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ABSTRACT

A novel algorithm for real-time modal identification in linear vibrating systems with complex modes
is introduced, utilizing a combination of first order eigen-perturbation and second order separation
techniques. In practical settings, structures with complex modes are frequently encountered and their
presence often poses a challenge in accurately estimating the source signal in real-time. The proposed
methodology addresses this issue by incorporating the right angle phase shift of the response in the
sensor output and updating the second order statistics of the complex response through first order
eigen-perturbation. Empirical evidence of the efficacy of the technique is demonstrated through
numerical case studies and validation using various numerically modeled systems, as well as a
standard ASCE-SHM benchmark problem with complex modes, highlighting the capability of
the proposed method to achieve precise real-time modal property identification and online source
separation with a minimal number of initially required batch data.

Keywords Complex modes ·modal identification · blind source separation · eigen perturbation · second order separation

1 Introduction

Vibration-based condition monitoring is a diagnostic methodology utilized to detect anomalies in machinery [1, 2],
aerodynamics models [3], structures, such as buildings and bridges [4, 5], to name a few. The vibrational response of
these systems under external excitation can vary depending on their structural and energy dissipation properties [6].
Classical viscous damping models – such as Rayleigh damping – are often employed to represent the damping forces
of the system for dissipative forces. Although these assumptions are accurate for simpler models, real systems often
contain many different materials and are combined together in different ways to form complex spatial geometries,
these assumptions are sometimes impractical and constricting. Non-classical damped linear systems can exhibit unique
complex mode shapes [7] due to non-proportional damping matrices [8]. Identification of these intricate modes is
crucial for accurate characterization of the system and can be achieved through modal identification techniques, a
well-researched area within vibration-based condition monitoring [9–12]. However, traditional algorithms are not suited
for dynamic objects, like windmills and bridges, due to their offline nature. Recent studies have introduced first order
eigen perturbation (FOEP) techniques as a means to continuously update the eigenspace data and provide real-time
vibration modes [13]. Although these methods perform well for real valued modes [14], they are not applicable to
complex valued modes. In light of this, the present study proposes a novel method for real-time blind source modal
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identification that combines eigen perturbation and second order source separation in a recursive framework. This
method enables accurate estimation of complex modes and modal response at each moment in time.

The past decade has seen widespread application of eigen perturbation theory [13] in the field of vibrating systems,
particularly for the detection of damage instances [15], modal identification [13], enhancement of system response,
tuning of tune mass dampers (single and multi mode), and filtering of non-stationary signals [16]. These FOEP
techniques are data-driven and exhibit reduced dependence on baseline parameters, making them a valuable tool for
real-time condition monitoring. Despite their efficacy for the identification of real valued mode shapes, FOEP techniques
exhibit limitations in the estimation of complex valued modes. In the context of infrastructure asset management, these
methods can aid in the effective monitoring and maintenance of critical assets. Modal analysis applications continue to
rely on real valued mode shapes for tuning, updating, and damage identification. However, real-time algorithms that
update the eigenspace at each time instant can lead to an accumulation of errors due to the lack of consideration of the
complex phasing of the system during updates. This ignorance of the complex nature of vibrational modes can result in
inaccurate results for in-situ problems that require high precision. It is important to note that complex modes can exist
in structures without damping – such as those with closely spaced modes [17], subjected to aerodynamic loads [18], or
characterized by asymmetry [19]. Ignoring these complex modes in modal analysis can negatively impact the accuracy
of results.

The traditional real-time FOEP algorithms update the eigenspace of the system through numerical simulation or
sensor-acquired data. The eigenvector is then checked for permutation ambiguity to determine the modes of the
system. However, many systems possess inherently complex modes that are overlooked by these algorithms. To
overcome this limitation, the proposed algorithm involves taking two simultaneous samples and performing a Hilbert
transform to obtain a 90◦ phase shift, resulting in a complex response. The FOEP algorithm is then used to update
the complex eigenspace with the updated eigenspace serving as the basis for estimating the whitening matrix and
updating the delayed covariance matrix. This novel approach offers improved accuracy in characterizing complex
modes, which has significant commercial and sectorial benefits in the field of civil engineering, including improved
infrastructure asset management, enhanced vibration-based damage identification, and advanced tuning and filtering
techniques. The proposed real-time algorithm employs the principles of eigen perturbation and second order source
separation to accurately estimate the complex-valued modes of ever-changing systems. This is accomplished through
the simultaneous acquisition of two samples, the calculation of the Hilbert transform, and the updating of the eigenspace
and delayed covariance matrix using FOEP techniques. The resulting complex de-mixing matrix separates the source
signals, enabling the estimation of complex modes in real-time. The development of this algorithm provides significant
benefits for the commercial and industrial sector, particularly in the field of civil engineering, by enabling the accurate
and efficient assessment of infrastructure assets.

The proposed framework in this study constitutes a major advancement in the field of real-time condition monitoring
for civil and structural engineering applications. Specifically, it offers the following key contributions:

1. Development of a mathematically consistent algorithm for the real-time estimation of complex modes in
dynamic systems, which has been an understudied area in the field of structural health monitoring and damage
detection.

2. Incorporation of second-order delayed statistics updates into traditional FOEP techniques to account for the
constantly changing complex phasing in systems with dynamic modes.

3. The proposed framework is applicable for both real and complex modal identification in a variety of simulations
and practical problems, providing a more comprehensive solution for the blind source problems faced in
real-life structural health monitoring and damage detection applications.

