Design of Experiments (DOE).

As discussed earlier, in the case of a sparse sensor arrangement, the location of sensors within the inverse element domain 
significantly influences the iFEM analysis. Therefore, simply placing the sensors at major Gauss locations is insufficient. It is essential 
to explore the continuous inverse elemental domain within a prescribed range of interest, i.e., 0.1 < (𝜉, 𝜂) < 0.9 (as depicted in Fig. 
17). A custom Design of Experiments (DOE) approach is followed to generate a dataset using 25 iFEM simulations. The aim is to 
identify individual and interactive spatial factors that affect the output results in the iFEM analysis. The sensors above and below the 
crack plane are categorized into two groups, denoted by superscripts (𝑡, 𝑏). The spatial coordinates (𝜉𝑡, 𝜂𝑡) and (𝜉𝑏, 𝜂𝑏) are treated as 
continuous input factors, while the percentage error in iFEM maximum displacements (𝑢, 𝑣) and stress intensity factors (𝐾𝐼 , 𝐾𝐼𝐼 ) are 
considered as responses. Since a unique closed-form solution for optimal sensor arrangement does not exist, factors and responses 
can be revised according to varying optimization constraints.

The least squares effect summary in Fig.  19 reveals that the interaction terms among the input factors are effective enough 
to model the percentage error responses. Specifically, factors such as 𝜉𝑡 and 𝜉𝑏 and their interactions show significant statistical 
importance with high Logworth scores and low P-values, indicating their influence on the error outcomes. Also, it highlights the 
complexity and necessity of considering multiple interaction terms for accurate sensor placement.

Actual versus predicted errors for the maximum displacement 𝑢𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 (as shown in Fig.  20) explain a high degree of 
correlation between the actual and predicted values, with RMSE values of 0.3738 for 𝑢𝑚𝑎𝑥 and 0.6118 for 𝑣𝑚𝑎𝑥, and R-squared 
values over 0.99, indicating that the model explains more than 99% of the variability in error percentages. These results signify the 
robustness and predictive accuracy of the least squares variational technique.
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Fig. 20. Actual versus predicted percent errors for the iFEM reconstructed displacements.

Fig. 21. Actual versus predicted percent errors for the Stress Intensity Factors (SIFs).

Fig. 22. Sensitivity and desirability analysis for sensor placement.

Fig.  21 shows the actual versus predicted errors for the mixed-mode SIFs. The RMSE for 𝐾𝐼  is 2.9709, while for 𝐾𝐼𝐼  it is 21.705, 
indicating significant variability in 𝐾𝐼𝐼  as compared to 𝐾𝐼 . Despite this, the corresponding R-squared values of 0.99172 and 0.98002 
for 𝐾  and 𝐾  demonstrate the reliable predictive capabilities of the variational technique in predicting mixed-mode SIF errors.
𝐼 𝐼𝐼
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Fig. 23. Contour plots for representation of candidate solution within the inverse element domain.

Fig. 24. Case III: Comparison of longitudinal displacement profiles between the FEM reference solution and the iFEM reconstructed solution (sparse sensor).

Sensitivity and desirability analysis is presented in Fig.  22. The sensitivity analysis interface represents the natural spatial 
coordinates where the placement of sensors has a significant impact on minimizing response errors for the 𝑢𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥, 𝐾𝐼 , and 𝐾𝐼𝐼 . 
The desirability analysis illustrates the identification of a candidate solution for optimal sensor placement at (𝜉𝑡, 𝜂𝑡) = (0.484, 0.197)
and (𝜉𝑏, 𝜂𝑏) = (0.533, 0.173).

The contour plots in Fig.  23 illustrate the candidate solution for two categories 𝑡,𝑏 of strain sensors within their respective inverse 
element domains. These contours also help identify active constraints influencing input factors and provide a visual guide to the 
regions (highlighted in white) within the respective inverse element domain where sensor placement is most effective.

The candidate solution for optimal sensor placement identified during sensitivity and desirability analysis is applied in the iFEM 
analysis for the sparse sensor arrangement. The reconstructed displacements (as shown in Figs.  24 and 25) are observed to be in 
close agreement with the FEM reference solutions, exhibiting absolute errors of only 3.17% and 2.27% along the longitudinal and 
lateral axes, respectively. Similarly, the computed mixed-mode SIFs closely conform to the reference values, with absolute errors 
of 2.43% for 𝐾𝐼  and 7.37% for 𝐾𝐼𝐼 . These results highlight the efficacy of the proposed sensor placement strategy in achieving 
improved accuracy displacement reconstruction and SIF computations under sparse sensor arrangements.

This study utilizes a variational approach to optimizing sensor placements to improve the accuracy of displacement reconstruction 
near the crack tips. The optimal sensor placement for this analysis is based on the assumed sparse sensor patterns, fixed discretization, 
and weighting coefficients. The successful numerical validation of Case II, which includes shape sensing and the computation of 
mixed-mode Stress Intensity Factors (SIFs), establishes the potential use of the iTS6 inverse element in health assessment applications 
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Fig. 25. Case III: Comparison of lateral displacement profiles between the FEM reference solution and the iFEM reconstructed solution (sparse sensor).

