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1 Introduction
Let n be a positive integer. A permutation of length n is a rearrangement
of the set [n] := {1, 2, . . . , n} and ε denotes the empty permutation. For a
permutation π = π1π2 · · ·πn with πi = n, the stack-sorting operation S is
recursively defined as follows, where S(ε) = ε:

S(π) = S(π1 · · ·πi−1)S(πi+1 · · ·πn)n.

A permutation π is t-stack-sortable if the permutation St(π), obtained by
applying the stack-sorting operation t times, is the identity permutation.
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The study of (t-)stack-sortable permutations has attracted great attention
in mathematics and theoretical computer science (see, e.g. [1, 2, 7, 8, 9, 10,
11, 14, 15, 26]).

Clearly, all permutations are (n − 1)-stack-sortable. Knuth [19] discov-
ered that the Catalan numbers Cn = 1

n+1

(
2n
n

)
count the number of permu-

tations of length n whose resulting permutations are 1-stack-sortable per-
mutations of length n. It turns out that 1-stack-sortable permutations are
precisely 231-avoiding permutations, where a permutation π1π2 · · ·πn avoids
a pattern p = p1p2 · · · pk (which is also a permutation) if there is no sub-
sequence πi1πi2 · · ·πik such that πij < πim if and only if pj < pm [18]. For
the cases of t = 2 and t = n − 2, enumeration results for t-stack-sortable
permutations were given by West [25], and for t = n − 3 and t = n − 4 by
Claesson, Dukes, and Steingrímsson [11]. For an overview of properties of
t-stack-sortable permutations, see [2, 19, 25] and [18, Sec 2.1]. More recent
results related to stack-sortings can be found here [7, 9, 13, 14, 15].

In this paper, we consider the descent generating polynomials for (pattern-
avoiding) t-stack-sortable permutations for certain values of t. Given a per-
mutation π = π1π2 · · ·πn, the descent statistic on π is defined as the number
of i ∈ [n− 1] such that πi > πi+1. Denote by Sn the set of permutations of
[n]. The Eulerian polynomial An(x) is defined as the generating function of
the descent statistic over Sn, namely,

An(x) :=
∑
π∈Sn

xdes(π).

It is known that the Eulerian polynomials can be computed inductively by

A0(x) = 1, An(x) =
n−1∑
k=0

(
n

k

)
Ak(x)(x− 1)n−1−k, n ≥ 1.

Also, for n ≥ 1, the Eulerian polynomials can be computed as

An(x) =

n∑
k=1

k!S(n, k)(x− 1)n−k

where S(n, k) is the Stirling numbers of the second kind.
Denote by Wn,t the set of t-stack-sortable permutations of [n]. Let

Wn,t(x) :=
∑

π∈Wn,t

xdes(π)

2

Descent generating polynomials for (n-3)- and (n-4)-stack-sortable (pattern-avoiding) permutations



be the generating function for the descent statistic over t-stack-sortable per-
mutations.

It is known that Wn,1(x) are the Narayana polynomials

Nn(x) :=
n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
xk

and Wn,n−1(x), being the set of all permutations of length n, are the Eulerian
polynomials An(x). Jacquard and Schaeffer [17] gave the following formula
in the case of t = 2

Wn,2(x) =

n∑
k=0

(n+ k)!(2n− k − 1)!

(k + 1)!(n− k)!(2k + 1)!(2n− 2k − 1)!
xk,

which also counts certain planar maps and so-called β(0, 1)-trees encoding
them [18]. For the case of t = n− 2, Brändén [3, Sec. 5] proved that

Wn,n−2(x) = An(x)− xAn−2(x). (1)

Let W p
n,t(x) denote the generating function for descents over permuta-

tions in Wn,t that avoid a pattern p. It is known [7] that there are

1

k + 1

(
n− 1

k

)(
n

k

)
(2)

p-avoiding permutations of length n with k descents if p ∈ {132, 213, 231, 312},
which in particular gives the distribution of descents over 1-stack-sortable
permutations (which are precisely 231-avoiding permutations). On the other
hand, the distribution of descents over 123-avoiding permutations is given
by the following formula [1, 7], where t and x correspond to the length and
the number of descents,

1 +
∑
n=1

tn
∑

π∈Wn,1

xdes(π) =
−1 + 2tx+ 2t2x− 2tx2 − 4t2x2 + 2t2x3 +

√
1− 4tx− 4t2x+ 4t2x2

2tx2(tx− 1− t)
.