Overall, this study represents a significant step towards the accurate identification of complex modes in real-time, which
is a crucial aspect in the development of effective structural health monitoring and damage detection systems.

The paper’s structure comprises of the following segments: Section 2 delineates a succinct exposition of the complex
state theory within the purview of structural dynamics and the conventional batch Blind Source Separation (BSS)
technique, namely the Second Order Blind Identification (SOBI), utilized for the calculation of complex modes. Section
3 propounds a mathematically rigorous formulation of the proposed methodology for determining complex modes
of general dynamic systems, incorporating an algorithm and flowchart. Section 4 presents numerical simulations on
selected categories of linear systems to exemplify the application of the proposed methodology in both simulation
and real-world situations, validating its efficacy against the Structural Health Monitoring (SHM) benchmark structure
outlined by the International Association for Structural Control and Monitoring - American Society of Civil Engineers
(IASC-ASCE). Lastly, Section 5 summarizes the work and provides insightful observations.
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2 Background

This section explains the necessity of identification of the complex modes in structural systems with a concise summary
of blind modal identification techniques.

2.1 Complex modes in structural dynamics

The concept of complex modes in the light of structural dynamics can be understood by considering the generic
dynamical system of the form: where, mass, stiffness and damping matrices are represented by M, C and K with X as
the displacement vector and F(t) as the input excitation. Since the matrices M, C and K are diagonalized in the modal
coordinate the modal responses (Q = [q1, q2, . . . qi . . . qn]T ) of the Eqn. Eq. 2 can be written as:

q̈i(t) + 2ζiωn,iq̇i(t) + ω2
n,iqi(t) =

1

mi
fi(t) (1)

where, fi(t) = vi
TF(t) is the modal force corresponding to the vi mode. ζi, ω2

n,i and mi are the modal damping,
modal frequency and modal mass for ith mode. The solution of the Eq. 1 is obtained by using Duhamel Integral:

qi(t) =
∞∫
0

fi(τ)hi(t− τ)dτ , where hi(t− τ) = 1
miωd,i

e−ζiωn,i(t−τ) sin ωd,i(t− τ) and ω2
d,i is the damped modal

frequency. The solution matrix Q in the vectorial form can be expressed as (using convolution property):

MẌ(t) + CẊ(t) + KX(t) = F(t) (2)

Qi×1(t) =

∞∫
0


h1(t− τ) 0 · · · 0

0 h2(t− τ) · · · 0
...

...
. . .

...
0 0 · · · hi(t− τ)


i×i︸ ︷︷ ︸

HQ(t−τ)


f1(τ)
f2(τ)

...
fi(τ)


i×1︸ ︷︷ ︸

FQ(τ)

dτ (3)

The solution of Eq. (2) can be written as X = VQ, where X is the measurement matrix of size m×N and Q is the
corresponding modal response of size m×N with m as number of degrees of freedom and N as the sampling size. V is
a orthogonal transformation matrix of size m×m yielding mode matrix such that the mode shape matrix are orthogonal
to each other with respect to the matrix M. In general, mode shape matrices of structural dynamical systems, whether
with constant system parameters or with varying mass and stiffness properties, are often approximated as proportional
modes. However, a complex modal solution is necessary when addressing system modifications with respect to factors
such as damping or non-linearity. If proportional mode approximations are used, errors can accumulate due to the
complex phasing resulting from the modified system, which the proportional approximation overlooks.

Complex modes can arise in non-proportionally damped systems either for a narrow range of system parameters
or for systems with closely spaced modes. Complex modes can also occur in aeroelastic systems under non-linear
aerodynamic loads. Furthermore, the presence of analysis and measurement errors can also lead to complex modes [7].
Complex eigenvectors can also result from an asymmetric velocity-dependent system matrix, even if there is no damping
and only a gyroscopic term present in the C matrix. This complexity can also arise in axisymmetric structures, where
modes are often identical-eigenvalue pairs and hence, have a degree of degeneracy. It is crucial for practitioners dealing
with real-time modal identification problems to utilize algorithms that can handle both proportional and complex modes
to avoid incorrect modal identification. This necessitates the effective use of Blind Source Separation (BSS) algorithms
with specific capabilities for real-time mechanism and complex modal identification. To address these problems, a
succinct understanding of the BSS approach and its application to structural dynamics is required, which is discussed in
the following section.

