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 A B S T R A C T

The widespread adoption of electric vehicles (EVs) is crucial for decarbonizing transport, but charging 
infrastructure development lags behind, creating a bottleneck. Current EV charging station (EVCS) distribution 
favors affluent areas, potentially reinforcing inequalities. We address this using a spatially-aware Graph 
Neural Network (GNN) model that learns urban dynamics and socio-economic factors for equitable EVCS 
placement. Our methodology analyzes charging patterns across residential, working/industrial, and commercial 
zones by integrating EVCS utilization, traffic patterns, urban structure, parking availability, and deprivation 
indices. Our analysis revealed EVCS infrastructure concentration in commercial zones, with less deployment 
in working/industrial areas and significant gaps in residential zones. Glasgow showed higher utilization rates, 
particularly in residential areas, while Edinburgh demonstrated utilization disparities in residential zones, with 
deprived areas showing lower usage despite need. To solve this issue, GNN-leveraged recommendations were 
utilized for strategic charger deployment in underserved areas. The findings indicate that in residential areas, 
22 kW chargers show substantial benefit to underserved communities, with higher output chargers becoming 
more effective only beyond  50 initial installations. Working areas show similar patterns, while commercial 
areas demonstrate lower improvement across all charger types, confirming infrastructure saturation. These 
findings provide policymakers a framework to prioritize EVCS deployment for reducing disparities and 
accelerating EV adoption. Overall, our results demonstrate the effectiveness of this approach in identifying 
potential locations for EVCS deployment, particularly in underserved communities.
1. Introduction

Electric vehicles (EVs) have emerged as a cornerstone in the strategy 
towards decarbonization of the transport sector and the wider transi-
tion towards net-zero. A comprehensive range of solutions and policy 
interventions have been proposed, aimed at promoting the ownership 
of EVs and reducing economic costs for end-users [1]. Globally, EV 
ownership reached 26 million by the end of 2022 and is expected to 
rise to over 240 million by 2030 [2]. Notably, China, as the world’s 
leading EV market, accounted for 14.1 million of these vehicles [2]. 
Meanwhile, in the UK, more than 950,000 EVs were registered by the 
end of 2022, with numbers predicted to escalate quickly in response 
to increasing demand [3]. Recent advancements in EV technology and 
the gradual shift towards price parity with conventional vehicles are 
lowering barriers to entry, making EVs increasingly accessible and 
attractive to consumers. In addition, a suite of tax benefits and financial 
incentives are facilitating this trend in all leading EV markets, including 
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China, the European Union, the United States, and the United Kingdom 
(UK). The UK had approximately 37,000 public EV charging devices at 
the end of 2022, equivalent to approximately 26 EVs to one charging 
point [2], though according to recent studies [4], the optimal ratio is 
12 to 1. Although home charging currently meets a large portion of 
charging demand, publicly accessible charging is increasingly needed 
to provide accessibility, comfort, and facilitate long-distance driving 
akin to refueling a fossil fuel vehicle. This is particularly important in 
dense urban areas where access to home charging is more limited and 
public charging infrastructure is a key enabler for EV adoption. To this 
end, several leading economies have developed national EV charging 
infrastructure strategies: China has announced plans to accommodate 
charging infrastructure for more than 20 million EVs by 2025 [5]; the 
United States announced plans to invest up to $5 billion to promote 
the penetration of EVs through introduction of 500,000 public chargers 
by 2030, fiscal incentives and subsidies [5]; Japan pushed forward 
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the national target of 150,000 charging points by 2030, including 
30,000 fast chargers [2]; the European Parliament announced the 
alternative fuel infrastructure regulation aimed at delivering charging 
infrastructure with a particular focus on fast charging stations and 
charging for heavy-duty vehicles [2]; the UK has allocated £1.3 billion 
in government funding aimed to support the rollout of the charging 
infrastructure, with a particular focus on local on-street residential 
charging and targeted plug-in vehicle grants [5].

However, while major economies have announced ambitious charg-
ing infrastructure plans, current deployment patterns risk reinforcing 
socio-economic inequalities. Previous studies have highlighted numer-
ous barriers that hinder the widespread adoption of EVs [6]. The high 
initial costs associated with EVs pose a significant challenge. Without 
adequate financial subsidies, steep upfront expenses can deter potential 
buyers. As discussed above, this challenge has been the main focus of 
national efforts worldwide. The time required for a full battery recharge 
– which far surpasses the refueling time for fossil fuel vehicles – 
further complicates the attractiveness of EVs [7]. Furthermore, driving 
range anxiety, i.e., the fear that an EV will not have sufficient battery 
capacity to complete a desired journey, remains a significant concern. 
Recharge time and range anxiety have mostly been addressed from the 
perspective of investments in the development of battery technology, 
lightweight body and material design, and improved powertrain, lead-
ing to better utilization, higher capacity, and improved driving range. 
However, effective installation of charging infrastructure directly or 
indirectly addresses the above concerns of potential EV adopters. Early 
adopters of EV technology tend to be homeowners residing in high-
income areas, utilizing home-based charging [8]. On the other hand, 
to achieve widespread adoption of EVs, a substantial number of newer 
EV adopters should belong to moderate-income groups residing in 
multifamily residential communities that are less likely to have access 
to home charging [9]. Thus, public EV Charging Station (EVCS) in-
frastructure holds a substantial importance for the adoption of EVs, 
especially in deprived communities [10]. Previous research suggests 
that areas with greater deprivation and lower economic position are 
associated with higher levels of pollutants [11]. In the context of EV 
adoption, this means that those who could benefit the most from low-
carbon technology are the least able to afford it. Therefore, as EV 
adoption continues to rise, ensuring that EV infrastructure is placed in 
a fair and just way that benefits all members of society is of utmost 
importance for achieving an equitable transition towards net-zero, in 
line with UN Sustainable Development Goals (SDGs) [12], specifically, 
SGD 9.1 regarding equitable access to infrastructure and SDG 11.2 
regarding sustainable and accessible transport systems for all.

1.1. Literature review

While numerous studies have explored optimal placement strategies 
for EVCS, the socio-economic dimensions of these placements have 
often been overlooked. Existing research has predominantly focused on 
technical and operational optimization criteria, such as accessibility, 
speed, and cost of charging, without adequately addressing the dispar-
ities in EVCS distribution across different locations and socio-economic 
groups [10]. This has resulted in EVCS infrastructure that is often dense 
in high-income neighborhoods while being sparse and/or underutilized 
in socially disadvantaged communities [13–15]. As a result, despite the 
advancements in EVCS placement strategies, there is a pressing need to 
address the inequities in EVCS distribution. Equity in EVCS placement 
ensures that charging infrastructure is accessible to all community 
segments.

While prior studies have advanced EVCS placement strategies, 
some critical gaps remain in addressing spatial interdependencies, 
land-use-specific deployment, and holistic equity integration. Existing 
approaches predominantly employ spatial regression [16], cluster-
ing [17], or multi-objective optimization [4], treating urban areas as 
static grids rather than dynamic networks. For instance, [16] utilizes 
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multi-scale geographically weighted regression to analyze the spa-
tial heterogeneity in intra-city public EVCS distribution but neglects 
the interconnected nature of urban zones, overlooking how charger 
placement in one area influences demand in adjacent regions. Simi-
larly, [4] applies multi-objective optimization and TOPSIS optimization 
to propose equitable placement by balancing site development costs, 
equity access, and demand fulfillment. However, the decisions are 
made without modeling the spatial propagation of charging needs 
across a city’s graph structure, a limitation our GNN methodology 
directly addresses. While [18] employs agent-based modeling to sim-
ulate charging behavior, it treats urban networks as homogeneous 
grids rather than interconnected graphs. Similarly, [19] applies linear 
regression to correlate charger density with deprivation indices but ig-
nores demand spillover effects between adjacent zones. Secondly, while 
land use categorization is acknowledged in studies like [20], which 
manually labels zones, prior works mostly fail to provide granular, 
land-use-specific policy recommendations. For example, [21] evaluates 
accessibility across broad census tracts and evaluates horizontal and 
vertical equity using spatial autocorrelation but does not differentiate 
optimal charger types (e.g., 22 kW vs. fast chargers) for residential 
versus industrial zones. Similarly, [19,22] identifies correlations be-
tween EVCS distribution and income levels but provides no framework 
for zone-specific (residential/commercial) deployment. This gap is 
critical, as our analysis reveals charger utilization varies dramatically 
by land use, a finding enabled by our land-use-aware approach. Third, 
equity considerations in existing frameworks are often reductionist. 
Studies like [23] correlate EVCS distribution with income levels but 
omit multi-dimensional deprivation indices and real-time utilization 
patterns. [18] models income-based charging access but omits multi-
dimensional deprivation metrics (e.g., health, education). [22] uses 
census-based approach but fails to integrate real-time utilization data, 
masking disparities in deprived areas. Our integration of individual 
SIMD components such as Population density, Working population, 
Income rate, Employment count, Reachability metrics, and Crime rate 
with parking availability, POI data and EVCS usage reveals nuanced 
disparities: in Edinburgh’s deprived areas, charger utilization is 32% 
lower than in affluent zones despite comparable EV ownership poten-
tial, highlighting the inadequacy of single-factor equity models. Table 
1 summarizes recent studies on equitable placement of EVCS.