The distribution for the number of 321-avoiding permutations of length n
with k descents [22, A091156] is

1

n+ 1

(
n+ 1

k

) n−2k∑
j=0

(
k + j − 1

k − 1

)(
n+ 1− k

n− 2k − j

)
. (3)
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The number of descents plus the number of ascents in a permutation of
length n is n − 1, and reading all 321-avoiding permutations in the reverse
order gives all 123-avoiding permutations. Hence, we have the following
distribution of descents over 123-avoiding permutations of length n,

1

n+ 1

(
n+ 1

k + 2

) 2k−n+2∑
j=0

(
n− k + j − 2

j

)(
k + 2

n− k + j

)
. (4)

A particular result of Bukata at el. [7] states that the number of 213-avoiding
1-stack-sortable (i.e. 213-avoiding and 231-avoiding) permutations of length
n with k descents is given by

(
n−1
k

)
. Egge and Mansour [16] studied 132-

avoiding 2-stack-sortable permutations.
In this paper, we give formulas for Wn,n−3(x) and Wn,n−4(x) in terms

of Eulerian polynomials, which generalize the enumeration results of Claes-
son, Dukes, and Steingrímsson [11]. Moreover, we derive explicit formulas
for W p

n,n−2(x), W p
n,n−3(x) and W p

n,n−4(x), where p is any permutation of
length 3, which extend the studies in [1, 7, 16]. Setting x = 1 in these
formulas gives us enumeration of p-avoiding (n− 2)-, (n− 3)- and (n− 4)-
stack-sortable permutations for p ∈ S3 (see Table 1).

The paper is organized as follows. In Section 2 we list the main enu-
merative results in the paper and introduce the stack-sorting complexity.
In Sections 3 and 4 we prove Theorems 1 and 2, respectively. In Section 5
we provide proofs of Theorems 3–8. Finally, in Section 6 we give some
concluding remarks and state two conjectures.

2 The main results in the paper
The main results in this paper are stated in the following theorems.

Theorem 1. For n ≥ 4, we have that

Wn,n−3(x) =An(x)−
5

2
xAn−2(x)−

(
n− 3

2

)
x(x+ 1)An−3(x). (5)
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Theorem 2. For n ≥ 4, we have that

Wn,n−4(x) =



1 if n = 4
x4 + 10x3 + 20x2 + 10x+ 1 if n = 5
1
6

(
6An(x)− (25x+ 1)An−2(x) if n ≥ 6

+
(
(−15n+ 24)x2 + (−15n+ 30)x+ 6

)
An−3(x)

+
( (

−3n2 + 12n+ 1
)
x3 +

(
−12n2 + 48n− 25

)
x2

+
(
−3n2 + 12n− 13

)
x− 11

)
An−4(x)

−6
(
x4 − 1

)
An−5(x)

)
.

Theorem 3. We have that

W 231
n,t (x) =

n−1∑
k=0

1

k + 1

(
n− 1

k

)(
n

k

)
xk for 1 ≤ t ≤ n− 1.

Theorem 4. For n ≥ 4, we have that

W 123
n,n−2(x) =W 123

n,n−1(x)− xn−2;

W 123
n,n−3(x) =W 123

n,n−1(x)− (n− 2)xn−3 − (n+ 1)xn−2;

W 123
n,n−4(x) =W 123

n,n−1(x)−


(2x+ 11x2 + x3) if n = 4
(15x2 + 16x3) if n = 5(
(n2 − n− 3)xn−3 + n2+n+2

2 xn−2
)

if n ≥ 6

where W 123
n,n−1(x) =

∑
k≥0

1

n+ 1

(
n+ 1

k + 2

) 2k−n+2∑
j=0

(
n− k + j − 2

j − 1

)(
k + 2

n− k + j

)
xk.

