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Abstract 

Structural Health Monitoring (SHM) is vital for evaluating structural condition, aiming to detect damage through sensor data 
analysis. It aligns with predictive maintenance in modern industry, minimizing downtime and costs by addressing potential 
structural issues. Various machine learning techniques have been used to extract valuable information from vibration data, often 
relying on prior structural knowledge. This research introduces an innovative approach to structural damage detection, utilizing a 
new Convolutional Neural Network (CNN) algorithm. In order to extract deep spatial features from time series data, CNNs are 
taught to recognize long-term temporal connections. This methodology combines spatial and temporal features, enhancing 
discrimination capabilities when compared to methods solely reliant on deep spatial features. Time series data are divided into two 
categories using the proposed neural network: undamaged and damaged. To validate its efficacy, the method's accuracy was tested 
using a benchmark dataset derived from a three-floor structure at Los Alamos National Laboratory (LANL). The outcomes show 
that the new CNN algorithm is very accurate in spotting structural degradation in the examined structure. 
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1.    Introduction 

With the advent of computers, the era of computing 
began, ushering in a transformative wave that extended 
its influence to the field of civil engineering. This digital 
revolution made intricate calculations, such as structural 
analysis, optimization, and the emerging discipline of 
Structural Health Monitoring (SHM), significantly more 
accessible and streamlined in nature [1-3]. SHM has 
emerged as a pivotal discipline within civil engineering 
and infrastructure management. Its primary purpose lies 
in evaluating the state of structures, providing essential 
insights into their current condition, and enabling early 
detection of structural damage. In an era where 
minimizing operational downtime, optimizing resource 
allocation, and enhancing safety are paramount concerns, 
SHM assumes a crucial role in ensuring the efficient 
operation and maintenance of critical infrastructure. At 
its core, SHM empowers the proactive identification of 
structural anomalies and defects, forming the basis for 
predictive maintenance strategies. Predictive 
maintenance, a cornerstone of modern industrial 
operations, seeks to pre-empt unplanned downtime, 
curtail operational expenses, and safeguard the long-term 
integrity of structures. By identifying potential failures 
before they escalate into critical issues, precise 
maintenance schedules can be established, resources can 
be allocated efficiently, and costly emergency repairs 
can be averted. Recent advances in high-performance 
computing and low-cost sensor technologies have 

ushered in a new era, making continuous and effective 
SHM more attainable. Notably, vibration-based damage 
identification has seen significant advancements, 
underpinned by extensive research efforts. Diverse 
techniques, algorithms, and methodologies have 
emerged to address the multifaceted challenges 
encountered across structures of varying complexities. 
Detailed reviews encompassing different facets of SHM 
can be found in publications such as those authored by 
[4-9] 

However, despite the substantial progress in the 
field of SHM, two major obstacles have impeded its 
widespread application in civil infrastructure systems. 
Firstly, a deficiency is present in effective and 
dependable methodologies for processing extensive 
volumes of diverse response data signals. Secondly, 
cost-effective sensors have been in short supply. In light 
of recent technological breakthroughs, a growing array 
of sensors and its networks now may be employed, 
generating copious amounts of data responses. Whilst 
this data might not consistently provide adequate or 
pertinent information for traditional SHM approaches, 
machine learning (ML) techniques that are data-driven 
have arisen as a favourable solution for evaluating the 
overall condition of host structures. Noteworthy 
contributions to this field include the work of [10-12].  

Data-driven damage detection methods have gained 
traction in addressing the problem as pattern recognition 



tasks, wherein neural networks (NN) play a pivotal role. 
Traditional neural networks, however, face challenges 
related to the need for extensive training datasets and 
high computation costs. To address these constraints, 
recent endeavours have replaced conventional feature 
extraction and classification tasks in damage detection 
challenges with deep learning tools, utilizing both 
processed and raw signals with no need for manually 
crafted features. Exemplifying this shift, [13,14] have 
employed deep learning techniques to augment damage 
detection, overcoming training dataset constraints. 
Leading the field of deep learning during the age of big 
data are Convolutional Neural Networks (CNNs), 
possessing the capacity to acquire knowledge from 
extensive data derived from numerous observables 
(sensors). While CNNs have found success in diverse 
domains for example electrocardiogram signal 
classification [15] and image analysis [16], their 
adoption in SHM remains relatively nascent [17,18]. 
Encouragingly, the literature presents accomplished 
implementation of CNNs in SHM, including their 
effectiveness in detecting damage in steel frames [19], 
concrete crack monitoring and pavement [20,21], and 
evaluating the overall condition of the system [22]. The 
growing focus to deep learning methods, particularly 
CNN-based models with hierarchical feature learning 
capabilities, underscores their significant potential in 
addressing SHM challenges. 