Above recent research highlights work emerging to cater for inclu-
sive EVCS placement that considers various socio-economical factors. 
However, these prior studies generally contain the following limita-
tions: (i) EVC placement decisions are often made without understand-
ing the spatial dynamics of the urban network, a crucial aspect of 
interconnected systems such as urban EVCS infrastructure, (ii) most 
works fail to address the challenge of targeted infrastructure deploy-
ment within specific urban land uses, which is becoming increasingly 
important as government funding is often targeted within certain urban 
areas of the city, for example, residential, industrial, or other, and (iii) 
insufficient consideration of equity, and a lack of integration of multiple 
factors influencing equity and local contexts;

1.2. Contributions

In contrast to prior work that exhibits one or more of the previ-
ously mentioned limitations, this study presents a methodology that 
jointly addresses all of the aforementioned gaps by proposing a novel 
approach leveraging Graph Neural Networks (GNN) to optimize EVCS 
placement. By embedding diverse multi-modal data sources, includ-
ing existing EVCS utilization, infrastructure information, traffic flow 
patterns, points of interest, deprivation indices, and parking infras-
tructure, our model provides a holistic and practical solution to EVCS 
distribution. The focus on underserved areas through the proposed 
placement utilization metric and the consideration of specific land uses 
directly addresses equity concerns often overlooked in previous stud-
ies. Our approach offers targeted recommendations for different land 
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Table 1
Comparative analysis of equitable EV charging infrastructure studies.
 Citation Study area Objectives Data Sources Methodology  
 [20] Chicago (North 

America)
Assess disparities in EVCS 
accessibility across regions 
of Chicago metropolitan 
area

EVCS location, land use DBSCAN clustering, 
manual land use 
labeling, accessibility 
analysis

 

 [4] San Francisco 
(North America)

Equitable placement by 
balancing three objectives: 
site development costs, 
equity access, and EV 
demand fulfillment

QoL index, EVCS 
location, power 
distribution data, 
installation and 
construction cost

Multi-objective 
optimization, TOPSIS

 

 [24] Los Angeles 
(North America)

Assess social equity access 
to mobile charging stations 
(MCSs) in underserved 
communities, determining 
optimal smart parking lot 
(SPL) components

EVCS data (SPL 
capacity, photovoltaic 
output), socio-economic 
indices, EV charging 
behavior, event-specific 
data

Analytical hierarchy 
process, mixed-integer 
linear programming

 

 [23] California (North 
America)

Assess disparities in public 
EV charger access across 
racial/ethnic groups and 
income levels, identify 
policy implications for 
infrastructure equity

EVCS location data, 
socio-economic data, 
reachability data

Generalized Additive 
Models (GAMs)

 

 [16] Beijing (Asia) Analyze spatial 
heterogeneity in intra-city 
public EVCS distribution, 
focusing on impacts of 
built environment and 
socio-economic factors

EVCS location and 
power, POI data, land 
cost, population data, 
road network data

Quantitative metrics, 
spatial regression using 
multi-scale 
geographically 
weighted regression 
(MGWR)

 

 [21] Hong Kong 
(Asia)

Identify socio-demographic 
factors influencing 
charging inequity, evaluate 
horizontal and vertical 
equity using spatial 
autocorrelation and Gini 
index

Census data, EVCS 
location and power 
output, POI data, 
parking demand data

Gaussian-based 
accessibility measures, 
spatial autocorrelation, 
spatial heterogeneity of 
demographic 
correlations using 
geographically 
weighted regression 
(GWR) model

 

 [17] Beijing (Asia) Investigate the impact of 
charging station 
accessibility and 
agglomeration effects on 
utilization rates and 
provide data-driven 
placement 
recommendations

EVCS location and 
utilization data, road 
and POI data, parking 
data

Accessibility index 
metric, regression 
models to analyze 
accessibility and 
agglomeration impacts, 
Heterogeneity analysis

 

 [19] Ireland (Europe) Investigate equity impacts 
of EV subsidies on income 
and deprivation, assess 
spatial disparities in EVCS 
distribution

EVCS location data, 
census data

Linear regression to 
correlate charger 
density with 
socio-economic 
variables, spatial 
analysis

 

 [22] New York 
(North America)

Identify factors correlated 
with EVCS distribution, 
propose equity-focused 
policy frameworks in 
infrastructure rollouts

EVCS location data, 
census data, 
transportation data

Correlation analysis  

 [18] UK (Europe) Assess equity implications 
of EV incentive regimes 
and charging infrastructure 
demands

national travel survey, 
income data, charging 
access data

Agent based modeling 
simulating charging 
behavior

 

 [25] Trondheim 
(Europe)

Determine optimal 
placement of energy hubs 
by considering investment 
costs, charging radius, 
distance from substations, 
and renewable energy 
generation

renewable energy 
availability, land use, 
traffic density, EVCS 
data

Pareto front analysis, 
Multi-objective linear 
programming
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use types (residential, working/industrial, commercial), acknowledging 
the varying charging needs across urban contexts. We conduct exten-
sive infrastructure placement evaluations using multi-source data from 
the selected urban areas of major cities of Scotland. Specifically, the 
methodology brings the following contributions by modeling of GNNs 
aimed to achieve equitable, geodemographic aware EVCS planning:

• Modeling of urban EV charging demand via graphs and devel-
opment of a novel GNN architecture to learn complex urban 
dynamics and correlation between charging demand influenc-
ing factors to facilitate identification of optimal areas for EVCS 
placement.

• Multi-dimensional equity integration through fusion of individual 
factors influencing deprivation, parking availability, POIs, EVCS 
location, traffic flow and utilization data.

• Detailed analysis of EVCS utilization and distinct usage patterns 
in residential, working/industrial, and commercial zones, as well 
as between deprived and non-deprived areas in major cities of 
Scotland.

• Targeted placement decisions informed by urban land use re-
quirements, historical EVCS utilization and EVCS power output, 
ensuring that placements are aligned with local policy goals.

• Quantified impact and equity of targeted EV infrastructure de-
ployment across various land uses and areas of deprivation.

The rest of the paper is organized as follows. Section 2 discusses 
the case study and data collection process. The proposed methodology 
related to graph construction, clustering and site selection is described 
in Section 3, while Section 4 discusses the key findings of the study. 
Finally, Section 5 provides concluding remarks as well as directions for 
future work.

2. Data processing and labeling methodology

2.1. Case study

The primary objective of the electrification of transport is to miti-
gate GHG emissions on a global scale. However, EVs are often powered 
by electricity derived from non-renewable energy sources, specifically 
power stations run on fossil fuels. This means that while EVs themselves 
do not directly emit GHG, the overall reduction in GHGs depends 
largely on how the electricity they use is generated. Therefore, for EVs 
to effectively benefit the climate and to ensure the sustainability of 
the entire energy system, the use of renewable energy sources for EV 
charging is essential. To this end, Scotland represents an interesting 
case study, as it is the UK leader in renewable energy production, 
continuously generating more electricity than it needs, with net elec-
tricity exports amounting to 15.9 TWh in 2023. In Scotland, the total 
electricity generation from renewable sources in 2023 was 33.3 TWh, 
of which 77.5% came from wind energy, 13.8% from hydro, and the 
rest from biomass and other sources [26]. As a result, in the context of 
EV ownership, Scotland was identified as a UK region with the highest 
lifecycle assessment evaluations aimed at quantifying the reduction 
of carbon footprint per vehicle [27]. Given its leading position in 
renewable energy generation, Scotland can more effectively leverage 
public EV charging to achieve higher EV uptake, charging utilization, 
and a substantial decrease in GHG emissions, setting a standard for 
other UK regions to follow.

Glasgow and Edinburgh were selected as primary case cities to 
extend the relevance and application of this study. These cities repre-
sent distinct urban morphologies with significant variations in spatial 
layout, population density, and transportation infrastructure, which 
are primary factors affecting EV charging demand patterns. The socio-
demographic diversity within these cities spans multiple critical dimen-
sions, including substantial variations in income levels (from affluent 
neighborhoods to areas of high deprivation), car ownership rates, racial 
4 
makeup of population, housing types (detached homes to high-density 
apartments), and transportation access. This justifies our case study 
choice as representative of other cities where equity is a concern, as 
highlighted in previous studies, summarized in Table  1.

Glasgow and Edinburgh are not only the two largest in Scotland 
but also present EV adoption and existing infrastructure, vital for a 
comprehensive analysis: Glasgow contains 391 or 7.8% of Scotland’s 
total number of active charging points, whereas Edinburgh has a total 
of 298 charging points. Furthermore, the selected cities exhibit high 
variability in socio-economic conditions, reflected in their deprivation 
indices. Consideration of such factors is essential to understand po-
tential barriers to EV adoption and to ensure that the benefits of the 
electrification of transport are equitably distributed.

2.2. Data collection and processing

To fully capture metrics that drive charging demand, we base our 
analysis on the various charging demand influencing factors [28]. To 
effectively capture these factors within a specific area, we introduce the 
concept of charging demand nodes. These nodes are defined as 500-
m radius circles centered around charging stations or parking spots, a 
distance that aligns with the observed preference for shorter walking 
distances to charge vehicles [29]. This approach allows us to encap-
sulate and analyze the relevant influencing factors within a practical 
and accessible range. To illustrate this concept, we provide visual 
representations of these charging demand nodes in Fig.  1, where each 
subfigure showcases a demand node centered on a charging station. 
The 500-m radius of these nodes encompasses a variety of pertinent 
influencing factors that contribute to charging demand. Our study takes 
into account a diverse range of these factors, which we will explore 
in detail, to provide a holistic understanding of the dynamics driving 
electric vehicle charging demand in urban environments.

2.2.1. Existing EVCS infrastructure and charging utilization data
To collect EVCS infrastructure data, National Chargepoint Reg-

istry [30] was used. The registry contains detailed records of over 4,000 
public EVCSs in Scotland, including station name, location, operational 
status, tariffs, availability, charging power output, charging plug type, 
etc. To collect EVCS session data, ChargePlace Scotland registry [31] 
was utilized. Developed as a national network of EVCS on behalf 
of the Scottish Government, ChargePlace Scotland registry includes 
detailed historical records of public EV charging across Scotland. For 
the purpose of this study, key factors such as the geographic coordinates 
of each station, charging power output, types of connectors available, 
and the frequency and duration of charging sessions are used. Fig.  2 
illustrates the public EVCS heatmaps for Glasgow and Edinburgh, which 
indicates locations where charging sessions were performed between 
October 2022 and January 2024. Only active, public EV chargers were 
considered.