Theorem 5. For n ≥ 4, we have that

W 321
n,n−2(x) =W 321

n,n−1(x)− x;

W 321
n,n−3(x) =W 321

n,n−1(x) − (n+ 1)x− (n− 3)x2;

W 321
n,n−4(x) =W 321

n,n−1(x)−
n2 + n+ 2

2
x−

(
n2 − n− 10

)
x2 −

(
n− 4

2

)
x3;

where W 321
n,n−1(x) =

∑
k≥0

1

n+ 1

(
n+ 1

k

) n−2k∑
j=0

(
k + j − 1

k − 1

)(
n+ 1− k

n− 2k − j

)
xk.
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Recall that the Narayana polynomials are defined as

Nn(x) =
n−1∑
k=0

1

k + 1

(
n− 1

k

)(
n

k

)
xk

for n ≥ 1 and N0(x) = 1. It is known that

W 213
n,n−1(x) = W 132

n,n−1(x) = W 312
n,n−1(x) = Nn(x).

Theorem 6. For n ≥ 4, we have that

W 213
n,n−2(x) =Nn(x)− x;

W 213
n,n−3(x) =Nn(x)− 3x− (2n− 5)x2;

W 213
n,n−4(x) =Nn(x)− (6x+ (8n− 26)x2 + (2n− 7)(n− 3)x3).

Theorem 7. For n ≥ 4, we have that

W 132
n,n−2(x) =Nn(x)− xNn−2(x);

W 132
n,n−3(x) =Nn(x)− xNn−2(x)− 2(x+ x2)Nn−3(x);

W 132
n,n−4(x) =W 132

n,n−3(x)−


(3x+ 3x2 + x3) if n = 4
(3x+ 7x2 + 3x3) if n = 5
(3x+ 8x2 + 3x3)Nn−4(x) if n ≥ 6

Theorem 8. For n ≥ 4, we have that

W 312
n,n−2(x) =Nn(x)− xNn−2(x);

W 312
n,n−3(x) =Nn(x)− 2xNn−2(x)− x(x+ 1)Nn−3(x);

W 312
n,n−4(x) =W 312

n,n−3(x)−


(3x+ 3x2 + x3) if n = 4(
xNn−2(x) + x2Nn−3(x) if n ≥ 5
+(2x+ 2x2 + x3)Nn−4(x)

)
Remark 9. Setting x = 1 in Theorems 3–8, we obtain respective enumera-
tion of p-avoiding (n− 2)-, (n− 3)- and (n− 4)-stack-sortable permutations
for p ∈ S3 that is summarized in Table 1.

Following [11], let the (stack-sorting) complexity of π be the smallest
integer t such that π is t-stack-sortable and denote by En,t (resp., Ep

n,t) the
set of permutations of length n (resp., avoiding a pattern p) with complexity
t. Denote by

Ep
n,t(x) =

∑
π∈Ep

n,t

xdes(π),

6
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p (n− 2)-stack-sortable (n− 3)-stack-sortable

123 13, 41, 131, 428, 1429, 4861, 16795, ...
Cn − 1; [22, A001453]

7, 33, 121, 416, 1415, 4845, 16777, ...
Cn − 2n+ 1

132 12, 37, 118, 387, 1298, 4433, 15366, ...
Cn − Cn−2; [22, A280891]

8, 29, 98, 331, 1130, 3905, 13650, ...
Cn − Cn−2 − 4Cn−3

213 13, 41, 131, 428, 1429, 4861, 16795, ...
Cn − 1; [22, A001453]

8, 34, 122, 417, 1416, 4846, 16778, ...
Cn − 2(n− 1)

231 14, 42, 132, 429, 1430, 4862, 16796, ...
Cn; [22, A000108]

14, 42, 132, 429, 1430, 4862, 16796, ...
Cn; [22, A000108]

312 12, 37, 118, 387, 1298, 4433, 15366, ...
Cn − Cn−2; [22, A280891]

8, 28, 94, 317, 1082, 3740, 13078, ...
Cn − 2(Cn−2 + Cn−3)

321 13, 41, 131, 428, 1429, 4861, 16795, ...
Cn − 1; [22, A001453]

8, 34, 122, 417, 1416, 4846, 16778, ...
Cn − 2(n− 1)

p (n− 4)-stack-sortable

123 0, 11, 83, 361, 1340, 4747, 16653, ...
Cn − 3n2−n−4

2 , n ≥ 6

132 1, 16, 70, 261, 934, 3317, 11802, ...
Cn − 14Cn−4, n ≥ 6

213 1, 16, 89, 365, 1341, 4744, 16645, ...
Cn − (2n2 − 5n+ 1)