Although the bulk of SHM response data is 
gathered in the domain of time, few works have 
proposed using modified data for distinguishing 
damaged from undamaged structures by converting data 
from the time domain to either the frequency or time-
frequency domains [23,24]. In order to reduce 
discrepancies in the vibration properties of finite element 
models and actual structures in damage localisation 
using vibration in structures, [25] presented a nature-
inspired approach. Similar to this, [26] created a 
workable model for high-rise structures based on strain 
sensing. Through the examination of vibration response 
data, [27] created an approach based on the Stretching 
Methodology for the prolonged tracking of massive 
structures. A nonlinear model-data fusion approach for 
estimating the state in non-linear structural assemblies 
displaying hysteresis was recently proposed by [28]. 
This algorithm was applied to the monitor seismicity of 
both experimental and real-world buildings equipped 
with instrumentation. [28-30] presented a blind 
identification technique employing Sparse Component 
Analysis within a time-frequency framework. Utilizing 
recorded data on acceleration from Yonghe Bridge 
sensors, this method was experimentally evaluated. 

Furthermore, [23,24] utilized machine learning-driven 
methods for detecting structural damage through 
vibration analysis in extensive bridge structures, making 
use of time-frequency approaches. Modal parameter 
identification found enhanced utility in the work of [31-
33], who harnessed wavelet and Hilbert transforms. With 
regard to SHM applied to large-scale structures [34], 
improved the Bayesian substructure identification 
approach for solving inverse challenges. [35] presented a 
multitask sparse Bayesian learning method, which serves 
the dual purpose of data reconstruction and estimation of 
structural stiffness. Collectively, these strategies include 
feature extraction methods that are used to determine if, 
where, and what kind of damage is present in structural 
systems. See [36,7] for in-depth analyses of a variety of 
techniques, including those founded on statistical and 
probabilistic concepts. 

Recent advancements have led to the development 
of self-powered sensors capable of acquiring 
acceleration or strain response data in a condensed 
manner [37-39]. These sensors employ memory cells to 
accumulate and retain the time duration of the measured 
responses, defined based on preselected thresholds and 
discretized. The recorded response data is presented as a 
histogram of events in a compressed format, as opposed 
to a traditional time-history of responses. To harness the 
potential of this concise, discrete, and finite response 
data towards detection of damage, it is imperative to 
develop new and inventive methodologies. With the 
rapid technological advancements, there is an abundance 
of data, including vibration data from SHM, that can be 
harnessed for analysis. Modern algorithms like deep 
learning have shown remarkable efficiency in handling 
massive datasets without the need for extensive feature 
extraction [40,41]. CNNs, a type of artificial neural 
network, have found applications in diverse domains, 
including image classification, speech recognition, and 
damage detection [42-45]. In damage detection, CNNs 
have found its use in processing time series data encoded 
as images, enabling the localization and classification of 
damage levels [42]. 

This research represents a stride towards addressing 
these challenges by introducing an innovative approach 
to structural damage detection. The method harnesses the 
capabilities of a new CNN algorithm. CNNs, initially 
designed for image processing, have showcased 
remarkable effectiveness in capturing intricate spatial 
features. In our adaptation, we employ a state-of-the-art 
CNN algorithm tailored specifically for SHM. By 
leveraging its deep learning capabilities, we extract 
detailed spatial features from sensor data. It also excels 



at capturing long-term temporal dependencies within 
time series data. This integration not only enhances the  
understanding of structural behaviour from the model  
but also bolsters its ability to make informed assessments 
based on the evolving patterns within the data. 

The fusion of spatial and temporal features within 
the proposed methodology represents a significant 
departure from conventional methods that are primarily 
reliant on spatial features. This innovation promises a 
substantial enhancement in accuracy when it comes to 
structural damage detection, as it takes into account the 
evolving nature of structural conditions over time. To 
evaluate its effectiveness, a series of tests is conducted 
using a benchmark dataset derived from a three-storey 
structure at the esteemed Los Alamos National 
Laboratory (LANL). The findings underscore the 
potential of the new CNN algorithm to significantly 
enhance structural health assessment by achieving a high 
degree of precision in identifying structural damage 
within the structure under examination. 

The subsequent sections, delve into the intricate 
intricacies of the methodology, present the results of 
experimentation, and engage in a detailed discussion, 
providing a profound exploration of approach and its far-
reaching ramifications for the field of Structural Health 
Monitoring. 