2.2.2. Parking infrastructure data
The process of identifying potential locations for EVCS relies on 

OpenStreetMap (OSM) data, a comprehensive and crowd-sourced map-
ping resource [32]. The data collection encompasses a wide range of 
parking locations, including on-street parking, as well as parking facili-
ties at event venues, hospitals, universities, and other key locations, all 
identified through the ‘parking’ amenity type in OSM. While our study 
does not explicitly model investment costs, the methodology inherently 
considers cost efficiency through its strategic focus on existing parking 
infrastructure. By identifying potential EVCS locations exclusively from 
existing parking spots, we significantly reduce installation costs by 
eliminating the need for land acquisition, demolition, or major con-
struction work. In addition, this approach significantly reduces initial 
capital expenditure by eliminating the need for land acquisition and 
new construction. Second, existing parking lots are already integrated 
into the urban fabric, ensuring immediate accessibility and connectivity 
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Fig. 1. Charging demand node area description and data used in this study.
— factors crucial for user convenience and adoption rates. By repurpos-
ing existing parking spaces, this strategy aligns with sustainable urban 
planning principles, minimizing the environmental impact typically 
associated with new construction projects. Lastly, this approach also 
facilitates quicker deployment of charging infrastructure, accelerating 
the transition to EVs and supporting broader environmental and public 
health goals.

2.2.3. Demographic and deprivation data
The study incorporates elements related to the Human Develop-

ment Index, as detailed in the Scottish Index of Multiple Deprivation 
(SIMD) dataset [33]. Notably, SIMD data is organized into ‘‘data zones’’, 
which are specific areas designated for small-scale statistics related to 
deprivation in Scotland (as seen in Fig.  1.c). These statistics include 
relevant domains such as income, employment, education, housing, 
health, crime, and geographical access. Integrating SIMD data into 
the analysis offers valuable insights into the socioeconomic context of 
potential EVCS sites, ensuring that infrastructure is strategically placed 
to be effective and beneficial, particularly in areas that might otherwise 
lack sufficient EV infrastructure. For each existing or potential charging 
spot, we collect data based on the data zone it is located within, 
enabling us to precisely align socio-economic and spatial factors in our 
placement strategy. In this study, we classify areas as ‘‘deprived’’ if 
they fall within the lower 50th percentile of the SIMD index, while 
those above this threshold are categorized as ‘‘non-deprived’’. For the 
purpose of this study, the latest SIMD report was utilized [33]. To 
address potential biases, instead of relying on the aggregate SIMD 
rank, a charging demand node incorporates individual socioeconomic 
indicators that comprise SIMD as node attributes, specifically: Popu-
lation density, Working population, Income rate, Employment count, 
Reachability metrics, and Crime rate.
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2.2.4. Point of interest (POI) data categorization
POIs represent specific locations or landmarks within a city that are 

relevant to travelers, residents, or urban planners. These are typically 
places that people might want to visit, navigate to, or use as reference 
points when moving around a city. Previous research consistently 
identifies POIs as crucial indicators of EV charging demand [25,34,35]. 
Our study leverages the comprehensive OpenStreetMap (OSM) [32] 
dataset to collect and analyze POI data, providing a rich source of 
information on potential charging demand hotspots. In our approach, 
we categorize POIs into two primary types: social and recreational. So-
cial POIs encompass locations such as educational institutions (schools 
and universities), healthcare facilities (hospitals and GP practices), 
financial centers (banks), and other essential services (pharmacies). 
These represent areas where people spend significant time during their 
daily routines. Recreational POIs, on the other hand, include leisure 
and entertainment venues like restaurants, cafes, theatres, cinemas, and 
shopping centers, which attract visitors for shorter duration but often 
in higher volumes. The inclusion of both social and recreational POIs 
ensures that our charging infrastructure planning accounts for a wide 
spectrum of public activities, from daily necessities to leisure pursuits. 
The distribution of POIs aids in strategically placing charging stations 
in areas where drivers are likely to spend significant time, enhancing 
charging convenience.

2.2.5. Traffic flow data creation
Traffic flow data is sourced from the UK Government’s Road Traffic 

Statistics [36], and includes vehicle movement patterns, traffic vol-
umes, and peak usage times across the national road network. By 
incorporating this data into our model, we can accurately identify 
high-traffic areas where the demand for EV charging is likely to be 
significant. Traffic count data is typically collected at specific points 
along roads, using methods such as fixed sensors or periodic man-
ual counts. However, EV charging demand is not limited to these 
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Fig. 2. Heatmaps of historical EVCS utilization.
specific data collection points but extends to broader areas where 
vehicles might park and charge. This mismatch between point-based 
data collection and area-based charging demand necessitates a method 
to approximate traffic data to cover potential charging locations. To 
overcome this, we developed a robust, adaptive approach that captures 
spatial variability and accounts for data sparsity. Starting with a 1 km 
radius around each potential charging location, we collect all available 
traffic flow data points within this area. We then calculate an initial 
average traffic flow for each potential charging location. Subsequently, 
the algorithm enters a recursive phase, expanding the dataset in each 
iteration by incorporating both official traffic data and previously 
calculated approximations for charging points. This expansion allows 
for the estimation of traffic flow at locations initially lacking data by 
considering newly calculated values from nearby areas. The process 
iterates, progressively refining and propagating traffic flow information 
across the network of potential charging locations. Convergence is 
reached when successive iterations yield no significant changes in 
traffic flow estimates, indicating a stable and comprehensive set of 
values.

2.2.6. Land use label creation via clustering
Land use is a critical factor in determining optimal locations for 

EV charging stations. It influences accessibility, demand patterns, and 
dwell times, which are essential for meeting charging needs efficiently. 
Different land uses offer varying levels of existing electrical infrastruc-
ture, affecting installation costs and feasibility. Zoning regulations and 
future development plans tied to land use also impact where stations 
can be placed. However, detailed land use information for Scotland 
is not easily accessible. To improve the placement of new EVCS in-
frastructure, we conducted a comprehensive land use labeling process 
for both existing and potential locations. This approach is crucial for 
maximizing accessibility and efficiency, as strategic alignment with 
existing and planned land use ensures that charging infrastructure 
effectively supports high-demand areas such as residential neighbor-
hoods, commercial zones, industrial hubs, and transportation hubs, 
thereby enhancing convenience for EV users. Our methodology employs 
k-means clustering on a range of geodemographic influencing factors 
throughout the whole of Scotland. These factors included income de-
privation rates, traffic flow, counts of social and recreational POIs, 
existing charger numbers, reachability metrics, normalized population 
and employment deprivation figures, and crime rates. Setting 𝑘 = 4, 
this initial clustering yielded four distinct land use groups that were 
labeled as: Residential, Rural, Working/Industrial, and Commercial 
areas, closely aligning with previous findings reported in [34].

This initial clustering, performed on a Scotland-wide scale, pro-
vided a general categorization of land use. However, refinement was 
necessary due to the distinct urban fabric of Glasgow and Edinburgh 
compared to the broader Scottish context used in the initial clustering. 
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To refine the initial cluster labels, we utilized OSM Landuse data [37]. 
OSM Landuse dataset describes the primary use of land by humans, 
where land use features are identified with a landuse tag. The database 
contains over a thousand tag values for landuse used in the OSM 
Landuse dataset. In this work, we refined our results by using ‘resi-
dential’ tag to denote Residential land use, ‘industrial’ tag to denote 
Industrial/Working land use, and ‘retail’ tag to denote Commercial land 
use. In cases where initial clustering labels differed, the land use was 
refined based on the corresponding OSM Landuse tag. This allowed 
us to more accurately classify areas within these cities, particularly 
in distinguishing between residential and working/industrial areas, a 
challenge in urban settings where these uses often overlap or exist in 
close proximity. The impact of this refinement is substantial and clearly 
demonstrated by the shifts in classification for both cities.

OSM land use data was collected based on the location of each 
potential EVCS location within OSM tiles, supplemented with gap-
filled data if stations fell outside tile boundaries. No rural areas were 
detected within Glasgow City or City of Edinburgh councils. This 
refined approach enabled a more nuanced classification, rectifying 
many areas initially identified as working/industrial that were, in fact, 
predominantly residential. The result is a more accurate representation 
of land use patterns, crucial for informed EVCS placement decisions. 
To illustrate the outcomes of this labeling process, we provide a visual 
overview of the labeled areas for all charging and available parking 
infrastructure in Glasgow and Edinburgh, along with per-area statistics, 
in Fig.  3. Differences in charging frequency, duration, energy consump-
tion, utilization, and charging power output within various land use 
types are shown in Table  2.

2.3. Utilization-based charging demand node labeling

In our effort to improve the placement of EVCSs, we recognize 
the critical importance of leveraging historical data to inform future 
infrastructure decisions. To this end, we have developed a methodology 
that utilizes historical utilization rates of existing charging stations 
to identify areas with potential for successful EVCS deployment. The 
cornerstone of our approach is the analysis of EVCS utilization that 
includes detailed historical charging demand information. By examin-
ing this data, we aim to uncover patterns and factors that contribute 
to the success of charging stations in different locations. This data-
driven method allows us to move beyond theoretical assumptions and 
base our decisions on actual usage patterns, thereby increasing the 
likelihood of placing new EVCS infrastructure in areas where they are 
most needed and likely to be well-utilized. To facilitate this analysis, we 
classify existing charging nodes into three distinct categories based on 
their historical utilization records: low, medium, and high utilization. 
This classification serves as a ground-truth labeling system, enabling 
us to identify the characteristics and contextual factors associated with 
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Fig. 3. Site statistics per location (R - residential, W - working/industrial, C - commercial) after refinement with land use data.
Table 2
Daily average EV charging session statistics for different locations.
 City Location Daily 

sessions
Charge duration 
per session (mins)

Energy delivered
per session (kWh)

Utilization rate (%) Charger power output 
(kW)

 

 
Glasgow

Residential 1.35 198.11 19.70 7.36 17.31  
 Working/Industrial 1.00 132.87 23.38 4.05 35.95  
 Commercial 1.43 167.82 12.58 4.56 16.60  
 
Edinburgh

Residential 1.96 172.86 16.71 5.33 25.42  
 Working/Industrial 0.83 134.16 17.98 4.70 18.53  
 Commercial 0.96 209.44 14.78 2.68 22.00  
well-performing charging stations. In calculating EVCS utilization, we 
adopt an energy-based metric rather than a time-based one, as proposed 
by [7]. This choice is motivated by the need to account for potential 
overstay periods and to more accurately reflect the actual usage and 
efficiency of each charging station. The utilization rate for an EVCS 
over a 𝑇 -hour period is calculated as: 

𝑈𝑇
𝑗 = 1

𝑐𝑗 ∗ 𝑇
∑

𝑖
𝜖𝑗𝑖 , (1)

where 𝑈𝑇
𝑗  represents the utilization rate of EVCS 𝑗 over period 𝑇 , 𝑐𝑗

denotes the power output of EVCS 𝑗 in kilowatts (kW), and 𝜖𝑗𝑖  signifies 
the energy consumed by EV 𝑖 from station 𝑗.