2.2 Blind source separation (BSS)

Blind Source Separation (BSS) refers to the process of extracting source signals from output sensor signals without
any prior knowledge of the system. In BSS, only the mixed output signals are available for separation in order to
retrieve the source signals. Numerous studies have been conducted to solve modal identification problems using BSS,
which can act as a useful inverse methodology for retrieving the source signals of an unknown Multiple-Input/Multiple-
Output (MIMO) mixing system. The input signals are estimated based on the output sensor signals. Several BSS
techniques for estimating the source signals include Independent Component Analysis (ICA) and its extensions
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(Topographic ICA, Multidimensional ICA, Kernel ICA, Tree-dependent Component Analysis, Subband Decomposition
-ICA), Sparse Component Analysis (SCA), Sparse PCA (SPCA), Non-negative Matrix Factorization (NMF), Smooth
Component Analysis (SmoCA), Parallel Factor Analysis (PARAFAC), Time-Frequency Component Analyzer (TFCA),
and Multichannel Blind Deconvolution (MBD) [20]. BSS finds wide applications in many areas, such as array signal
processing, seismic signal processing, and blind equalization [21]. It assumes that the output data is a linear combination
of the modal coordinates, which are estimated from the output signals only. This makes BSS a useful technique in
the estimation of modal responses from ambient data. By comparing the superposition of vibration modes with the
BSS model’s specification, it is possible to understand the physical significance of the sources in system identification
problems. The mode shapes, natural frequencies, and damping factors of a vibrating structure can be estimated using
BSS, providing a numerical solution for the deflection patterns of vibration when the system vibrates at one of its natural
frequencies. BSS has various applications in the field of signal processing and engineering, including array signal
processing, seismic signal processing, and blind equalization. By assuming the output data is a linear combination of
modal coordinates and only using the output signals for estimation, linear mixing models can be used to estimate modal
responses from ambient data. These models can then be used to determine the natural frequencies, damping factors,
and mode shapes of a vibrating structure, which provide insight into its physical behavior during vibration. BSS plays
an important role in system identification problems by facilitating the comprehension of the physical importance of
sources.

2.3 Second Order Blind Identification (SOBI)

For system identification problems, the popular BSS technique known as Second Order Blind Identification (SOBI) is
frequently used [22].SOBI has a wide variety of applications in modal identification of vibrating structures [17]. It has
proven to be a viable substitute to produce accurate results for output-only modal analysis of vibrating structures [23].
Independent component analysis (ICA) is found to give better results for identification of mode shapes as compared to
Principal component analysis (PCA). The reason behind this is the poor estimation performance and high computation
time at higher order statistics and damping ratios greater than 1 percent [22]. A suitable alternative to estimate the mode
shapes for second order statistics is the second order blind identification (SOBI) which assumes uncorrelated sources
with variable spectral contents [24]. SOBI estimates real valued mode shapes with real values mixing matrix. It uses the
time information contained in the signals in contrary to considering them as random variables in ICA. SOBI has also
shown to be a promising technique for time series dimension reduction.
SOBI is based on the premise of simultaneous diagonalization of two covariance matrices R̂Y (0) and R̂Y (p), defined
by the relations as under:

RY (p) = E
{
Y (k) sT (k − p)

}
RY (0) = E

{
Y (k)Y T (k)

}
= ARY (0)AT

RY (p) = E
{
Y (k)Y T (k − p)

}
 (4)

for some non-zero time-lag p. The simultaneous diagonalization is performed in three basic steps: whitening, orthogo-
nalization, unitary transformation. A framework for second order blind identification method can be summarized as
follows:

1. Obtain output dataset, assign to Y0 (t). Compute cross correlation functions from the data, and assign to Y0 (t).

RY (0) =
1

N − 1
Y T (5)

2. Whiten the data to obtain whitened data, Z̄. Retain the whitening matrix and its inverse. Whitening is a linear

transformation in which R̂Y (0) =
(

1/N

)( N∑
K=1

Y (k) YT (k)

)
is first diagonalized using singular value

decomposition that is accomplished as R̂Y (0) = VYΛYVT
Y. The whitened signal is given as:

Y (k) = WY (k) = Λ
− 1

2

Y VT
Y Y (k) (6)

where W is the whitening matrix.

3. Apply joint approximate diagonilization (JAD) to the whitened data to obtain the joint diagonalizer. Orthogonal
transformation is applied to diagonalize the matrix R̂Z (p) The Eigen value decomposition of R̂Z (p) has the
form

R̂Z (p) = UZΣZUT
Z . (7)
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4. Compute the de-mixing matrix, Â, and the mixing matrix, A.

Â = U†Z W (8)

If the diagonal matrix ΣZ has distinct eigen values then the mixing matrix can be estimated uniquely by the
following equation:

A = W+UZ (9)

where, (.)+ is the Moore-Penrose pseudoinverse of a matrix.
5. Compute the modal response. X = AT Y

2.4 General eigen perturbation theory

Recently, advancements have been made in the field of real-time estimation of vibrational modes through the implemen-
tation of eigen perturbation techniques. The focus of these algorithms lies in the recursive update of the eigenspace,
providing an alternative method for updating the full rank data covariance matrix. The proposed approach utilizes the
framework of First-Order Eigen Perturbation (FOEP) technique for the recurrent update of the complex eigenspace,
thereby updating the delayed whitening covariance matrix. As a preface to the mathematical intricacies of the proposed
algorithm, it is imperative to have a comprehensive understanding of the generalized higher order eigen perturbation
theory and the derivation of FOEP from it. In the context of a vibrating system, the symmetric eigen decomposition can
be mathematically represented as:

RY V = ΛV (10)

where, RX ∈ Rn×n, and Λ, V are eigenvalues and eigenvectors matrices, respectively. As the eigenvector matrix is
symmetric and eigenvalue matrix is diagonal, the following orthogonality conditions will hold

V Tj Vi = δij , V Tj RY Vi = Λiδij ∀ i, j = 1, 2, 3, . . . , n (11)

where δij is the Kronecker delta. For a generalized nth order perturbation, Eq. (10) can be written as a linear
combination of n perturbation terms added to the original matrix, given by the expression:

RY =
(
V +

∑n
i=1 δ

iV
)T (

λ+
∑n
i=1 δ

iλ
) (

V +
∑n
i=1 δ

iV
)

(12)