231 1, 42, 132, 429, 1430, 4862, 16796, ...
Cn; [22, A000108]

312 1, 16, 65, 236, 838, 2969, 10559, ...
Cn − (Cn−2 + Cn−3 + 5Cn−4), n ≥ 5

321 1, 16, 89, 365, 1341, 4744, 16645, ...
Cn − (2n2 − 5n+ 1)

Table 1: Enumeration of p-avoiding t-stack-sortable permutations of length
n ≥ 4 for t ∈ {n− 4, n− 3, n− 2} where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan

number. For any p of length 3, (n − 1)-stack-sortable permutations are
counted by Cn. Note that we have the same formulas for p = 213 and p =
321. In Section 6 we state Conjecture 15 generalizing this observation along
with Conjecture 16 linking our permutations to the 321-machine considered
in [9].
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the generating function for descents over Ep
n,t, where p can be omitted. Then,

we have that, for 2 ≤ t ≤ n− 1,

W p
n,t−1(x) = W p

n,t(x)− Ep
n,t(x) (6)

where again p can be omitted (if there is no pattern to avoid). Hence, to-
gether with (1), in order to compute Wn,n−3(x), it suffices to find En,n−2(x).
Similarly, once (5) is proved, the formula for Wn,n−4(x) will be obtained from
the formula for En,n−3(x) given in Theorem 13. The same approach is ap-
plied to compute W p

n,n−2(x), W
p
n,n−3(x), W

p
n,n−4(x) for p ∈ S3 in Section 5.

3 Proof of Theorem 1
In this section, we shall prove Theorem 1, which gives a formula for Wn,n−3(x).
By (6), it suffices to compute En,n−2(x).

Let us first review the structure of En,n−2. For convenience of represen-
tation of certain sets of permutations over the alphabet {1, 2, . . .}, we use
the computer science notation of glob patterns. An asterisk (∗) stands for
any rearrangement of a subset of [n] (including the empty permutation),
and a question mark (?) stands for any single element in [n]. For a word w
over the alphabet {∗, ?} ∪ {1, 2, . . . }, ⟨w ⟩ denotes the set of permutations
obtained from w by all possible replacements of ∗’s and ?’s. Also, let

⟨w1, . . . , wk ⟩ := ⟨w1 ⟩ ∪ · · · ∪ ⟨wk ⟩.

West [25] characterized En,n−2 for all n ≥ 4 as follows,

En,n−2 = Sn ∩ ⟨ ∗n2, ∗(n− 1)1n, ∗n1?, ∗n?1, ∗n∗(n− 2)∗(n− 1)1 ⟩. (7)

For convenience, we let An⟨w ⟩ be the generating function for distribu-
tion of descents over permutations of [n] in ⟨w ⟩. Easy observations lead to
the following equations, where the factor of x (resp., x2) records the extra
descent (resp., two descents),

An⟨ ∗n2 ⟩ = xAn−2(x),

An⟨ ∗(n− 1)1n ⟩ = xAn−3(x),

An⟨ ∗n1? ⟩ = (n− 2)xAn−3(x),

An⟨ ∗n?1 ⟩ = (n− 2)x2An−3(x).

We proceed by computing the remaining case of An⟨ ∗n∗(n−2)∗(n−1)1 ⟩.
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Lemma 10. For any n ≥ 2, we have that

An⟨ ∗n∗(n− 1)∗ ⟩ = 1

2

(
An(x) + (x− 1)An−1(x)

)
.

Proof. We note that the set of all permutations of [n] is the disjoint union
of the following four sets

⟨ ∗n ? ∗ (n− 1)∗ ⟩
∪

⟨ ∗n(n− 1)∗ ⟩
∪

⟨ ∗(n− 1) ? ∗ n∗ ⟩
∪

⟨ ∗(n− 1)n∗ ⟩.

Since

An⟨ ∗n(n− 1)∗ ⟩ = xAn−1(x), An⟨ ∗(n− 1)n∗ ⟩ = An−1(x),

An⟨ ∗n ? ∗ (n− 1)∗ ⟩ = An⟨ ∗(n− 1) ? ∗ n∗ ⟩,

it follows that

2An⟨ ∗n ? ∗ (n− 1)∗ ⟩+ xAn−1(x) +An−1(x) = An(x),

and thus

An⟨ ∗n ? ∗ (n− 1)∗ ⟩ = 1

2

(
An(x)− (x+ 1)An−1(x)

)
.