Crucially, we extend this classification system to nearby parking in-
frastructure. Parking spots within the charging demand node radius of 
an existing EVCS are labeled with the same utilization potential as the 
charging station itself. This process allows us to identify the potential of 
parking areas for EVCS installation, even if they do not currently have 
charging facilities. To ensure comprehensive coverage and account for 
the influence of neighboring areas, we employ a recursive labeling 
algorithm. Initially, we label parking spots within the immediate radius 
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of existing charging stations based on the historical utilization potential 
of the station. For subsequent iterations, we consider both the labeled 
parking spots and the original charging stations. This expanded dataset 
allows us to label previously unlabeled parking areas that fall within 
the radius of newly labeled spots. We repeat this process, propagating 
potential labels across the network of parking infrastructure until reach-
ing convergence, a point where no new parking spots are labeled or 
changed in an iteration. By analyzing the utilization patterns of existing 
and potential stations, we can identify areas with similar characteristics 
that currently lack adequate charging infrastructure. These areas are 
then classified as having potential for new EVCS placement. We split 
the data into three balanced classes: low, medium, and high utilization.

3. Methodology for geodemographic-aware EVCS location plan-
ning for equitable placement

Our proposed framework for optimizing EVCS infrastructure place-
ment integrates geodemographic data with a spatially-aware GNN ap-
proach, as illustrated in Fig.  4. This approach comprises four key 
components designed to capture the complex dynamics of urban charg-
ing demand and inform strategic infrastructure decisions: (1) First, 
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Fig. 4. ChargeDEM EV charging site selection approach.
we employ graph representation learning to model and analyze the 
intricate relationships within the urban charging ecosystem, capturing 
spatial dependencies and connectivity patterns [Sections 3.1, 3.2]; (2) 
Building upon these representations, we utilize a clustering module 
to categorize nodes based on their characteristics and identify low, 
medium and high potential installation areas based on historical EVCS 
utilization [Section 3.3]; (3) Finally, we employ a utility-informed site 
selection process based on area potential, taking into account instal-
lation requirements, such as the number of chargers to be installed, 
their installation utility, and how they affect the overall charging po-
tential of surrounding areas within specific land use [Section 3.3]. This 
integrated approach allows for a holistic evaluation of potential EVCS 
sites, considering both micro-level factors and macro-level impacts. In 
the following subsections, we describe each component in detail.

3.1. Geodemographic-aware graph neural network

Let  = ( , ) represent a graph where  and  denote sets of 
nodes and edges, respectively. In the context of the EVCS placement 
problem, we define a charging demand node 𝑣 ∈  as the area within a 
radius 𝑟 of an existing EV charger site. The edges  represent undirected 
connections between proximate nodes, with two nodes being connected 
if their physical distance does not exceed 𝑟. These edges define the 
physical and functional connectivity within the network, affecting the 
flow and demand of EV charging. We define 𝐴 ∈ 0, 1||×|| as the 
adjacency matrix of the graph, where 𝑎𝑢,𝑣 = 1 if an edge exists between 
nodes 𝑢 and 𝑣, and 𝑎𝑢,𝑣 = 0 otherwise, for all pairs of nodes 𝑢, 𝑣 ∈  . 
Additionally, we set 𝑎𝑢,𝑢 = 0 for all 𝑢 ∈  , as self-loops are not 
considered in this model.

Each node in the graph is characterized by an 𝐹 -dimensional feature 
vector, 𝐡 ∈ , where  ⊂ R||×𝐹 . This feature vector encapsulates a 
diverse array of information within the radius 𝑟 of each node, including 
socio-demographic composition, land use, density and types of POIs, 
traffic patterns, and existing parking infrastructure. By incorporating 
this multifaceted dataset into the graph structure, we can develop a 
sophisticated understanding of the EV charging demand dynamics at 
each node.

GNN are particularly well-suited for the EVCS placement prob-
lem due to their ability to model complex spatial and relational data 
structures inherent in transportation networks. This approach enables 
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the creation of EVCS placement systems that accurately capture the 
intricate topology of urban road networks, with nodes representing 
potential station locations and edges denoting connecting routes. Fur-
thermore, this framework facilitates the seamless integration of het-
erogeneous data sources, such as geospatial, demographic, land use, 
and traffic flow information, as node and edge features, providing a 
comprehensive basis for informed decision-making in the placement of 
EVCS.

3.2. Urban charging graph representation learning

We approach the challenge of capturing structural information and 
encoding the relational context of urban charging demand through 
the lens of graph representation learning, specifically utilizing graph 
autoencoders. This approach allows us to effectively capture and lever-
age the complex relationships inherent in the graph structure of urban 
charging demand. These relationships encompass a wide array of influ-
encing factors, including spatial characteristics, existing demand pat-
terns, urban vitality indicators, demographic composition, traffic flow 
dynamics, area reachability, and safety considerations. Using graph 
auto-encoders, we can distill these multifaceted and interconnected 
elements into a comprehensive representation that faithfully reflects 
the intricacies of urban EV charging ecosystems.

The application of autoencoders for unsupervised graph represen-
tation learning based on GNNs has been proposed in [38]. An au-
toencoder architecture typically comprises three key components: an 
encoder, latent representations, and a decoder. The primary role of 
an encoder function is to map the input data into a compact latent 
space, while the decoder attempts to reconstruct the original input from 
these latent representations. This reconstruction process is guided by 
a specified reconstruction criterion, ensuring that the learned repre-
sentations capture essential features of the input data. In the context 
of graph autoencoders, let 𝑓𝑒 denote the graph encoder function and 
𝑓𝑑 represent the graph decoder function. The fundamental objective of 
graph autoencoders is to learn the following mappings: 

𝐻 ′ = 𝑓𝑒(𝐴,𝑋), 𝐺′ = 𝑓𝑑 (𝐴,𝐻 ′), (2)

where for an input 𝑋, 𝐻 ′ denotes the latent space, while 𝐺′ represents 
the reconstructed features of the graph computed by the decoder.
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[39] introduced completely symmetric graph convolutional autoen-
coders that leverage both the graph structure and node attributes 
throughout the entire encoding-decoding process. This approach ad-
dresses the instability issues commonly associated with graph convo-
lutional layers by incorporating Laplacian sharpening layers, which 
counteract the smoothing effects typically observed in these models. 
While this method effectively resolves several common graph repre-
sentation learning challenges, it does not provide a mechanism for 
dynamically weighting node importance. In the context of GNNs, node 
representations are typically learned using a set of node features. The 
conventional GNN approach involves node-level feature aggregation 
within a defined neighborhood, iteratively learning node representa-
tions by aggregating information from neighboring nodes to create a 
latent representation 𝐻 ′. However, this standard methodology often 
assumes uniform importance across all neighbors, assigning aggrega-
tion weights based solely on degree distance. This uniform weighting 
approach, while computationally efficient, may not accurately capture 
the nuanced relationships and varying degrees of influence between 
nodes in complex networks, such as those representing urban EV charg-
ing demand. The inability to dynamically adjust node importance can 
potentially limit the model’s ability to discern and leverage critical 
patterns in the data, particularly in scenarios where certain nodes or re-
lationships carry disproportionate significance in determining optimal 
EVCS placement.

To address these limitations, we employ the self-attention mech-
anism during the encoding phase using Graph Attention Networks 
(GATs) [40]. Unlike conventional GNNs, GATs dynamically assign 
weights to neighboring nodes based on their relative importance within 
the neighborhood, utilizing a masked attention mechanism. The input 
to a GAT layer is a set of node features 𝑋 = 𝑋1, 𝑋2,… , 𝑋

||, where 𝑋𝑖 ∈
R𝐹  represents the feature vector of node 𝑖. The layer then computes an 
output 𝐻 ′ = 𝐻 ′

1,𝐻
′
2,… ,𝐻 ′

||, where 𝐻 ′
𝑖 ∈ R𝐹 ′  and cardinality 𝐹 ′ may 

differ from the input feature dimension 𝐹 . The key innovation of GATs 
lies in their computation of attention coefficients 𝛼𝑖𝑗 . These coefficients 
quantify the importance of the feature vector of node 𝑗 to node 𝑖. The 
coefficients are computed only for nodes 𝑗 ∈ 𝑖, where 𝑖 represents 
a defined neighborhood of node 𝑖 in the graph. 

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑎(𝐖𝐻𝑖,𝐖𝐻𝑗 ))

∑

𝑘∈𝑖
𝑒𝑥𝑝(𝑎(𝐖𝐻𝑖,𝐖𝐻𝑘))

, (3)

where 𝐖 ∈ R𝐹 ′×𝐹  represent a network weight matrix, and 𝑎 denotes 
the attention function. This masked self-attention mechanism allows 
the model to focus on relevant local structures while ignoring irrelevant 
or distant nodes.

As an urban graph tends to have a large amount of neighbors, 
to address the ‘‘neighbor explosion’’ problem often encountered in 
large urban graphs, we implement a data sampling procedure inspired 
by [41]. This approach involves obtaining a set of subgraphs by sam-
pling the original training graph and then constructing the graph 
autoencoder based on these subgraphs. This sampling strategy allows 
for efficient processing of large-scale urban networks while maintaining 
the integrity of local structures.

3.3. Node clustering and site selection algorithm

The generated graph embeddings are utilized as input for a k-
means clustering procedure, employed to create a classification of the 
utilization potential of EVCS locations. The classification scheme is 
based on utilization data, which was categorized into three balanced 
classes: low, medium, and high utilization. By classifying areas into 
these utilization categories, we can prioritize medium and high uti-
lization zones for further analysis in the charging station placement 
process, thereby optimizing the potential impact and efficiency of new 
EVCS installations.