This generalized eigen perturbation theory provides a method for updating the data covariance matrix without requiring
repeated eigen decomposition of the data covariance matrix at each time step. However, the higher the perturbation
order involved in the expansion, the more accurate the algorithm becomes, but also the more mathematically complex
and computationally demanding. Hence, real-time system monitoring algorithms generally adopt either First [13]
or Second Order perturbation terms [25]. Nevertheless, recent studies [14–16] have incorporated error correction
mechanisms to mitigate the impact of neglected higher-order perturbation terms and enhance the convergence and
damage detection capability of traditional FOEP techniques. However, in this work, the focus is on the recursive
whitening of signals using the eigenspace update of complex data, therefore the use of higher-order perturbation or error
feedback mechanisms would increase computational complexity without significantly improving the robustness of the
algorithm. The proposed framework combines the First Order Eigen Perturbation (FOEP) technique with the concept of
Second Order Blind Source Separation (SOBSS) in a recursive manner, providing a mathematically consistent approach
to the estimation of complex modes, source signal extraction, and will be discussed in detail in the following section.

3 Recursive modal identification in dynamical systems

The basic principle of the recursive modal identification of the systems with complex mode shapes primarily premise on
three primary segments operating simultaneously in a recursive framework: Firstly whitening of the complex response
using RPCA to obtained the whitening matrix, its inverse and whitened data for each sample, Secondly updating the
lagged covariance matrix and Finally estimation of unitary matrix from joint diagonalization of the updated lagged
covariance matrix and in turn estimating the mixing matrix. These process require an initialization of some parameters
which are obtained using the batch algorithms for a few initial samples (ideally 100-500samples).

The incorporation of the phase shifted data obtained through the Hilbert transformation enhances the accuracy of the
real-time modal identification algorithm in handling non-proportional damping, non-linearity, gyroscopic effect, and
closely placed modes, among others. The real-time feeding of the sensor data and phase shifted data to the algorithm
forms a complex response, thereby allowing for more accurate identification of the modal response in an online fashion.
Thus the proposed algorithm supplements the recorded response Y (t) with the phase shifted data Y90(t) obtained
through employing the Hilbert transformation (HT) and taking its imaginary value as 90◦ phase shifted response. The
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key point is that the response is fed to the algorithm in real time to obtain the phase shifted data and is supplemented to
the sensor data for formation of the complex response as,

Ȳ (t) = Y (t) + i Y90(t) (13)

This leads to the problem of finding the complex valued modal response through recursive BSS techniques and can be
written in the form of complex modal response as,

{Yk + i Y90,k} = [A0,k + i A90,k] {Xk + i X90,k} (14)

After obtaining the complex response, the objective shifts towards the estimation of the whitening matrix, where,
the mathematically consistent formulation of RPCA for the complex data is necessary. Towards understanding the
mathematical formulation of RPCA, consider the co-variance matrix of the form: CY = 1

NYYT . For any multivariate
data set the recursive estimation of the data co-variance matrix (Ck) at time instant k can be expressed in terms of the
data vector at kth instant i.e. Yk as:

Ck =
k − 1

k
Ck−1 +

1

k
{Yk + i Y90,k} {Yk + i Y90,k}T (15)

where Ck−1 is the co-variance estimate at (k − 1)th instant. The primary aim of RPCA is to estimate the update of
co-variance matrix at each time instant without actually performing EVD on the block co-variance matrices thereby
reducing the time and memory complexity. First order eigen perturbation (FOEP) technique facilitates the estimation
of eigenspace without actually performing the EVD recursively. The individual data co-variance estimates at kth

instant can be expressed by its EVD as, Ck = VkΣkVk
T where Vk and Σk represents the eigenvector and eigenvalue

matrices at kth instant. For non-stationary processes the drift in mean level can be accommodated in the estimate of
co-variance update by using mean shift in the data samples as follows:

VkΣkVk
T =

(k − 1)

k
Vk−1Σk−1Vk−1

T +
1

k
[{Yk + i Y90,k} − µk] [{Yk + i Y90,k} − µk]

T (16)

where, the recursive mean at kth instant is estimated as: µk = k−1
k µk−1 + 1

k {Yk + i Y90,k}. However, for structural
systems the response data vectors are generally evolve as a zero mean processes enabling the Eq. 16 to be written
without any mean shift. Further simplifying the Eq. 16 with the relation {Yk + i Y90,k} = Vk−1Pk one gets:

VkkΣkVk
T = Vk−1{(k − 1)Σk−1 + PkPk

T }Vk−1
T (17)

Under finitely large sample-size k the term {(k − 1)Σk−1 + PkPk
T } exhibits a diagonally dominant characteristics

since Σk−1 is diagonally dominant. Towards obtaining a mapping between both the sides of Eq. 17, Gershgorin’s
theorem ensures the EVD of the term to be of the form ΨkΩk(Ψk)

T , where Ψk = (I + δV) and Ωk = (Σk−1 + δΣ)
are the orthonormal eigenvector and eigenvalue perturbation matrices, respectively, at kth instant. Upon substitution
and simplification the Eq. 17 can be rewritten as follows:

VkkΣkVk
T = Vk−1ΨkΩk(Ψk)

T
Vk−1

T (18)

On close observation of the Eq. 18, final updates for the eigenvector and eigenvalues can be identified as:

Vk = Vk−1Ψk & Σk =
1

k
Ωk (19)