2.    Methodology 

LeCun et al. [42] introduced CNN theory as a deep 
learning model. Convolution and pooling [44], two 
essential layers that may be coupled to fully-connected 
layers, make up the majority of CNN architecture. These 
layers generate feature maps as 2D matrices from the 
input data. One of CNN's major advantages is its 
capacity to learn relevant features from provided data 
while also benefiting from parameter sharing, resulting 
in significantly lower computational costs compared to 
other neural network classes. Despite the fact that CNN 
typically handles 2D matrix inputs, a modified 
framework known as 1D CNN was suggested for image 
processing. All the benefits of conventional CNN are 
still there when accommodating input data from a 1D 
matrix. 

Due to its lower computational cost, 1D CNN has 
recently been shown to provide benefits when used with 
data from time series for SHM. In order to achieve 
computational efficiency, 1D CNN only uses array 
functions in forward as well as backward propagation. 
Additionally, shallow architecture It is simple and 

efficient to train 1D CNNs to acquire the skills required 
for time series applications. This study adapts [46] to use 
a 1D CNN architecture for damage identification. It 
comprises two primary layers: convolution and pooling, 
aimed at extracting relevant features from the input data. 
Fully connected layers are then used to classify the 
extracted features. 

Forward propagation is determined by Eq. 1 for 
each layer: 

 𝑙𝑙𝑘𝑘𝑙𝑙 = 𝑓𝑓(∑ �𝑥𝑥𝑖𝑖𝑙𝑙−1.𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙 � + 𝑏𝑏𝑘𝑘𝑙𝑙 )𝑁𝑁𝑙𝑙−1
𝑖𝑖=1                              Eq. (1) 

Where, l represents the layer, 𝑥𝑥𝑖𝑖𝑙𝑙−1 is the input from 
the previous layer, f(.) is the activation function, 𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙  is 
the kernel from the ith neuron in layer l-1 to the kth 
neuron in layer l, and 𝑏𝑏𝑘𝑘𝑙𝑙  is the bias of the kth neuron in 
layer. The intermediate output 𝑙𝑙𝑘𝑘𝑙𝑙  is calculated based on 
the activation function f(.). 

By computing the slopes for the loss function E(y) 
in connection to the CNN weights, back-propagation is 
used to train the network. The formula in Eq. (2) is used 
to find the derivative of the error with regard to each 
weight: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙 = ∆𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙                                                            Eq. (2)  

The weight is then updated using the computed 
gradients of the layers, as depicted in Eq. (3): 

𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙 = 𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙 + 𝜂𝜂∆𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙                                             Eq. (3) 

Where, 𝑤𝑤𝑖𝑖𝑘𝑘𝑙𝑙  represents the weight for the following 
iteration and η represents the rate of learning. [45] 
provides further information about the weight update 
calculation. 

Following is the description of a typical CNN: 

1. Input Layer: The initial data, which is often an 
image, is represented by the input layer. For a colour 
image, this layer would have three channels (Red, Green, 
Blue - RGB), and the image's dimensions are specified. 
For example, a common input size for image 
classification might be 3x32x32 (3 channels, 32 pixels in 
width, and 32 pixels in height). 
2. Convolutional Layers: In a CNN, convolutional 
layers are at its core. They consist of multiple filters 
(kernels) that convolve or slide over the input image to 
detect patterns and features. Each filter identifies 
different features by performing convolution operations. 
For example, in the first convolutional layer, you might 



have 32 filters, each with a size of 3x3 pixels. A feature 
map that depicts the presence of particular characteristics 
in the input is produced as a consequence of the 
convolution procedure. 
3. Activation Function: An activation function, 
frequently a ReLU (Rectified Linear Unit), is executed 
element-wise after each convolution process to provide 
nonlinearity. This aids the network's modelling of 
intricate relationships. 
4. Pooling Layers: The most crucial data is kept while 
the spatial dimensions for the feature maps are reduced 
using pooling layers, frequently known as MaxPooling 
or AveragePooling. Use of 2x2 pooling, for instance, is a 
typical arrangement where the largest (or mean) value 
across a 2x2 window for the feature map is chosen. 
5. Fully Connected Layers: To create final 
predictions, fully connected layers are used after a 

number of convolutional and pooling layers. These 
layers are tightly coupled, which means that each neuron 
is linked to every other neuron in the layer above. These 
layers' neuronal densities might vary and are normally 
decided upon during design. For instance, the first 
completely linked layer can include 128 neurons. 
6. Output Layer: The final prediction is generated by 
the output layer and is dependent on the particular job. 
The total amount of neurons in the output layer for 
image classification tasks equates to the amount of 
classes you are attempting to predict. For example, if 
you are classifying images into 10 categories, the output 
layer will have 10 neurons. Common activation 
functions in the output layer include Softmax for 
classification problems, which convert raw scores into 
class probabilities. Fig. 1 provides an illustration of a 
schematic depiction of CNN. 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic depiction of CNN. 