To identify the best charging location among a set of potential 
candidate sites, we focus our analysis on medium and high utilization 
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Table 3
Battery capacity and range of the most sold EVs in the UK in the year 2023 [3].
 Vehicle model Battery capacity (kWh) Range (km) 
 Tesla Model Y 60–75 455–542  
 MG4 51–77 349–520  
 Audi Q4 e-tron 82 455–543  
 Tesla Model 3 60–78 513–528  
 Polestar 2 82 555-653  
 Volkswagen ID.3 62–82 430–558  
 Kia e-Niro 68 463  
 BMW i4 83.9 413-589  
 Volkswagen ID.4 82 515–550  
 Skoda Enyaq iV 82 538–547  

areas identified through clustering techniques. Our primary objective is 
to maximize area demand coverage by simulating the impact of adding 
new charging stations that can fully meet existing local demand. To 
quantify this impact, we introduce Incremental Coverage Difference 
(ICD) metric. The ICD metric evaluates the ‘‘usefulness’’ of potential 
infrastructure placement by measuring the incremental change in an 
area’s total charging output when a new station is added. This metric 
is designed to favor locations where new chargers can completely fulfill 
the existing demand in the area, thus maximizing the ‘‘impact’’ of each 
new installation. The ICD metric is based on the core charging demand 
factors and requires knowledge of three key elements: 1) total annual 
EV flow within the demand node, 2) average annual power requirement 
of an EV, and 3) maximal annual power output of a demand node. 
To estimate the approximate number of EVs in each city, we multiply 
the number of registered private vehicles 𝑁𝑐

𝐶𝐴𝑅 with the assumed 10% 
EV penetration rate: 𝑁𝑐

𝐸𝑉 = 0.1 × 𝑁𝑐
𝐶𝐴𝑅. Applying this formula to our 

case study cities yields the following estimates: 𝑁𝐺𝑙𝑎𝑠𝑔𝑜𝑤
𝐸𝑉 = 20,480 and 

𝑁𝐸𝑑𝑖𝑛𝑏𝑢𝑟𝑔ℎ
𝐸𝑉 = 17,850.
To quantify the charging frequency of EVs within city limits, we 

first establish key parameters based on existing data. Drawing from 
statistics on the most purchased vehicles in the UK shown in Table 
3, we set the average EV driving range to 𝑟𝑎𝑛𝑔𝑒𝑎𝑣𝑔 = 466.45 km and 
the average battery capacity to 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎𝑣𝑔 = 68.20 kWh. These figures 
provide a baseline for our calculations. We then incorporate traffic 
data from the UK Department of Transport Road Traffic Statistics for 
2022, which reports total annual traffic for private cars and taxis as 
𝑡𝐺𝑙𝑎𝑠𝑔𝑜𝑤 = 2.684 billion kilometers in Glasgow City and 𝑡𝐸𝑑𝑖𝑛𝑏𝑢𝑟𝑔ℎ = 2.293
billion kilometers in the City of Edinburgh. Using these figures, we 
calculate the average annual travel distance per car in each city using 
the formula: 
𝑑𝑐𝐶𝐴𝑅 = 1

𝑁𝑐
𝐶𝐴𝑅

𝑡𝑐 [ 𝑘𝑚
𝑦𝑒𝑎𝑟

], (4)

This yields 𝑑𝐺𝑙𝑎𝑠𝑔𝑜𝑤
𝐶𝐴𝑅  = 13,105.47 𝑘𝑚

𝑦𝑒𝑎𝑟  for Glasgow and 𝑑𝐸𝑑𝑖𝑛𝑏𝑢𝑟𝑔ℎ
𝐶𝐴𝑅  = 

12,845.94 𝑘𝑚
𝑦𝑒𝑎𝑟  for Edinburgh.

Assuming that EV users typically recharge their vehicles only when 
the battery capacity falls below 20%, we can calculate the yearly 
charging frequency of an EV: 

𝑓 𝑐
𝐸𝑉 = 𝑑𝑐𝐶𝐴𝑅 ÷ (𝑟𝑎𝑛𝑔𝑒𝑎𝑣𝑔 × 0.8)[

𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑦𝑒𝑎𝑟

] (5)

This yields 𝑓𝐺𝑙𝑎𝑠𝑔𝑜𝑤
𝐸𝑉 = 35.12 𝑐ℎ𝑎𝑟𝑔𝑒𝑠

𝑦𝑒𝑎𝑟  for Glasgow and 𝑓𝐸𝑑𝑖𝑛𝑏𝑢𝑟𝑔ℎ
𝐸𝑉 =

34.42 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑦𝑒𝑎𝑟  for Edinburgh.

Similarly, the average charging need of an EV per year is: 

𝑒𝑐𝐸𝑉 = 𝑓 𝑐
𝐸𝑉 ∗ (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎𝑣𝑔 ∗ 0.8)[ 𝑘𝑊

𝑦𝑒𝑎𝑟
] (6)

which results in 𝑒𝐺𝑙𝑎𝑠𝑔𝑜𝑤
𝐸𝑉 = 1916.14 𝑘𝑊

𝑦𝑒𝑎𝑟  for Glasgow and 𝑒𝐸𝑑𝑖𝑛𝑏𝑢𝑟𝑔ℎ
𝐸𝑉 =

1877.96 𝑘𝑊
𝑦𝑒𝑎𝑟  for Edinburgh.

To determine the charging power output of each station, we focus 
on a circular area with a radius of 500 m centered on each charging 
station. This radius is chosen based on previous studies, such as [29], 
which indicate that 500 m is generally considered a comfortable walk-
ing distance to a charging station. This approach allows us to define 
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charging demand nodes that realistically represent areas where EV 
users are likely to utilize a given charging station. Within each of 
these 500-m radius nodes, we calculate the annual traffic flow, taking 
into account the assumed 10% EV penetration rate. This calculation is 
crucial for estimating the potential charging demand in each node 𝑖 and 
is expressed as: 
𝑓𝑙𝑜𝑤𝑖

𝐸𝑉 = 0.1 × 𝑓𝑙𝑜𝑤𝑖
𝐶𝐴𝑅. (7)

where 𝑓𝑙𝑜𝑤𝑖
𝐸𝑉  represents the annual EV traffic flow within node 𝑖, and 

𝑓𝑙𝑜𝑤𝑖
𝐶𝐴𝑅 is the total annual traffic flow in that node.

Building upon our previous calculations, we next determine the total 
annual energy requirement for each demand node: 
𝐶 𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑙𝑜𝑤𝑖

𝐸𝑉 × 𝑒𝐸𝑉 [𝑘𝑊 ℎ]. (8)

To assess the current charging need within each demand node, we 
calculate its annual output based on the existing infrastructure. This 
calculation takes into account the average charger power output (𝑂𝑎𝑣𝑔) 
measured in kW, and assumes maximal (24-hour) energy utilization. 
The current annual output of a demand node is expressed as: 
𝐶 𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 24 × 365 × 𝑛𝑜_𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠𝑖 × 𝑂𝑖

𝑎𝑣𝑔[𝑘𝑊 ℎ]. (9)

As a result, the current demand node coverage can be estimated as: 

𝐶 𝑖 = 𝑚𝑖𝑛[
𝐶 𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐶 𝑖
𝑡𝑜𝑡𝑎𝑙

, 1][%]. (10)

To evaluate the impact of adding a new charging station to a 
demand node, we calculate the updated coverage of the node. This 
calculation considers the additional charging power output provided 
by the new charger, which has an output of 𝑐𝑜𝑢𝑡 measured in kilowatts 
(kW). The new coverage of the demand node after adding this charger 
is expressed as: 

𝐶 𝑖
𝑛𝑒𝑤 = 𝑚𝑖𝑛[

𝐶 𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 24 × 365 × 𝑐𝑜𝑢𝑡

𝐶 𝑖
𝑡𝑜𝑡𝑎𝑙

, 1][%]. (11)

In this formula, 𝐶 𝑖
𝑛𝑒𝑤 represents the new total coverage of demand 

node 𝑖 after the addition of the new charger.
To quantify the impact of adding a new charging station to a 

demand node, we introduce the Incremental Coverage Difference (ICD) 
metric. This metric provides a measure of the improvement in output 
relative to the node’s energy requirements. The ICD is calculated using 
the following formula: 
𝐼𝐶𝐷𝑖 = 𝐶 𝑖

𝑛𝑒𝑤 − 𝐶 𝑖[%]. (12)

As a result, this study adopted a problem setup tailored to identify 
areas or communities that would benefit most from the installation of 
a single charging point. Our approach focuses on a methodology that 
assesses the impact and accessibility for underserved regions rather 
than following traditional optimization frameworks. We model the 
urban context by framing a graph-based problem where each potential 
or existing charging point represents a charging demand node that 
holds information about existing charging and parking infrastructure, 
traffic flow, socio-demographic factors, POIs, and charging utilization 
within the demand node area, as defined in GNN graph construction 
process explained in Section 3.1. Following the node clustering step, 
as indicated in Fig.  4, the potential sites are ranked based on their 
ICD values. Each potential site is a binary variable: either it gets a 
charging point or not, while constraints include the number of sites 
selected, ensuring geographic spread, and the selected nominal power 
of a charging point. Algorithm 1 presents a systematic method for 
identifying locations for new charger installations based on their ICD 
scores. This approach considers the installation of 𝑘 number of new 
chargers with a predefined power output and assesses the incremental 
benefit of adding a new charging station to an existing demand node. 
The algorithm focuses on a charging demand node area, which contains 
𝑛  existing chargers and 𝑛  parking stations. As a result, the 
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑎𝑟𝑘𝑖𝑛𝑔