Table 2
Analysis details of Case - III.
 Analysis Sensor Err 𝑢𝑥 Err 𝑣𝑦 Err 𝐾𝐼 Err 𝐾𝐼𝐼  
 (Type) (Positioning) (Abs%) (Abs%) (Abs%) (Abs%)  
 iFEM Dense (optimal) 1.68 0.10 3.63 1.73  
 iFEM Sparse (optimal) 3.17 2.27 2.43 7.37  
 Reference Solution
 Analysis Elements u max v max 𝚔𝙸 𝚔𝙸𝙸  
 FEM 224 5.35 mm 0.88 mm 𝟹.𝟷𝟼 × 𝟷𝟶𝟽 𝟷.𝟽𝟶 × 𝟷𝟶𝟼 

for structures with preexisting cracks. Additionally, this validation confirms the efficiency of the proposed variational technique in 
optimizing the placement of strain sensors under sparse sensor arrangements. Table  2 summarizes the highlights of the analysis for 
Case III.

3.2.2. Pressurized cylinder with crack (Case-IV)
Consider an internally pressurized (𝑃 = 1) cylinder having a longitudinal crack with a total length of 2𝑎 = 100, as illustrated in 

Fig.  26. The cylinder has a length 𝑙 = 300, a radius 𝑟 = 300, and a wall thickness 𝑡 = 3. The material properties of the cylinder include 
Young’s modulus 𝐸 = 3.0 × 106 and Poisson’s ratio 𝜈 = 0.3. For the given case, the crack is primarily experiencing tensile opening 
forces perpendicular to the crack plan, which are more likely to drive crack propagation compared to shear forces. The reference 
solution for the opening SIF is obtained as 𝐾𝐼 = 2632 using the following empirical expression from the Cracks Handbook [51].

𝜎 = 𝑝 𝑟
𝑡

𝑎𝑛𝑑 𝜆 = 𝑎
√

𝑟𝑡

𝐹 (𝜆) =

⎧

⎪

⎨

⎪

⎩

√

1 + 1.25𝜆2 for 0 < 𝜆 ≤ 1

0.6 + 0.9𝜆 for 1 ≤ 𝜆 ≤ 5

𝐾𝐼 = 𝜎
√

𝜋𝑎 ⋅ 𝐹 (𝜆)

= 2632

where the value 𝐾𝐼 = 2632 serves as a benchmark for comparing the accuracy of SIF computations during subsequent iFEM analysis.
Initially, a high-fidelity FEM analysis is conducted employing 2308 unstructured triangular elements to model the entire cylinder. 

A total of 24 quarter-point elements are used to model the strain singularity in the longitudinal crack, with 12 elements placed 
around each crack tip. The analysis revealed the maximum longitudinal and transverse displacements of 𝑢𝑥 = 6.405 × 10−2 and 
𝑤 = 6.419 × 10−2 at the center of the crack plane, and the maximum lateral displacements are observed at the crack tips. As 
𝑧
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Fig. 26. Case IV: Internally pressurized cylinder with longitudinal crack and discretized geometry.

expected, the deformed displacement contours illustrated the opening of the crack faces perpendicular to the crack plane (as shown 
in Fig.  27a, b, and c). The SIF computed from the FEM displacement field 𝐾𝐼 = 2640 is observed in close agreement with the 
reference SIF value of 2632. Synthetic strain data is generated using a displacement field obtained from a high-fidelity FEM model. 
Subsequently, two iFEM scenarios are considered for numerical validation of the iTS6 inverse element: one with a dense sensor 
arrangement and the other with a sparse sensor arrangement. Synthetic strain measures are used for all inverse elements in the 
dense arrangement. In contrast, synthetic strain measures are only available to a few inverse elements highlighted in yellow (as 
shown in Fig.  26).

In the dense sensor arrangement, strain sensors within the crack tip inverse elements are repositioned to Gauss location 3, 
according to rule 6 of the numerical integration of triangles, as discussed in CASE II and illustrated in Fig.  18. The reconstructed 
displacement contours closely match the reference solution as shown in Fig.  27d, e, and f. The reconstructed displacement field 
shows an absolute error of 6.24%, 0.55%, and 5.70% in maximum longitudinal, lateral, and transverse displacements when compared 
against the reference solution. The opening SIF of 𝐾𝐼 = 2659 is computed from the reconstructed displacements, showing an absolute 
error of 1.04%.