A drawback for using FOEP technique to estimate the eigenspace at each instant is associated with permutation
ambiguity i.e. the recursive eigenvectors and eigenvalues are not arranged in same sequence as the theoretical values.
However the shortcoming can be overcome by rearranging the eigenvalues in decreasing order, and, correspondingly
the eigenvectors. The complex whitening data at a particular time instant can be extracted as follows:

{Zk + i Z90,k} = Σk
−1/2Vk

T {Yk + i Y90,k} = Wk
T {Yk + i Y90,k} (20)

Here, Zk is the whitening data and Z90,k is its 90◦ phase shift of the whitening data, and, Wk
T is the whitening

matrix. This accomplishes the second objective of the proposed algorithm and the next step is to update the lagged
covariance matrix formed through the whitened data. For a series of lags (τ = 1, . . . , T ), the augmented lagged
whitening covariance matrix is formed as follows,

Rk,k−1
Rk,k−2

...
Rk,k−T

 =
k − 1

k


R(k−1),(k−1)−1
R(k−1),(k−1)−2

...
R(k−1),(k−1)−T

+
1

k


{Zk + i Z90,k} {Zk−1 + i Z90,k−1}T

{Zk + i Z90,k} {Zk−2 + i Z90,k−2}T
...

{Zk + i Z90,k} {Zk−T + i Z90,k−T }T

 (21)
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where, Rk,k−τ is the lagged whitening covariance matrix with lag of τ . After obtaining augmented lagged whitening
covariance matrix the problem of modal identification reduces to finding a best suitable candidate for unitarily
diagonalizing [Rk,k−1 Rk,k−2 . . . Rk,k−T ] at each instance of time. Denoting Dτ = UT

k [Rk,k−τ ] Uk, the problem
of finding the minimum of the performance index J can be mathematically written as,

J(U, τ) =
∑
T

∑
1≤i 6=j≤m

∣∣Dτ
ij

∣∣2 (22)

Then, for minimum J over fixed h iterations the unitary matrix U is said to be an approximate joint diagonalizing the
augmented lagged whitening covariance matrix. Having obtained the whitening and unitary matrix, the mixing matrix
is obtained using the following relation

[A + i A90] = U†W (23)
The mixing matrix is then operated on the obtained sensor response Yk to estimate the complex modal response as,

{(X)k + i X90,k(t)} = [A0,k + i A90,k]
†
Yk (24)

Thereafter, both the complex identified mode shape matrix and modal response are normalized to obtain the real valued
modal mixing matrix and responses which are independent to each other.

(Aij)k = 1
k‖Xk + i X90,k‖i sgn

(
(Aij)0,k

)∥∥∥(Aij)0,k + i (Aij)90,k

∥∥∥
Xk = 1

k‖Xk + i X90,k‖ ·Xk

(25)

Algorithm 1 Algorithm for the proposed method

Input: X = [X1, X2, ..., XL]
T ∀ X ∈ Rn . Response vector of system

Appending 90◦ phase shifted response . Complex response, Eq. (13)
Initialization: complex eigenspace, whiten data and its lagged covariance matrix
for k = 1 : Niteration do . Iteration for sample length

define memory depth parameter λ
Define Pk = VT

k−1 {Yk + i Y90,k(t)}
Estimation of the perturbation matrices Ψk and Ωk

Update of eigenvector and eigenvalue matrices . Eigenspace update, Eq. (19)
Estimation of whitened data {Zk + i Z90,k(t)} and whitening matrix Wk . Eq. 20
Update of lagged whitened covariance matrix Rk,k−τ . Eq. (21)
Joint approx diagonalization on Rk,k−τ : Dτ = UT

k [Rk,k−τ ]Uk

Estimation of complex mixing matrix using whitening matrix Wk and unitary matrix Uk . Eq. (23)
Estimation of complex modal response . EVD of Covariance, Eq. (24)
Estimation of real valued modal matrix and response . Normalization, Eq. (24)

Output: Output: Normalized real valued modes (Ak) and Modal response (Xk)

4 Case studies for systems with complex mode shapes

The proposed algorithm’s efficacy in identifying the modal response of structural systems with complex modes is
demonstrated through numerical case studies on linear systems with closely spaced modes and non-proportional
damping. The algorithm’s performance is evaluated on three structures: (i) a 3-DOF linear structural system with
closely spaced modes, (ii) a 3-DOF linear system with non-proportional damping, and (iii) an IASC-ASCE SHM
benchmark structure with complex modes. The numerical simulation results and modal identification outcomes for
these structures are presented and discussed in detail.

4.1 3DOF linear structural system with closely spaced modes

A 3-DOF linear vibrating structure modelled as mass, spring and dash-pot system as presented in Fig. 2 with its
governing expression given as in Eq. (2). The purpose of using WGN is to excite all the modes of a structure in order to
obtain accurate modal parameters and mode shapes. The Monte Carlo method is a variance reduction technique that can
be used to obtain an ensemble average of the mode shape matrix, source signal, and modal parameters by generating
multiple realizations of the input excitation and system response. This ensures that the results are more robust and
accurate, as the average of multiple simulations helps to reduce the impact of random fluctuations and measurement
noise. The state-space representation for the system subjected to a force vector F (t) can be written as,

U̇ = AU + BF
Y = CU

(26)
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𝑌(𝑡) ത𝑌 𝑡 = 𝑌 𝑡 + 𝑖𝑌90(𝑡)