10 
Algorithm 1 Site Selection Algorithm for New Charging Stations
Require: Charging nodes  , Number of chargers to be installed 𝑘, New 

chargers power output 𝑐𝑜𝑢𝑡 [kW]
1: Initialize list of new stations: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ← []
2: for 𝑖 = 1 to 𝑘 do 
3: 𝑚𝑎𝑥𝐼𝐶𝐷 ← 0
4: 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑢𝑙𝑙
5: for each node 𝑣 ∈  do 
6: Calculate 𝐼𝐶𝐷𝑣 (Eq. (12)) 
7: if 𝑣𝑡𝑦𝑝𝑒 == 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 and 𝑛𝑣𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ≥ 1 then 
8: if 𝐼𝐶𝐷𝑣 > 𝑚𝑎𝑥𝐼𝐶𝐷 then 
9: 𝑚𝑎𝑥𝐼𝐶𝐷 ← 𝐼𝐶𝐷𝑣

10: 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝑣
11: end if
12: end if
13: end for
14: Add site 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛 to 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
15: for 𝑣 ∈  do 
16: Calculate the distance 𝑑𝑖𝑠𝑡𝑣 from node 𝑣 to 𝑚𝑎𝑥𝐼𝐶𝐷𝑆𝑡𝑎𝑡𝑖𝑜𝑛
17: if 𝑑𝑖𝑠𝑡𝑣 ≤ 𝑟 then 
18: 𝑛𝑣𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ← 𝑛𝑣𝑝𝑎𝑟𝑘𝑖𝑛𝑔 − 1
19: 𝑛𝑣𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ← 𝑛𝑣𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 1
20: Recalculate node coverage given newly added 𝑐𝑜𝑢𝑡 (Eq. (11))
21: end if
22: end for
23: end for
24: return 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠

computed ICD values are sorted in descending order, as seen in Figs. 
7 and 8. A higher ICD score indicates a demand node with unmet 
charging needs due to insufficient infrastructure, where installation of 
a new charging point would make a significant impact on meeting the 
area needs, making it a prime candidate for new charger installation. 
Conversely, sites that already meet or exceed the local charging demand 
are excluded from consideration, ensuring efficient resource allocation. 
This data-driven approach allows for targeted expansion of the charging 
network, prioritizing areas where new installations will have the most 
substantial impact on improving charging accessibility and meeting the 
growing demands of EV users. As a result, by systematically evaluating 
potential sites based on their ICD scores, urban planners and policy-
makers can make informed decisions that optimize the distribution of 
charging infrastructure across the city, ultimately enhancing the overall 
EV ecosystem.

3.4. EVCS access equity evaluation

To address broader transportation justice concerns and ensure that 
the proposed methodology does not exacerbate existing socio-spatial 
disparities, Lorenz curves and the associated Gini coefficients were 
calculated based on data-zone-level EVCS accessibility. Given increas-
ing policy emphasis on just transition in transportation electrification, 
this metric provides valuable insight in distributional inequality. This 
is further motivated by previous work in evaluating equity of spatial 
planning [42,43]. In the context of EVCS infrastructure, the Lorenz 
curve plots the cumulative percentage of the population on the hori-
zontal axis against the cumulative percentage of accessibility to EVCS 
infrastructure on the vertical axis. A perfectly equal distribution corre-
sponds to a 45-degree line, often called the line of equality, where each 
fraction of the population has equal access to EVCS infrastructure. The 
area between the Lorenz Curve and the line of equality quantitatively 
captures inequality within the distribution, where a larger area indi-
cates greater inequality. Formally, the Lorenz Curve 𝐿(𝑝) can be defined 
mathematically as:

𝐿(𝑝) =
∫ 𝑝
0 𝐹−1(𝑞) 𝑑𝑞
1 −1
∫0 𝐹 (𝑞) 𝑑𝑞
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Fig. 5. Average hourly EVCS utilization statistics per area.
𝐿(𝑝) is the value of the Lorenz curve at percentile 𝑝, 𝐹−1(𝑥) is the 
inverse cumulative distribution function of EVCS accessibility values, 
while 𝑝 represents the proportion of the population. The Lorenz Curve 
facilitates the computation of numerical measures of inequality, such 
as the Gini coefficient, which quantifies the deviation of the observed 
distribution from perfect equality. The Gini coefficient is calculated as 
twice the area between the line of equality and the Lorenz Curve:

Gini = 1 − 2∫

1

0
𝐿(𝑝) 𝑑𝑝

A Gini coefficient of 0 represents perfect equality (the Lorenz curve 
follows the line of perfect equality), while a value of 1 indicates 
maximum inequality.

4. Experimental results and discussion

4.1. Clustering evaluation metrics

To assess the quality of utilization-based clustering, we use three 
common performance evaluation metrics: Accuracy, Adjusted Rand In-
dex (ARI) [44], and Normalized Mutual Information (NMI) [45]. Accu-
racy evaluates classification accuracy within three possible utilization 
classes, while the Rand Index (RI), defined as: 

𝑅𝐼 =
𝑝 + 𝑞
(𝑛
2

) , (13)

calculates a similarity between two cluster results by comparing all 
points within the same cluster. 𝑝 is the number of pairs correctly placed 
in the same cluster, 𝑞 is the number of pairs correctly placed in different 
clusters, and 𝑛 is the total number of elements. Adjusted Rand Index 
(ARI), defined as: 

𝐴𝑅𝐼 = RI − E[RI]
max(RI) − E[RI] , (14)

extends RI by accounting for different models of random clusterings, 
with values ranging from approximately 0 for random labeling to 1 for 
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perfect agreement. Normalized Mutual Information (NMI), calculated 
as: 
𝑁𝑀𝐼 = 2 ×

𝐼(𝑈, 𝑉 )
𝐻(𝑈 ) +𝐻(𝑉 )

, (15)

quantifies the shared information between predicted and true cluster-
ings, where 𝐼(𝑈, 𝑉 ) is the mutual information and 𝐻(𝑈 ), 𝐻(𝑉 ) are 
the entropies of the clusterings. NMI ranges from 0 (no sharing) to 1 
(perfect correlation).

These complementary metrics offer a comprehensive assessment of 
our algorithm’s clustering performance, capturing different aspects of 
the results’ quality and reliability.

4.2. Results: EVCS land use identification and statistical analysis

A key component of our proposed approach involves the localiza-
tion of land uses within the council limits of Glasgow City and the 
City of Edinburgh. The land use clustering procedure, as illustrated 
in Fig.  3, reveals distinct patterns in local land use characteristics 
across both cities. In Glasgow and Edinburgh, the analysis identifies 
commercial areas predominantly within the city centers. These zones 
correlate strongly with a high concentration of social and especially 
recreational POIs, reflecting the diverse entertainment options typically 
found in urban cores. Notably, these commercial areas also coincide 
with lower car traffic volumes, likely influenced by the implementation 
of low-emission zones in both city centers. The distribution of EVCS 
infrastructure shows a significant concentration within commercial 
zones. This pattern may indicate a potential saturation of charging 
facilities in these areas, suggesting a need for strategic reassessment 
of future EVCS placements. Commercial zones also exhibit lower rates 
of income (measured by the percentage of the population receiving 
income support) and employment deprivation (measured by the per-
centage of the population who are employment deprived), but also the 
highest population density and the highest incidence of reported crime, 
aligning with typical urban center characteristics. Working areas, as 
identified by our analysis, are characterized by higher traffic counts 
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Fig. 6. ICD performance results.
Table 4
Clustering performance for Glasgow (left) and Edinburgh (right)

 Algorithm Accuracy ARI NMI  
 Kmeans 0.2566 0.0015 0.0009 
 Spectral 0.3837 0.0394 0.0213 
 Agglomerative 0.2020 0.0017 0.0002 
 GraphSage 0.3589 0.0124 0.0079 
 Proposed (Ours) 0.5770 0.0458 0.0138 

 

 Algorithm Accuracy ARI NMI  
 Kmeans 0.2383 0.0682 0.0520 
 Spectral 0.3262 0.0279 0.0303 
 Agglomerative 0.3262 0.0656 0.0510 
 GraphSage 0.3817 0.0293 0.0264 
 Proposed (Ours) 0.6258 0.1467 0.0838 
and notably, the highest rates of income and employment deprivation. 
The distribution of EVCS infrastructure in working areas appears less 
consistent, with some zones showing a lack of facilities compared to 
residential areas, while others contain large concentrations of deployed 
EVCS infrastructure. Residential areas, in contrast, generally report 
lower levels of traffic in Glasgow, while showing high variability in 
Edinburgh, possibly due to a large number of residential housing 
along major roads. Results indicate that EVCS infrastructure is severely 
lacking in residential areas in both cities.

Observing per-area hourly EVCS utilization shown in Fig.  5, the 
data reveals distinct patterns in EVCS usage across Glasgow and Edin-
burgh, highlighting urban disparities and lifestyle differences. Glasgow 
generally shows higher utilization rates than Edinburgh, particularly 
in residential charging within deprived areas. In Glasgow, deprived 
residential areas show similar utilization compared to non-deprived ar-
eas. This suggests possible under-utilization of non-deprived charging, 
explained by the fact that the majority of Glasgow falls within deprived 
areas, as seen in Fig.  7. The city center falls within non-deprived 
areas, where the majority of EVCSs are located. Thus, the results could 
indicate a general under-utilization of city center EVCS charging. In 
terms of time patterns, the utilization generally peaks around 6 PM, 
coinciding with the approximate time of commute home from work. 
Commercial areas indicate utilization peak around 9 AM, possibly due 
to the large amount of commuters parking their cars within the city 
center charging locations, where there is the highest overall recorded 
utilization peak. Working areas of Glasgow showcase similar utilization 
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patterns as commercial areas in deprived areas, peaking in the morning 
hours and gradually lowering the utilization, which is explained by 
workers commuting back home. In non-deprived areas, this trend is 
less apparent and the utilization is relatively consistent throughout the 
working hours.

In Edinburgh, the most striking difference in utilization is between 
deprived and non-deprived residential areas. While non-deprived uti-
lization peaks at around 10% in the morning, deprived areas experience 
only 5% utilization, which rapidly lowers throughout the day. This 
indicates limited access to public charging within deprived areas of Ed-
inburgh, which has a direct impact on utilization due to high overstay 
periods and limited charging opportunities in the second half of the 
day. Utilization in commercial areas is relatively consistent between 
deprived and non-deprived communities, peaking in the morning, and 
sharply declining until the end of the day. Interestingly, utilization in 
working areas, while lower, experiences a similar pattern between non-
deprived working areas of Glasgow and Edinburgh, indicating similar 
charging behavior within these areas.