In the iFEM analysis under a sparse sensor arrangement, optimal strain sensor locations are determined using the variational 
technique proposed in CASE III. The candidate sensor positions are identified as (𝜉𝑡, 𝜂𝑡) = (0.718, 0.151) and (𝜉𝑏, 𝜂𝑏) = (0.727, 0.142) for 
the inverse elements above and below the crack plane, respectively. By repositioning strain sensors to these optimal locations, the 
iFEM analysis accurately reconstructs the displacement field, even with fewer sensors—less than 20% compared to a dense sensor 
arrangement. The reconstructed displacement profiles, shown in Fig.  27g, h, and i, exhibit slight variations when compared to the 
reference solutions. Since the objective function is formulated to minimize errors in the maximum displacements, the optimization 
process results in improved reconstruction of maximum displacements along the 𝑥, 𝑦, and 𝑧 axes compared to those observed 
in the dense sensor arrangement. Reconstructed displacement profiles reveal absolute errors of 4.43%, 3.08%, and 0.84% in the 
maximum longitudinal, lateral, and transverse displacements. The SIF computed from the reconstructed displacement field closely 
matches the reference SIF value, with an absolute error of 2.43%. These iFEM results indicate the effectiveness of the proposed 
least-squares variational technique for optimal sensor placement within the inverse element domains. The same is evident from the 
overall reduction of errors in reconstructed displacement profiles compared to dense sensor arrangements, even with fewer strain 
sensors.
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Fig. 27. Case IV: Comparison of longitudinal, lateral, and transverse displacement profiles between the FEM reference solution, iFEM reconstructed solution 
(dense sensor), and iFEM reconstructed solution (sparse sensor).

Table 3
Analysis details of Case - III.
 Analysis Sensor Err 𝑢𝑥 Err 𝑣𝑦 Err 𝑤𝑧 Err 𝐾𝐼  
 (Type) (Positioning) (Abs%) (Abs%) (Abs%) (Abs%)  
 iFEM Dense (optimal) 6.24 0.55 5.70 1.04  
 iFEM Sparse (optimal) 4.43 3.08 0.84 2.43  
 Reference Solution
 Analysis Elements u max v max w max 𝚔𝙸  
 FEM 2308 0.06405 0.00270 0.06419 2640  
 Empirical – – – – 2632 [51] 

The successful numerical validation of Case IV, which includes displacement field reconstruction and SIF computation, demon-
strates the effectiveness of the iTS6 inverse element for health assessment applications of shell structures with preexisting cracks. 
While the proposed optimization framework addresses preexisting cracks with fixed profiles, crack propagation remains outside this 
analysis’s scope. The optimal sensor placement for this case is based on the assumed sparse sensor pattern, fixed discretization, 
and weighting coefficients. A detailed sensitivity analysis considering the variability of these fixed factors can assist in further 
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optimizing the sensors as per application-specific configurations tailored to meet practical constraints. Table  3 further highlights 
the consolidated details for the given iFEM analysis.

4. Conclusion

The inverse Finite Element Method (iFEM) is a modern technique that offers full-field shape sensing, structural health monitoring 
(SHM), and damage assessment capabilities. Various inverse elements exist in the literature to characterize material discontinuity 
and degradation defects. However, the existing inverse formulations cannot analyze and accurately reconstruct crack mechanics in 
shell structures with preexisting cracks.

In this study, a six-node triangular inverse crack tip shell element is formulated based on the kinematics of First-Order Shear 
Deformation Theory (FSDT). The isoparametric inverse formulation assumes a linear shear strain field and employs a complete 
Gauss integration scheme for the reliable analysis of plate and shell structures. The proposed inverse element is flexible in mapping 
complex geometries and inherently ensures strain singularity at the crack tip by repositioning its mid-side nodes. Stress Intensity 
Factors (SIFs) are computed using the displacement extrapolation method based on the reconstructed displacement field.

First, the inverse shell formulation has been validated for shape sensing, considering cantilevered beam and pinched cylinder 
benchmark problems. After successfully validating intact structures, the inverse formulation is validated for computing stress 
intensity factors considering engineering structures with preexisting cracks, including a bar under in-plane loading conditions and 
a cylinder under internal pressurization. For dense and sparse sensor arrangements, the shape sensing profiles and stress intensity 
factor (SIF) are computed accurately, validating the proposed inverse formulation and successfully extending the application of 
iFEM in computational fracture mechanics. The proposed methodology specifically targets cracks that have the potential to grow 
significantly under given loading and boundary conditions, and it does not consider crack nucleation or propagation.

A proposed variational technique optimizes sensor locations within the inverse element domain to ensure accurate computation 
of mixed-mode stress intensity factors. The variational technique can also be utilized in general iFEM applications to optimize the 
placement of strain sensors within the inverse element domain. The optimal sensor placement helps reduce overall project costs 
when implementing structural health monitoring applications.

The proposed inverse element revealed flexibility during numerical validation in mapping complex shell geometries, such as 
cracks, and accurately capturing high displacement gradients near the crack tips. The framework is practically balanced between 
detailed crack-tip analyses using stress intensity factors (SIFs) and ongoing operational monitoring through conventional damage 
index (DI) methods. The proposed inverse formulation is computationally efficient and integrates seamlessly with the established 
iFEM framework for Structural Health Monitoring (SHM) of shell structures with preexisting cracks that pose an increased risk of 
propagation.
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