3.    Experimental Description 

In order to validate the method put forth in this 
study, a set of experimental data from the Los Alamos 
National Laboratory (LANL) is employed. These data 
pertain to a three-floor structural system.  

Aluminium plates and columns are put together in 
the structural arrangement shown in Fig. 2 utilizing 
bolted connections, allowing the structure to move only 
in the x-direction along rails. Each floor of the system 
comprises four aluminium columns, measuring 
17.7x2.5x0.6cm, connected to upper and lower 

aluminium plates measuring 30.5x30.5x2.5cm. This 
arrangement essentially constitutes a four-degree-of-
freedom system. Furthermore, a central column of 
dimensions 15.0x2.5x2.5cm is suspended from the top 
floor. By interacting with a bumper positioned on the 
floor below, this centre column may produce nonlinear 
behaviour, enabling the simulation of damage. At 
particular excitation levels, the bumper's location may 
be changed to alter the severity of the impact. This 
source of damage emulates phenomena such as fatigue 
cracks undergoing cyclic opening and closing, or loose 
connections rattling when subjected to dynamic loads. 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Structural configuration of three-story building structure at LANL 

3.1   Data Acquisition System 

An electrodynamic shaker is used to apply a lateral 
stimulation through the base floor across the structure's 
centreline. Together, the framework and shaker are set 
onto an aluminium baseplate that is 76.2x30.5x2.5 cm 
in size, supported by rigid foam to minimize the 
introduction of unmeasured excitation from external 
sources. To measure the input force communicated 
from the shaker to the structure, a load cell (Channel 1) 
with a nominal sensitivity of 2.2 mV/N is attached to 
the end of a stinger. To measure the system's reaction, 
four accelerometers (Channels 2-5) with nominal 
sensitivity of 1000 mV/g are installed across the 
centreline of every floor, opposite from the excitation 
source. These accelerometers are resistant to the 
torsional modes of the structure since they are situated 
at the centerline of each level. To reduce torsional 
excitation, the shaker and linear bearings are positioned. 

A PXI data collection system from National 
Instruments is used to assist data collecting and 
processing. A PXI-4461 DAQ module is used to create 

analog output waveforms, and a PXI-4472B DAQ 
module is used to record the response data of all five 
sensors. Employing a PCB 482A16 signal conditioner, 
the five sensor channels' ICP conditioning is 
accomplished. The Techron 5530 Power Supply 
Amplifier is linked to the analog output channel, which 
drives the shaker. The digitalized analog sensor signals 
are captured in blocks of 65536 points and digitize at a 
rate of 2560 Hz. The data is then downscaled to 8192 
data points at intervals of 3.125 ms, which results in a 
sampling frequency of 320 Hz. These variables produce 
time series with a length of 25.6 seconds. The structure 
is stimulated using a band-limited random stimulation 
in the 20–150 Hz frequency range, which was selected 
to avoid activating the stiff body modes existent under 
20 Hz. Within the National Instruments system, the 
excitation level is set at 2.6 V RMS. As shown in Table 
1, the structural state conditions have been separated 
into four major groupings. It is crucial to remember that 
50 experiments were run for each state condition, 
producing 50 time histories for each channel for every 
state condition. 

 



Table 1: Structural state conditions. 
State#1 Undamaged Reference state with baseline condition 
State#2 Undamaged Added 1.2 kg mass at the base 
State#3 Undamaged Added 1.2 kg mass on the 1st floor 
State#4 Undamaged Reduction of stiffness by 87.5%  in column 1BD 
State#5 Undamaged Reduction of stiffness by 87.5% in column 1AD and 1BD 
State#6 Undamaged Reduction of stiffness by 87.5% in column 2BD 
State#7 Undamaged Reduction of stiffness by 87.5% in column 2AD and 2BD 
State#8 Undamaged Reduction of stiffness by 87.5% in column 3BD 
State#9 Undamaged Reduction of stiffness by 87.5% in column 3AD and 3BD 

State#10 Damaged 0.20mm Gap introduced  
State#11 Damaged 0.15mm Gap introduced  
State#12 Damaged 0.13mm Gap introduced  
State#13 Damaged 0.10mm Gap introduced  
State#14 Damaged 0.05mm Gap introduced  
State#15 Damaged 0.20mm Gap introduced and added 1.2 kg mass at base 
State#16 Damaged 0.20mm Gap introduced and added 1.2 kg mass on 1st floor 
State#17 Damaged 0.10mm Gap introduced and added 1.2 kg mass on 1st floor 

 

The baseline situation is represented by the first 
group, State#1 in Table 1. Bumper along with hanging 
column are present in this scenario, however their 
distance from one another has been maintained to 
prevent any collisions during excitation. States with 
modelled operational and environmental 
unpredictability are included in the second group. 
Modifications to the mass distribution or stiffness of the 
structure are common causes of this fluctuation. Tests 
with different stiffness and mass-loading settings were 
carried out (State#2-9) to replicate these variations in 
operating and environmental situations. When the mass 
is located at the base, the first level and base required 
the addition of 1.2 kg (about 19% of the overall mass 
for each floor). By 87.5% lowering the stiffness of one 
or more columns, stiffness variations were added. To 
achieve this, a column with a cross-sectional width in 
the axis of shaking half that of the original column was 
used in its place. 