4.3. Results: Utilization-based clustering

In this subsection, we present the results of our proposed place-
ment methodology, focusing on the performance of our GNN-based 
clustering approach for selecting potential candidate sites based on 
their utilization potential, as described in Section 2.3. Table  4 compares 
the performance of our proposed method against several widely-used 
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Fig. 7. Proposed EVCS infrastructure placement sites in Glasgow. The top 15 results are displayed with a number on top. Yellow markers are existing charging stations in the 
selected areas. Red-blue overlay corresponds to area deprivation, where blue is less deprived and red more deprived.
clustering techniques, including K-means, Spectral, and Hierarchical 
Agglomerative Clustering, as well as other graph-based approaches 
such as [46]. This comparison provides a comprehensive evaluation of 
our approach within the broader context of clustering methodologies. 
K-means and spectral clustering analyze the data based solely on its in-
herent features, offering a baseline for traditional clustering techniques. 
In contrast, GraphSAGE employs an unsupervised graph representation 
technique, aggregating feature information from a node’s location and 
environment.

The performance discrepancies observed in Table  4 between tra-
ditional clustering methods and our proposed GNN-based approach 
highlight the inherent complexity of identifying high charging demand 
areas for EV infrastructure. Traditional clustering techniques, while 
effective in many scenarios, struggle to capture the non-linear rela-
tionships between the diverse factors influencing charging demand. 
This limitation is particularly evident in Glasgow, where the accuracy 
of conventional methods is notably lower, primarily due to the city’s 
intricate urban topology and mixed-use nature of many neighborhoods. 
Such a diverse and interconnected urban landscape makes it chal-
lenging to delineate clear boundaries between high, medium, and low 
utilization areas using conventional clustering techniques. The blending 
of different land uses and activities creates a more nuanced charging 
demand pattern that requires a more sophisticated analytical approach. 
In contrast, Edinburgh presents a somewhat easier scenario for tradi-
tional clustering methods. The city’s urban structure exhibits a clearer 
separation between high, medium, and low utilization areas, likely due 
to a more distinct spatial organization of land use areas. Our GNN-based 
approach demonstrates superior accuracy by effectively capturing the 
spatial relationships between charging demand nodes. By propagating 
information through the graph structure, the GNN incorporates broader 
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contextual information about the surrounding area, which is crucial for 
understanding the intricate dynamics of urban charging demand. This 
ability to account for complex spatial interactions and the multifaceted 
nature of factors influencing EV charging demand allows our method 
to outperform traditional techniques, particularly in complex urban 
environments like Glasgow.

4.4. Discussion: EVCS localization

The three proposed placement strategies (working/industrial, resi-
dential and commercial) are defined based on the land use processing 
described in the study (see Section 2.2.6). The ‘‘residential area’’ policy 
aims to populate public parking available in residential areas with 
appropriate power output of charging stations based on their ICD 
values. Similarly, the other two policies focus on commercial and work-
ing/industrial areas. As shown in Fig.  6, the proposed model behaves 
differently depending on the proposed land use and battery capacity. 
In residential areas, noticeable differences in behavior were observed 
between Glasgow and Edinburgh. In Glasgow, the installation of higher 
power output stations (34 kW and 50 kW) significantly improved ICD, 
with the 50 kW stations achieving around 55%. Conversely, lower 
power output stations (7 kW) showed more modest increases, high-
lighting the limited efficacy of low-power stations in residential urban 
settings, likely due to already sufficient residential charging within 
the city limits. On the other hand, 22 kW stations showed the best 
improvement over the initial 50 installations, indicating high potential 
for 22 kW infrastructure placement in Glasgow’s residential areas.

Observing the EVCS placements shown in Fig.  7, the east end of 
Glasgow has been identified as a high-potential area, particularly the 
Shettleston constituency (Fig.  7.a - rank 1,3, and Fig.  7.b - rank 1,2,3), 
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Fig. 8. Proposed EVCS infrastructure placement sites in Edinburgh. Top 15 results are displayed with a number on top. Top 15 results displayed with a number on top. Yellow 
markers are existing charging stations in the selected areas. Red-blue overlay corresponds to area deprivation, where blue is less deprived and red more deprived.
which is a good site for fair infrastructure placement, providing much-
needed infrastructure to region scoring higher than average on the 
deprivation index. Additionally, this area also offers high utilization 
potential due to its proximity to large supermarkets and parks. The 
residential EVCS placement with rank 2 is located in an underserved 
area near major Linn Park, filling the infrastructure gap between the 
non-deprived area in the northwest and the deprived area in the south-
east of the potential EVCS placement location. Other high-potential 
residential areas include the borders of Maryhill and Canal wards (Fig. 
7.a - rank 11–14), as well as Southside Central ward areas around 
Queens Park, known for its many restaurants and other POIs (Fig. 
7.a - rank 5–9). Interestingly, Edinburgh exhibited a more pronounced 
response to slow residential charging, with 7 kW stations facilitating 
up to a 50% improvement in ICD, indicating that residential areas of 
Edinburgh significantly lack needed infrastructure that would fulfill 
demand by installation of slow overnight charging. To this end, as 
suggested in [47], utilization of existing lamp posts for on-street EV 
charging in residential areas might be an effective method for faster 
expansion of slow overnight charging.

Policy focused around the installation of slow overnight charging 
is especially effective for deprived areas of Edinburgh, where sta-
tistical analysis performed in Section 4.2 showed a general lack of 
infrastructure which has a further pronounced impact on overall EVCS 
utilization (as seen in Fig.  5) due to high overstay periods resulting 
in unavailability of charging options. Observing the results in Fig.  8, 
the ward of Almond (Fig.  8.a - rank 2) shows high potential for EVCS 
placement due to its lower-than-average EVCS infrastructure numbers, 
as well as the Liberton area (Fig.  8.a - rank 3–4), which is close to major 
roads and large retail areas. The non-deprived Corstorphine area (Fig. 
8.a - rank 5–10), featuring numerous shops and major roads, as well 
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as Edinburgh Zoo, also shows great potential for 7–22 kW residential 
charging.

When it comes to EVCS placement in working and industrial areas 
of Glasgow, the results suggest a similar strategy to residential areas, 
where 22 kW installations might provide the best utility-to-cost ratio, 
with around a 30% overall ICD improvement. Based on Fig.  7, high-
potential areas include deprived areas at the eastern end of Shettleston 
(Fig.  7.b - rank 1–3), close to large factories, and the Haghill area 
near a university campus and a large retail park (Fig.  7.b - rank 4), 
largely due to a lack of infrastructure and high charging demand. Other 
high-potential areas include the Govan area (Fig.  7.b - rank 5,6,8), 
which hosts a large recycling center, business centers, the UK Visa 
and Immigration center, warehouses, and a subway depot, and lacks 
general charging infrastructure. Overall, Edinburgh displays higher 
potential for ICD improvement within working and industrial areas. 
While maximum improvement for fast charging is similar, 7 kW EVCS 
placements display large improvements over the initial 50 installations. 
The highest potential lies in the South Queensferry area (Fig.  8.b - 
rank 2), an area of high importance due to the construction of a new 
bridge carrying the M90 motorway, connecting northern Scotland with 
Edinburgh. Contrary to residential land use, the difference in utility 
gained from installing slow 7 kW and other charging stations, while 
low in Edinburgh, is significant in Glasgow, suggesting a need for 
rapid infrastructure in the working and industrial areas. This insight 
is invaluable for stakeholders, indicating that working and industrial 
areas of Glasgow, often close to major roads, are lacking in EVCS 
infrastructure.

The proposed policy for infrastructure placement in commercial 
areas shows the lowest potential across Glasgow and Edinburgh. In 
Glasgow, the installation of higher power output stations (34 kW 
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Fig. 9. Lorenz curves for EVCS accessibility across different land use and deprivation areas before and after the proposed approach.
and 50 kW) demonstrated a modest improvement in ICD, with the 
50 kW stations achieving around 17%. In contrast, Edinburgh achieved 
an improvement of more than 25% with 50 kW charging stations. 
Interestingly, the relative improvement between the desired charging 
capacities is similar between the two cities, suggesting predictable 
behavior within commercial areas due to similarities in existing infras-
tructure, residential density, presence of points of interest, and traffic 
behavior. The preference for higher EVCS output suggests a potential 
saturation of slow EV charging and the need for faster infrastructure. 
In Glasgow, areas away from the city center are favored, which is 
a welcome policy, as the city center is designated as a low-emission 
zone. High-potential areas include deprived areas in Dennistoun, close 
to a large retail park, and retail centers in the deprived Drumchapel 
area. In Edinburgh, high-ranking areas include retail areas in South 
Queensferry, Silverknowes, and the area close to the historic city 
center.

4.5. Discussion: EVCS placement and equity in access to EVCS

In this subsection, we discuss the relation of the proposed new 
EVCS localization to deprivation, shown in Figs.  9 and 10. Examin-
ing the Lorenz curves shown in Fig.  9 reveals profound inequities 
in EVCS accessibility across different urban contexts. Prior to imple-
mentation of the new placement strategy, residential areas exhibited 
the most severe inequality, with high Gini coefficients ranging from 
0.799 to 0.901, with deprived Edinburgh representing the most ex-
treme case. The steep curvature of these residential lines indicates 
that approximately 80% of the population has access to less than 20% 
of available charging infrastructure, creating significant accessibility 
deserts. Commercial zones, while still inequitable, demonstrated rel-
atively better distribution (Gini coefficients 0.623–0.727), potentially 
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reflecting the concentration of existing infrastructure in business dis-
tricts and retail centers. Working areas similarly suffered from poor 
distribution (Gini coefficients 0.716–0.827). Notably, a clear socioe-
conomic gradient emerged, with deprived areas consistently experi-
encing higher inequality than their non-deprived counterparts, except 
for commercial zones in Glasgow where the pattern was reversed. 
Geographic disparities were also evident, with Edinburgh displaying 
more extreme inequality than Glasgow, particularly in residential con-
texts. This landscape reveals systemic biases in EVCS distribution that 
likely reflect broader patterns of infrastructure investment prioritiz-
ing commercial centers and affluent neighborhoods, while neglecting 
residential and working areas, especially in deprived communities. 
The extreme bowing of most curves indicates severe concentration of 
accessibility resources, potentially creating substantial barriers to EV 
adoption among disadvantaged populations and reinforcing existing 
transportation inequities.