Data
Acquisition

Complex
Response

Initialization

• Complex Eigenspace: 𝑽0, 𝚺0
• Complex whiten data: ҧ𝑍0 = 𝚺0

−𝟏/𝟐
𝑽0 ത𝑌0

• Lagged whitening covariance matrix: 𝑹𝑡,𝑡− 𝜏

Eigenspace: 

𝑽𝑘 = 𝑽𝑘−1 𝐈 − 𝛿𝑽 ,
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Recursive Update

Whitening:

ҧ𝑍𝑘 = 𝚺k
−𝟏/𝟐

𝑽𝑘 ത𝑌𝑘

Lagged covariance 

matrix:𝑹𝑡,𝑡− 𝜏

Joint diagonalization 

of 𝑹𝑡,𝑡− 𝜏

Whitening matrix: 

𝐖k = 𝚺k
−𝟏/𝟐

𝑽𝑘

Identified modal response
ത𝑋𝑘 = ഥ𝑨𝑘

+ഥ𝑌𝑘

Identified complex modes: 
ഥ𝑨k = 𝐔k

+𝑾𝑘

Normalization

• Identified real valued mode:  𝑨𝑘 =
1

𝑘
ത𝑋𝑘 𝑠𝑔𝑛 𝑅𝑒 𝑨𝑘 ഥ𝑨𝑘

• Identified real mode shape: 𝑋𝑘 =
1

𝑘
ത𝑋𝑘 𝑅𝑒 𝑋𝑘

Closely spaced modes Non-proportional damping Dynamic complex modes

𝐂k = 𝐂0 + 𝐂ND
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Unitary matrix: 𝑼𝑘

Figure 1: A framework for the proposed technique
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Figure 3: Frequency domain response of the (a) physical (b) modal displacement of 3DOF linear system with closely
spaced modes
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where, U = vector of states and Y = system response vector governed by the C matrix. The state matrix, A, and the
excitation matrix B are given by,

A =

[
[0]3×3 [I]3×3
−M−1K −M−1C

]
B =

[
0 0 0 diag

(
M−1)T ]T (27)

where, M,C and K are the general system matrix given as,

M =

[
1.5 0 0
0 2 0
0 0 1.3

]
, K =

[
7 −2 0
−2 4 −2
0 −2 5

]
, C = αM + βK (28)

The natural frequencies corresponding to the undertaken system parameters are 0.1649Hz, 0.3248Hz, 0.3655Hz. The
damping ratio for the system is kept at ζ = 2.0% critical for each mode. The real valued mode shape can be obtained
from the eigenvalue decomposition of M−1K matrix, however, the actual nature of the mode shapes (real or complex)
can be depicted by the eigen decomposition of the state matrix A. For the sufficiently close mode shapes, the mode
shape matrix will be complex in nature and for the undertaken system the real valued and complex mode shapes without
normalization are evaluated as,

φact =

[ −0.2299 −0.4061 −0.6700
−0.6193 −0.1528 0.3051
−0.3437 0.7369 −0.3288

]
,

φactc =

[
0.0043 + 0.2143i 0.0052 + 0.2089i −0.0033− 0.3318i
0.0116 + 0.5774i 0.0020 + 0.0786i 0.0015 + 0.1511i
0.0064 + 0.3204i −0.0095− 0.3790i −0.0016− 0.1628i

] (29)

The proposed framework takes the complex response (obtained through appending the 90◦ phase shifted response)
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Figure 4: Actual and Identified real valued mode shapes of the 3DOF linear system with closely spaced modes

as input and updates the data eigenspace recursively through FOEP to obtain the whitening matrix. Thereafter, the
whitened data is utilized for the updation of initial lagged covariance matrix, which are then jointly diagonalized for the
estimation of unitary matrix. Thereafter both recursive whitening and unitary matrices are used to obtain the mixing
and demixing matrices which are then made use of to extract the system’s source signal. Fig. 3 describes the physical
and modal displacement response in frequency domain. In Fig. 3(b) it can be observed that the algorithm accurately
separates the modal responses of all the modes. The above observations can further be explored broadly through
the MAC values, which provides a correlation between the actual and identified mode shapes. The MAC value for
the identified modes are obtained as 0.9999, 0.9910 and 0.9835 for modes 1,2 and 3, respectively, which validates
the accuracy of the identified modes of the system. The plot of actual and identified real valued modes in Fig. 4
demonstrates the usefulness of the proposed framework in real-world applications where traditional modal identification
methods may not be effective due to the presence of complex modes.
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4.2 3DOF linear structural system with non-proportional damping

As shown in the previous section, proportional damping is often used as a simplified approach to model the effect of
damping in linear vibrational mechanical systems. However, there are cases in which a general viscous damping is
needed to simulate the dynamic of the system with sufficient accuracy. To validate our technique for the complex modes
arising due to the non-proportional damping, consider the generic differential equation given as in Eq. (2) with system
matrices as follows:

M =

[
3 0 0
0 2 0
0 0 1

]
, C =

[
0.1856 0.2290 −0.9702
0.2290 0.0308 −0.0297
−0.9702 −0.0297 0.1241

]
, K =

[
4 −2 0
−2 4 −2
0 −2 10

]
(30)

The input excitation is modelled as White Gaussian noise (WGN) with sufficient intensity to excite all the modes
properly, and then a variance reduction technique viz, Monte Carlo is employed to obtain the ensemble average of the
mode shape matrix, source signal and modal parameters. The actual real valued and complex mode shapes for the
undertaken system without normalization is provided in Eq. (31).
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Figure 5: Frequency domain response of the (a) physical (b) modal displacement of 3DOF linear system with non-
proportional damping