The third category consists of damaged state 
circumstances, which are mimicked by adding 
nonlinearity to the system by varying the distance 
between the hanging column and the bumper. Varying 
the gap widths between them allowed for the 
introduction of various amounts of nonlinearity. The 
last set consists of state conditions that include 
simulated damage in along with the mass and stiffness 
modifications that were made to include operational and 
environmental variance (State#15-17). For the state 
settings with operational and environmental 
fluctuations, the mass and stiffness modifications are 
intended to ensure changes in the initial natural 
frequencies between a range of +/- 5 Hz. 

4.    Results and discussion 

4.1   Proposed CNN model architecture  

The dataset utilized in this study forms the 
bedrock upon which the investigation into structural 
damage detection using CNN rests. Each data sample 
within this dataset encapsulates the sensor readings, 
offering insight into various features that we denote as 
X = {X1, X2, X3, X4, X5, Time}. The crux of this 
dataset is the binary target variable y, which plays a 
pivotal role in distinguishing between two fundamental 
states of structures: damaged and undamaged. Each 
instance in this dataset equips with valuable real-world 
information about the health and status of the structure 
under scrutiny. Data preprocessing serves as the 
foundational layer for the structural damage detection 
framework presented in this study. This crucial phase 
comprises several intricate steps aimed at refining the 
raw sensor data, ensuring that it adheres to the 
prerequisites of subsequent model training. Two pivotal 
aspects of data preprocessing is dealt with: handling 
missing values and normalization. 

Handling missing values is a prevalent challenge 
in the domain of data analysis. To address this issue, a 
straightforward yet effective imputation strategy is 
employed, involving the use of a simple imputer 
method designed to rectify missing values by replacing 
them with the mean value of each respective feature. 
The outcome is a dataset free from gaps or omissions in 
sensor readings, facilitating subsequent analytical steps. 
Mathematically, this can be expressed by Eq. (4): 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)                                      Eq. (4) 



Where, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑  represents the dataset with 
missing values imputed. 

Normalization plays a pivotal role in 
preprocessing, ensuring that feature values in the 
dataset adhere to a uniform and standardized numerical 
range. Its primary objective is to prevent specific 
features from dominating others during the model 
training phase. In this study, the well-established 
Min/Max scaling technique is adopted to normalize the 
sensor data. This involves rescaling feature values to 
fall within a common interval, typically [0, 1]. In 
practical terms, the original sensor readings are 
transformed by subtracting the minimum feature value 
and then dividing by the range, which is defined as the 
maximum feature value minus the minimum feature 
value as expressed by Eq. (5). This process ensures that 
each feature maintains a consistent numerical scale, 
making them suitable for the subsequent deep learning 
model's learning process. 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑 =  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−min (𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

max�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�−min (𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
          Eq. 

(5) 

Where, 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑  represents the normalized 
dataset. The preprocessed dataset, imbued with imputed 
values and normalized feature scales, forms the solid 
foundation upon which the CNN model for structural 
damage detection is erected. The significance of these 
preprocessing steps lies in their ability to set the stage 
for effective feature extraction, as well as ensuring the 
overall quality and consistency of the data used for 
training the model. 

At the core of this research lies the application of 
CNNs as a potent tool for structural damage detection. 
CNNs, widely recognized for their effectiveness in 
addressing image-related tasks, are skilfully adapted in 
this study to analyse time-series sensor data. This 
section explores the specifics of the CNN model 
architecture utilized in this research, outlining the 
primary layers, their configurations, and the reasoning 
behind each design decision: 

Input Layer: The CNN model commences with an 
input layer, functioning as the gateway for information 
entry into the neural network. In our particular 
architecture, the input layer has a dimension of (6, 1) to 
accommodate the six normalized sensor features. These 
features are supplied to the network as a one-
dimensional (1D) array, facilitating smooth integration 
with the subsequent convolutional and fully connected 
layers. 