Following implementation of the proposed placement strategy, the 
Lorenz curves reveal significant improvements in EVCS accessibility 
distribution across all urban contexts. Commercial areas exhibited the 
most dramatic transformation, with Gini coefficients falling to the 
0.447–0.509 range, representing the closest approximation to equitable 
distribution among all land use types. This substantial improvement 
indicates that strategic placement effectively countered pre-existing 
commercial concentration biases. Working areas showed moderate 
improvements (post-intervention Gini coefficients 0.607–0.703), with 
Non-Deprived Edinburgh experiencing the most substantial gains. Res-
idential zones, while improved, retained the highest level of inequality 
(Gini coefficients 0.561–0.789), suggesting these areas remain the 
most challenging for achieving equitable EVCS distribution—likely 
due to complex residential density patterns and infrastructure limi-
tations. Importantly, these positive outcomes stand in sharp contrast 
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Fig. 10. Increase in the ratio of chargers in deprived zones per land use area after the proposed infrastructure placement strategy.
to what would have occurred with a poor placement strategy. Had 
the proposed EVCS installation strategy merely reinforced existing 
infrastructure patterns or prioritized areas with already sufficient cov-
erage, Gini coefficients would have increased rather than decreased, 
further exacerbating socioeconomic and geographic disparities. En-
couragingly, the intervention diminished the socioeconomic gradient, 
with deprived areas experiencing proportionally larger improvements 
than non-deprived areas in most contexts. This is particularly relevant 
for the case of Edinburgh, where the non-deprived residential areas 
achieved the lowest post-intervention Gini coefficient (0.561) among 
all residential contexts. While perfect equity remains unachieved, the 
consistent flattening of all Lorenz curves demonstrates that the pro-
posed strategic placement can substantially redistribute accessibility 
resources. The post-intervention landscape shows that approximately 
60% of the population now has access to 20%–30% of charging in-
frastructure (compared to under 10% pre-intervention), representing 
a significant step toward more inclusive EV infrastructure develop-
ment, though persistent gaps indicate ongoing challenges in achieving 
truly equitable distribution. Fig.  10 provides critical insight into the 
mechanism behind these equity improvements, illustrating how the 
proposed station ranking method progressively affects the proportion 
of chargers in deprived areas during installation. Glasgow’s working 
areas (Fig.  10b) show the most consistent upward trajectory, increasing 
from approximately 54% to 62% charger presence in deprived areas, 
explaining the substantial Gini coefficient improvement in this con-
text. Similarly, Edinburgh’s working areas (Fig.  10e) demonstrate the 
most dramatic proportional increase, more than doubling from 7.5% 
to around 20%. The fluctuating patterns in commercial areas (Fig. 
10c, Fig.  10f) align with their more moderate equity improvements, 
while residential installations show varied patterns between cities, with 
Glasgow (Fig.  10a) exhibiting earlier prioritization of deprived areas 
compared to Edinburgh, with sharp increase after initial 50 installations 
(Fig.  10d).

4.6. Discussion: Scalability and transferability

The proposed methodology can be adapted across different cities, 
and more readily within the UK, including cities in England and Wales. 
Direct application is possible due to equivalent socio-economic indi-
cators - the Index of Multiple Deprivation (IMD) for England and the 
Welsh Index of Multiple Deprivation (WIMD) for Wales are directly 
comparable to the SIMD data used in our study. These indices share 
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similar underlying domains including income, employment, health, 
education, and geographical access, enabling consistent node feature 
construction across UK cities. Outwith the UK, while specific depriva-
tion metrics may differ, a mapping of pertinent deprivation metrics to 
the application domain can be made. Regardless, the core methodol-
ogy of constructing charging demand nodes and their relationships, 
as described in Section 3, is applicable to all application domains. 
The approach requires three fundamental data categories that are 
typically available in most urban areas: (1) spatial infrastructure data 
(obtainable through OpenStreetMap), (2) socio-economic indicators 
(available through national census or similar demographic surveys), 
and (3) mobility patterns (accessible through traffic counts or similar 
transportation data). Cities lacking historical EVCS utilization data 
could initially calibrate the model using proxy metrics such as vehicle 
ownership rates, parking utilization, or traffic flow patterns. The graph 
construction methodology, based on 500-m radius nodes and their 
spatial relationships, is geography-agnostic and can be applied to any 
urban environment. The GNN architecture itself is flexible enough to 
accommodate varying numbers and types of input features, allowing 
for adaptation to locally available data while maintaining the core 
principles of geodemographic-aware infrastructure planning.

5. Conclusions and future work

This research presents a novel geodemographic aware approach to 
EVCS placement through GNN modeling. By fusing socio-demographic 
data, spatial dynamics, and post-installation impacts, our methodology 
addresses the critical gaps in existing infrastructure planning strategies. 
The case study of Glasgow and Edinburgh demonstrates the effec-
tiveness of this approach, optimizing EVCS placement for efficiency 
and equity. Key advantages of using GNNs include consideration of 
underserved communities, nuanced understanding of urban dynamics, 
and maximization of new charging station utilization. Experimental 
results validate the utility of the proposed method, showing significant 
improvements in strategic placement and use of EV charging stations. 
The proposed GNN-based approach demonstrates strong scalability 
potential for larger urban environments. Our model leverages GATs 
which are inherently more efficient than traditional GNNs due to 
their selective attention mechanism that focuses on important node 
relationships, and can also mitigate over-squashing issues related to 
large-scale graphs [48]. From a computational perspective, the scal-
ability of GNN architectures has been demonstrated in substantially 
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larger applications, including citation networks with millions of nodes, 
social networks with billions of edges, and molecular graphs analyzing 
hundreds of thousands of compounds. The urban context, being rela-
tively constrained in comparison, with node numbers in the range of 
thousands, presents a more computationally manageable environment.

However, we acknowledge certain limitations of our work. The 
primary limitations center around the temporal analysis constraints, 
as our model primarily focuses on static spatial patterns and does not 
fully incorporate temporal aspects such as seasonal fluctuations or long-
term EV adoption trends. Building on this, to improve estimations of 
the potential EV count used for ICD calculation, demographic profiling 
of potential EV consumers alongside comprehensive surveys could be 
utilized. Additionally, notable gaps include the absence of electrical 
grid power output considerations and associated infrastructure up-
grade requirements, which could significantly impact implementation 
feasibility, as well as aspects related to renewable energy availabil-
ity and the carbon footprint associated with charging infrastructure 
deployment, both of which could greatly impact sustainability out-
comes. Lastly, refining accessibility calculations at specific charging 
demand nodes could provide more precise insights, enabling more 
targeted analysis and improved placement strategies at localized levels. 
Future research should address these gaps by incorporating temporal 
dynamics, analyzing grid stability impacts, examining carbon foot-
print implications, investigating relationships with other transportation 
modes, and performing comparative analyses across different urban 
environments. Promising research directions include studying EVCS 
placement effects on power grid stability, enhancing GNN models to 
include alternative transportation options, and developing reinforce-
ment learning frameworks for dynamic charging recommendations. 
Additionally, proximity to brownfield sites presents an opportunity for 
more sustainable placement decisions that could help mitigate potential 
grid constraints. These enhancements would collectively contribute 
to more robust, adaptable, and equitable EVCS placement strategies. 
This research presents a novel geodemographic aware approach to 
EVCS placement through GNN modeling. By fusing socio-demographic 
data, spatial dynamics, and post-installation impacts, our methodology 
addresses the critical gaps in existing infrastructure planning strategies. 
The case study of Glasgow and Edinburgh demonstrates the effec-
tiveness of this approach, optimizing EVCS placement for efficiency 
and equity. Key advantages of using GNNs include consideration of 
underserved communities, nuanced understanding of urban dynamics, 
and maximization of new charging station utilization. Experimental 
results validate the utility of the proposed method, showing significant 
improvements in strategic placement and use of EV charging stations. 
The proposed GNN-based approach demonstrates strong scalability 
potential for larger urban environments. Our model leverages GATs 
which are inherently more efficient than traditional GNNs due to 
their selective attention mechanism that focuses on important node 
relationships, and can also mitigate over-squashing issues related to 
large-scale graphs [48]. From a computational perspective, the scal-
ability of GNN architectures has been demonstrated in substantially 
larger applications, including citation networks with millions of nodes, 
social networks with billions of edges, and molecular graphs analyz-
ing hundreds of thousands of compounds. The urban context, being 
relatively constrained in comparison, with node numbers in the range 
of thousands, presents a more computationally manageable environ-
ment. However, we acknowledge certain limitations of our work. The 
primary limitations center around the temporal analysis constraints, 
as the model focuses mainly on static spatial patterns without fully 
incorporating seasonal variations or long-term EV adoption trends. 
Additionally, notable gaps include the absence of electrical grid power 
output considerations and associated infrastructure upgrade require-
ments, which could significantly impact implementation feasibility, 
as well as renewable energy availability, and the carbon footprint 
of the charging infrastructure. Future work should focus on incor-
porating temporal dynamics, investigating grid stability and carbon 
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footprint, exploring multi-modal transportation relationships, and con-
ducting cross-city comparisons. Some of the possible research directions 
include: examining EVCS placement impacts on the power grid, refining 
GNN construction to integrate alternative transportation modes, and 
framing the methodology as a reinforcement learning problem for real-
time charging recommendations. To address the possibility of grid 
constraints, proximity to brownfield sites could act as an opportunity 
for more sustainable placement decisions. By addressing these areas, 
future research can build upon this foundation to create more robust, 
adaptable, and equitable EVCS placement strategies.
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