φact =

[
0.4575 0.3521 0.0090
0.4264 −0.5510 −0.1206
0.0918 −0.1446 0.9852

]
,

φactc =

[ −0.0370− 0.0021i −0.0115 + 0.2947i −0.5458 + 0.0000i
0.0050 + 0.0364i −0.0059− 0.4345i −0.5156− 0.0126i
−0.0051− 0.2988i −0.0594− 0.1167i −0.1100− 0.0521i

] (31)

Comparison of the estimated modal frequency response in Fig. 5(b) with the original frequency response in Fig.
5(a) provides a clear depiction of accurate modal responses separation. This is achieved through the use of proposed
framework on complex responses (obtained through appending the 90◦ phase shifted response). The above observations
are substantiated through the MAC values, which for the identified modes are obtained as 0.9996, 0.9986 and 0.9878
for modes 1,2 and 3, respectively. This validates the accuracy of the identified modes of the system, and Fig. 6 shows
the approximate overlap between identified modes over true modes. From the results presented in the study it is evident
that the modal identification method was able to estimate the complex modes. This establishes the applicability of the
technique to estimate complex modes for closely spaced modes and non-proportional damping.
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Figure 6: Actual and Identified real valued mode shapes of the 3DOF linear system with non-proportional damping
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Figure 7: MAC between actual and identified modes with increase in samples representing accurate identification of
modes for 3DOF system
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4.3 3DOF linear structural system with sudden change in damping

Most real-world phenomena have to accommodate dynamic changes in system matrices due to various operational and
environmental conditions. To overcome this limitation, the proposed algorithm uses a recursive method to update the
system matrices in real-time, which allows the identification of the changing modes. This real-time monitoring and
updating of the modes provides more accurate information about the system behavior, which can be useful in many
applications, such as real-time SHM, damage detection, and control systems. The proposed algorithm provides a robust
solution for the identification of complex modes in dynamic systems, which can handle non-proportional damping,
non-linearity, gyroscopic effects, and closely spaced modes. In order to validate the applicability of the proposed
algorithm, a general 3DOF linear system with proportional damping is considered with the system matrices defined as,

M =

[
3 0 0
0 2 0
0 0 2

]
, K =

[
4 −2 0
−2 4 −2
0 −2 10

]
, C = αM + βK (32)

Here, the damping coefficient is 2% and the system is excited with WGN for a time period of 50s and sampling
frequency is taken as 50Hz. This system is considered to be in its prime state and has real valued modes. At 25s the
damping matrix suddenly becomes non-proportional and is given as,

C =

[
0.1856 0.2290 −0.9702
0.2290 0.0308 −0.0297
−0.9702 −0.0297 0.1241

]
(33)

The perturbations in the damping matrix convert the real-valued modes into complex-valued modes – presenting a
more formidable challenge to conventional blind source separation (BSS) algorithms – as the precision of the mode
identifications can not be substantiated in practical conditions, nor can the alterations be monitored. Nonetheless, the
proposed algorithm encompasses the requisite tools to effectively monitor such alterations and accurately determine
both real-valued modes (i.e. proportional damping within the interval of 0 to 25 seconds) and complex-valued modes
(i.e. non-proportional damping within the interval of 25 to 50 seconds). To further verify the applicability of the
proposed algorithm in practical scenarios, a benchmark system is described in the subsequent section.

4.4 IASC-ASCE SHM benchmark structure with complex modes

Having established the viability of the proposed algorithm through numerical simulation of simple systems, this study
progresses to the examination of its application to the IASC-ASCE Structural Health Monitoring (SHM) Benchmark
structure. The latter constitutes a quarter-scale model of a four-story, two-bay by two-bay steel frame structure located
at the University of British Columbia’s Earthquake Engineering Research Laboratory. It boasts a planar dimension
of 2.5 m x 2.5 m and a height of 3.6 m, with members fabricated from hot rolled grade 300 W steel, possessing a
nominal yield stress of 300 MPa. The structural sectional properties can be consulted in [26]. The parameters utilized
to generate the response of the benchmark structure are: a damping ratio of 0.01, a sampling time step size of 0.002s,
a total time duration of 50s, a noise level of 1, and a force coefficient of 150. In the IASC-ASCE SHM Benchmark
structure, the columns are aligned in the x direction, which exhibits superior resistance to bending, while the floor
beams are aligned to withstand strong vertical bending. Each bay on each floor features a single floor slab, with the
first, second, third, and fourth levels comprising four slabs weighing 800 kg, 600 kg, 600 kg, and 400 kg, respectively,
for the symmetrical building configuration. In contrast, the fourth level in the unsymmetrical building configuration
includes three 400 kg slabs and one 550 kg slab. To generate simulated response data, a finite element model is devised
for various conditions. In the absence of damage, a 12-degree-of-freedom (DOF) shear-building model that restricts all
motion (with the exception of translations in the x and y directions and a single rotation θ about the center column) by
modeling the floor beams and floor slabs as rigid bodies is created, resulting in three DOFs per floor. The columns and
floor beams are modeled as Euler-Bernoulli beams in the finite element model. A diagram of the analytical model is
shown in Fig. 8 (case 1) with no damage in the structure (damage pattern 0) is taken for the validation of the proposed
algorithm. For the undamaged case, the mass (M) and stiffness (K) matrices of the structure are given by the following
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Figure 8: ASCE-SHM benchmark model adopted from [26]

matrices:

M =



3452.4 0 0 0 0 0 0 0 0 0 0 0
0 3452.4 0 0 0 0 0 0 0 0 0 0
0 0 3819.4 0 0 0 0 0 0 0 0 0
0 0 0 2652.4 0 0 0 0 0 0 0 0
0 0 0 0 2986.1 0 0 0 0 0 0 0
0 0 0 0 0 2652.4 0 0 0 0 0 0
0 0 0 0 0 0 2652.4 0 0 0 0 0
0 0 0 0 0 0 0 2986.1 0 0 0 0
0 0 0 0 0 0 0 0 1809.9 0 0 0
0 0 0 0 0 0 0 0 0 1809.9 0 0
0 0 0 0 0 0 0 0 0 0 1809.9 0
0 0 0 0 0 0 0 0 0 0 0 2056.9


kg

(34)
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Figure 9: Frequency domain response of the (a) physical (b) modal displacement of modified ASCE SHM benchmark
structure
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Figure 11: Original and identified real valued mode shapes of the ASCE SHM benchmark system with non-proportional
damping for different samples

K =



213.20 0 0 −106.60 0 0 0 0 0 0 0 0
0 135.81 0 0 −67.90 0 0 0 0 0 0 0
0 0 464.04 0 0 −232.02 0 0 0 0 0 0

−106.60 0 0 213.20 0 0 −106.60 0 0 0 0 0
0 −67.90 0 0 135.81 0 0 −67.90 0 0 0 0
0 0 −232.02 0 0 464.04 0 0 −232.02 0 0 0
0 0 0 −106.60 0 0 213.20 0 0 −106.60 0 0
0 0 0 0 −67.90 0 0 135.81 0 0 −67.90 0
0 0 0 0 0 −232.02 0 0 464.04 0 0 −232.02
0 0 0 0 0 0 −106.60 0 0 106.60 0 0
0 0 0 0 0 0 0 −67.90 0 0 67.90 0
0 0 0 0 0 0 0 0 −232.02 0 0 232.02


MN/m

(35)
The IASC-ASCE SHM Benchmark structure is symmetric, except in cases where damage results in loss of symmetry,
and the applied forces are limited to the y direction. In such scenarios, the output measurements indicate no response
in the x or θ direction, and only the y direction measurements are utilized in the identification process to reduce
any numerical instability. Given that the system in question has sparsely separated modes and mass- and stiffness-
proportional damping, the actual modes are real and can be obtained as follows:

φact =

 0.2422 −0.6226 0.5029 0.2129
0.4414 −0.4297 −0.5032 −0.5591
0.5803 0.1956 −0.3494 0.6559
0.6399 0.6241 0.6098 −0.4603

 (36)

To introduce complex modes into the benchmark structure for the purposes of our study, an additional mass with a
stiffness and damper is added to the top story, affecting only the y direction. The new dynamic system has a mass of
172.6 kg, a stiffness of 6.8 MN/m, and a 2% damping ratio. With the addition of this new dynamic system, the modes
of the system in question become complex in the y direction and can be characterized as follows:

φactc =

 0.0980− 0.6579i 0.2123− 2.0306i 0.1644 + 3.8407i −0.2735− 3.7886i
−0.0310 + 1.8428i 0.1897 + 2.1281i −0.2647 + 2.7033i −0.2480− 7.2326i
−0.0123− 2.1900i −0.0904 + 1.4109i −0.2072− 1.1655i −0.2244− 9.6458i
0.0105 + 1.5428i −0.0524− 2.5213i −0.0388− 3.8303i −0.2230− 10.6845i


(37)
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The proposed algorithm was also applied to a benchmark structure subjected to stochastic excitation. The comparison
between the physical and estimated modal responses in the frequency domain is presented in Figures 9(a) and 9(b),
respectively, which shows a clear separation of the modal responses, indicating that the modes are indeed complex.
The accuracy of the identified modes was further validated through the Maximum Absolute Coefficient (MAC) values,
which are plotted against the number of samples in Figure 10. The comparison between the actual and identified
real-valued modes, as shown in Figure 11, demonstrates a close match between the identified modes and the true
modes, as evidenced by the high MAC values. These results demonstrate the applicability of the proposed algorithm for
accurately estimating complex modes in a wide range of numerical simulations and real-life structural models.

5 Conclusions

The findings of this research have firmly established the capability of the proposed algorithm in identifying complex
modes in a wide range of dynamic systems in real-time. The algorithm is built upon the principle of first-order eigen
perturbation (FOEP) and is designed to synchronize with the complex response, updating the second-order statistics
recursively. Detection of features of interest may not necessarily be related to sudden or gradual damage, but can also
be related to parameters representing their performance with respect to control, repair or change in other operational
conditions. In many practical vibrating systems, the modes can either inherently be or become complex due to dynamic
modifications of the system. This study therefore provides compelling evidence for the real-time estimation of complex
modes and the accurate identification of modal properties, even in the presence of dynamic changes to the system’s
characteristics. The proposed algorithm effectively overcomes the limitations of traditional batch algorithms and
real-time techniques, providing accurate real-time identification of complex modes even in the presence of closely
spaced modes, non-proportional damping, dynamically changing damping matrices, and the addition of new dynamical
systems. The results of this study have been demonstrated through extensive numerical simulations and benchmark
case studies, making it a highly reliable and robust approach for real-time evaluation of complex modes.
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