Convolutional Layer: The convolutional layer is a 
crucial element responsible for extracting intricate 
patterns and feature representations from the input data. 
For the present work, a one-dimensional convolutional 
layer is utilized, featuring 32 filters with a kernel size of 
3 as expressed in Eq. (6). The output of this layer is 
subjected to the ReLU (Rectified Linear Unit) 
activation function. This configuration selection enables 
the model to capture unique temporal patterns within 
the sensor data, enhancing the effectiveness of 
structural damage detection. 

 𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(32, 3,𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅)                       Eq. (6) 

Max Pooling Layer: Following the convolutional 
layer, a max-pooling layer is integrated into the 
architecture. This layer plays a crucial role in down-
sampling the feature maps generated by the 
convolutional layer. With a pool size of 2, the max-
pooling layer condenses the feature representations, 
effectively reducing the dimensionality of the data as 
expressed in Eq. (7). This reduction not only expedites 
the subsequent computation but also ensures that the 
model remains robust in the face of varying time-series 
lengths: 

𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷𝑙𝑙𝐷𝐷𝐼𝐼𝐷𝐷 = 𝑀𝑀𝐷𝐷𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑙𝑙𝐷𝐷𝐶𝐶𝑀𝑀 1𝐷𝐷(2)            Eq. (7) 

Flatten Layer: The output from the max-pooling 
layer is then passed through a flatten layer. The purpose 
of this layer is to transform the two-dimensional data 
obtained from the previous layers into a one-
dimensional vector format as expressed by Eq. (8). This 
1D vector serves as the intermediary link between the 
convolutional layers and the densely connected layers, 
facilitating the seamless flow of information through the 
network: 

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐹𝐹𝑙𝑙𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶()                                            Eq. (8) 

Dense layers: The architecture culminates with 
two fully connected (Dense) layers. These layers are 
essential in extracting high-level features from the data 
and performing the final classification of the structural 
health. The first dense layer comprises 16 neurons, each 
equipped with the ReLU activation function as 
expressed by Eq. (9). This configuration promotes the 
network's ability to capture complex relationships 
within the data: 

𝐹𝐹𝐷𝐷𝐼𝐼𝐷𝐷𝐼𝐼 𝐷𝐷𝐼𝐼𝐶𝐶𝐷𝐷𝐼𝐼 𝑙𝑙𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼 = 𝐷𝐷𝐼𝐼𝐶𝐶𝐷𝐷𝐼𝐼(16,𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅)            Eq. (9) 

The final dense layer is a single neuron that 
employs the sigmoid activation function. This layer is 



pivotal for producing the ultimate binary output, 
signifying whether the structural system under 
observation is in a damaged state or remains 
undamaged as expressed by Eq. (10): 

𝐹𝐹𝐷𝐷𝐶𝐶𝐷𝐷𝑙𝑙 𝐷𝐷𝐼𝐼𝐶𝐶𝐷𝐷𝐼𝐼 𝑅𝑅𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼 = 𝐷𝐷𝐼𝐼𝐶𝐶𝐷𝐷𝐼𝐼(1, 𝑆𝑆𝐷𝐷𝑀𝑀𝐼𝐼𝐶𝐶𝐷𝐷𝑆𝑆)     Eq. (10) 

Training Process: The training process is a pivotal 
aspect of the methodology, enabling the model to 
acquire knowledge from the dataset and perform 
structural damage detection. This section delves into the 
specifics of training the Convolutional Neural Network 
(CNN) model, outlining the loss function, optimizer, 
and other crucial training parameters. The core of the 
training process centers on the loss function, a crucial 
element that measures the difference between the 
model's predictions and the actual ground truth labels. 
For binary classification task, the binary cross-entropy 
loss function, commonly referred to as log loss, is 
utilized. This loss function is especially suitable for 
binary classification challenges and serves as a key 
factor in steering the model's learning process. Its 
mathematical representation is given by Eq. (11): 

𝑅𝑅𝐶𝐶𝐷𝐷𝐷𝐷 𝐹𝐹𝐼𝐼𝐶𝐶𝐹𝐹𝐼𝐼𝐷𝐷𝐶𝐶𝐶𝐶:𝐵𝐵𝐷𝐷𝐶𝐶𝐷𝐷𝐼𝐼𝐷𝐷 𝐶𝐶𝐼𝐼𝐶𝐶𝐷𝐷𝐷𝐷 − 𝐸𝐸𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐷𝐷 =
 −(𝐷𝐷. log(𝐷𝐷�) + (1 − 𝐷𝐷). log(1 − 𝐷𝐷�))                  Eq. (11) 

Where y represents the true label, and 𝐷𝐷� denotes 
the predicted probability of the machinery or structural 
system being in a damaged state. The binary cross-
entropy loss function provides a measure of how closely 
the model's predictions align with the actual outcomes, 
thereby steering the iterative training process. 

To optimize the model during training, the Adam 
optimizer is employed. Adam is an adaptive learning 
rate optimization algorithm that efficiently updates the 
model's weights during back propagation. Its dynamic 
learning rate adjustments facilitate rapid and effective 
convergence to a configuration that minimizes the loss 
function. The selection of Adam as the optimizer is 
based on its established efficacy in training deep neural 
networks across various applications. Training 
parameters, including the number of epochs and batch 
size, hold a significant influence on the training process. 
The model undergoes training over a predetermined 
number of epochs, indicating the total passes through 
the dataset. In this study, ten epochs are performed, 
affording numerous chances for the model to refine its 
weight parameters and improve its predictive accuracy. 
Additionally, within each epoch, the dataset is 
partitioned into smaller batches, and the model's 
weights are updated incrementally after handling each 
batch. A batch size of 16 is employed in this study, 

striking a balance between computational efficiency and 
the effectiveness of weight updates as expressed by Eq. 
(12). 

𝑀𝑀𝐶𝐶𝑆𝑆𝐼𝐼𝑙𝑙. 𝑓𝑓𝐷𝐷𝐼𝐼(𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ,𝐷𝐷𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛, 𝐼𝐼𝐼𝐼𝐶𝐶𝐹𝐹ℎ𝐷𝐷 = 10, 𝑏𝑏𝐷𝐷𝐼𝐼𝐹𝐹ℎ𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖 = 16)                                                                                                                                                                         
                                                                           Eq. (12) 

The performance of the CNN model, designed for 
structural damage detection, is rigorously evaluated 
using a well-established evaluation metric: accuracy. 
Accuracy serves as a quintessential measure of the 
model's effectiveness in correctly classifying instances 
within the dataset. It is defined as the ratio of the 
number of correct predictions to the total number of 
predictions, expressed as Eq. (13):  

𝐴𝐴𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐷𝐷𝐹𝐹𝐷𝐷 = 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑛𝑛 𝑛𝑛𝑜𝑜 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝐶𝐶𝑖𝑖 𝑃𝑃𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠
𝑇𝑇𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑛𝑛 𝑛𝑛𝑜𝑜 𝑃𝑃𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠

           Eq. (13) 

The accuracy metric offers a comprehensive 
assessment of the model's ability to discern between 
damaged and undamaged states in structural systems. A 
higher accuracy score underscores the model's 
proficiency in making accurate predictions, validating 
its utility for real-world applications in structural health 
monitoring.  

Once the CNN model has been meticulously 
trained and attains a satisfactory level of accuracy, it is 
poised for real-world applications, such as the detection 
of structural damage in newly acquired sensor data. 
This section delineates the step-by-step procedure for 
making predictions on new data, providing a glimpse 
into the practical deployment of the trained model. 

To make predictions on new data, the following 
steps are followed: 

The predictive capabilities of the model come into 
play when provided with new sensor data. In the 
context of our study, this new sensor data comprises 
readings from various sensors, including Sensor 1, 
Sensor 2, Sensor 3, Sensor 4, Sensor 5, and Time. This 
set of sensor readings represents the real-time data 
collected from the structural system under observation, 
offering insights into its current state. After handling 
missing values and normalizing the new data, it is 
crucial to reshape the data to match the input shape 
expected by the CNN. In the present model architecture, 
the CNN's input layer is configured to accept a one-
dimensional (1D) array of sensor features. The 
reshaping process involves transforming the normalized 
data into the desired format, ensuring that the data's 
dimensions align with the model's expectations (1,6,1). 
The culmination of the predictive process involves 



utilizing the fully trained model to predict the 
probability of the structural system being in a damaged 
state as expressed by Eq. (14). With the reshaped and 
normalized new sensor data as input, the model 
processes this information through its layers and 
computes the probability score that corresponds to 
structural damage. This probability score is obtained 
from the final layer, which employs the sigmoid 
activation function to yield a binary output. 

𝑀𝑀𝐼𝐼𝐼𝐼𝑆𝑆𝐷𝐷𝐹𝐹𝐼𝐼𝐷𝐷𝐶𝐶𝐶𝐶 = 𝑀𝑀𝐶𝐶𝑆𝑆𝐼𝐼𝑙𝑙. 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐷𝐷𝐹𝐹𝐼𝐼(𝑋𝑋𝑛𝑛𝑖𝑖𝑤𝑤_𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑) Eq. (14) 

In practical terms, the model's prediction output 
signifies the likelihood of the structural system being in 
a damaged state. The continuous nature of this 
probability score can be interpreted and thresholded to 
determine a binary classification, thereby offering a 
real-time assessment of the structural health. These 
detailed steps provide a comprehensive understanding 
to the methodology used in this study for the structural 
damage detection using CNN.  

4.2   Output obtained 

The graphical output as obtained in Fig. 3 portrays 
a critical aspect of the model's training process. Here, 
the x-axis serves as a timeline, tracking the number of 
training epochs undergone, while the y-axis 
accommodates two distinct curves: one for training 

accuracy and the other for validation accuracy. These 
accuracy metrics gauge the model's performance during 
different phases of its training. The evaluation criterion 
employed for both metrics is accuracy, a measure of the 
model's capability to correctly classify instances within 
the data. The training accuracy curve traces the 
evolution of the model's performance with respect to the 
training data. In the early epochs, it is customary to 
observe a progressive increase in training accuracy as 
the model acquaints itself with the training dataset. 
However, it is imperative to recognize that high training 
accuracy, in isolation, does not guarantee the model's 
ability to generalize effectively to new, unseen data. 
Complementing the training accuracy curve, the 
validation accuracy curve scrutinizes the model's 
proficiency when faced with previously unencountered 
data. An upturn in validation accuracy during the initial 
stages of training signifies the model's acquisition of 
valuable patterns. Nevertheless, it is paramount to 
remain vigilant for any divergence that might manifest 
between the training and validation accuracy curves, as 
such disparities can signal a phenomenon known as 
overfitting, wherein the model becomes excessively 
attuned to the training data, potentially compromising 
its performance on new data. Together, the combined 
accuracy versus epoch graph offers a holistic insight 
into the model's training dynamics, serving as a 
valuable tool for assessing its adaptability and 
predictive capabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Accuracy-Epoch curve. 



  
                                                 (a)                                                                                       (b) 

Fig. 4: State curve 

Fig. 5: Feature maps 



The mean predictions graph depicted in Fig. 4 
offers an insightful perspective on the predictive 
performance of the CNN model across all 17 states. In 
the context of each state, the CNN model generates a 
prediction score denoting the probability of structural 
damage. These individual predictions are then subjected 
to averaging to yield the mean prediction for each 
respective state. The x-axis of the graph corresponds to 
the 17 states, while the y-axis represents the mean 
prediction scores. This visual representation serves to 
elucidate the model's proficiency in discriminating 
between states characterized by structural damage and 
those in an undamaged condition. Notably, higher mean 
prediction scores correspond to a heightened likelihood 
of damage. The mean predictions graph serves as 
compelling evidence of the CNN model's capacity to 
effectively distinguish between states featuring 
structural damage and those devoid of such issues as 
shown in Fig 4(b). It is particularly evident in the case 
of States 1 to 3, deliberately subjected to damage, as 
they manifest significantly elevated mean prediction 
scores in contrast to their undamaged counterparts. This 
graphical representation underscores the model's 
prowess in classifying machine states based on the 
information gleaned from sensor data. 

Fig. 5 shows the feature maps. Each subplot in the 
figure corresponds to a different feature map, identified 
as "Feature Map 1," "Feature Map 2," and so on. The X-
axis of each subplot represents the position along the 
input sequence (spatial dimension), while the Y-axis 
represents the strength or activation of the feature 
detected at each position. Higher values on the Y-axis 
indicate a stronger presence of the feature, while lower 
values indicate a weaker presence. By examining these 
feature map activations, one can gain insights into what 
local patterns or features the Conv1D layer has learned 
from the input data. Features with higher activations are 
more important for the layer's decision-making process. 
These visualizations are useful for debugging and 
understanding the inner workings of the Conv1D model 
and can help identify the types of patterns 
it's sensitive to. 

5.    Conclusion 

Present research demonstrates the effectiveness of 
CNNs in the domain of structural damage detection 
using time-series sensor data. The proposed CNN 
model architecture, comprised of key layers such as 
Convolutional, Max Pooling, Flatten, and Dense layers, 
exhibits the capability to capture intricate temporal 
patterns in sensor data. Through training with binary 

cross-entropy loss and optimization with the Adam 
optimizer, the model generalizes well to unseen data, as 
evident in training and validation accuracy curves. The 
mean predictions graph highlights the model's 
proficiency in distinguishing between states with and 
without structural damage, offering valuable insights for 
real-world structural health monitoring applications. 
This research contributes technically to the field and 
opens avenues for future work in more complex 
architectures and real-time monitoring systems for 
structural health assessment. This study showcases the 
potential of CNNs in effectively addressing structural 
damage detection, a critical concern in the realm of 
structural engineering. The methodology, findings, and 
technical contributions presented here set the stage for 
further advancements in structural health monitoring, 
with the aim of enhancing the safety and reliability of 
various structural systems. 
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