From

⟨ ∗n ∗ (n− 1)∗ ⟩ = ⟨ ∗n ? ∗ (n− 1)∗ ⟩
∪

⟨ ∗n(n− 1) ∗ ⟩

we have that

An⟨ ∗n ∗ (n− 1)∗ ⟩ = An⟨ ∗n ? ∗ (n− 1)∗ ⟩+An⟨ ∗n(n− 1) ∗ ⟩

=
1

2
(An(x) + (x− 1)An−1(x)) .

This completes the proof.

Now we are able to obtain an expression for En,n−2(x).

Theorem 11. For all n ≥ 4,

En,n−2(x) =
1

2
x
(
3An−2(x) + (2n− 3)(x+ 1)An−3(x)

)
. (8)

9
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Proof. Note that for any permutation in Sn ∩ ⟨ ∗n∗(n − 2)∗(n − 1)1 ⟩, the
leftmost n−2 elements have the same pattern as any permutation in Sn−2∩
⟨ ∗(n− 2)∗(n− 3)∗ ⟩. It then follows from Lemma 10 that

An⟨ ∗n∗(n− 2)∗(n− 1)1 ⟩ = 1

2
x (An−2(x) + (x− 1)An−3(x))

where the factor of x corresponds to the descent (n− 1)1. Summing up the
polynomials corresponding to the five words in (7), we obtain the desired
result. This completes the proof.

Since Wn,n−3(x) = Wn,n−2(x) − En,n−2(x), formula (5) follows immedi-
ately from (1) and (8), which completes the proof of Theorem 1.

4 Proof of Theorem 2
In this section, we shall prove Theorem 2, which gives a formula for Wn,n−4(x).
By (6), it suffices to compute En,n−3(x).

Our proof is based on the classification of permutations in En,n−3, listed
in Tables 2 and 3, that were given by Claesson, Dukes, and Steingríms-
son [11]. We shall compute the descent generating polynomial An⟨w ⟩ for
each type of w. To do this, we divide all the cases into four classes.
Class 1: All cases in Table 2 except case 1(d)

The descent generating functions for the cases in Table 2 except 1(d)
can be obtained directly. For example, consider type 4(a), namely

∗n??1, but not ∗n(n− 2)(n− 1)1.

Since the letters ?? can be chosen arbitrarily from {2, 3, . . . , n − 1}, and
ordering them in decreasing order results in an extra descent, we obtain
that

An⟨ ∗n??1 ⟩ =
((

n− 2

2

)
x3 +

(
n− 2

2

)
x2

)
An−4(x),

and hence the descent generating polynomial for case 4(a) is((
n− 2

2

)
x3 +

((
n− 2

2

)
− 1

)
x2

)
An−4(x).

Class 2: 1(d), 5(a), 5(b), 5(e), 5(f), and 5(g)
The descent generating functions for cases 1(d), 5(a), 5(b), 5(e), 5(f),

and 5(g) can be derived from Lemma 10. For instance, in the case of 5(a),
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Case Type of w Descent gen. polynomial An⟨w ⟩

πn = n

1(a) ∗(n− 1)2n xAn−3(x)

1(b) ∗(n− 1)?1n (n− 3)x2An−4(x)

1(c) ∗(n− 1)1?n (n− 3)xAn−4(x)

1(d) ∗(n− 1)∗(n− 3)∗(n− 2)1n 1
2x (An−3(x) + (x− 1)An−4(x))

1(e) ∗(n− 2)1(n− 1)n xAn−4(x)
πn−1 = n

2(a) ∗n3 xAn−2(x)

2(b) ∗(n− 1)1n?,where ? = 4, 5, . . . , n− 2 (n− 5)x2An−4(x)

2(c) ∗(n− 2)1n(n− 1) x2An−4(x)
πn−2 = n

3(a) ∗n2?, where ? ̸= 1 (n− 3)xAn−3(x)

3(b) ∗n?2, where ? ̸= 1 (n− 3)x2An−3(x)

πn−3 = n

4(a) ∗n??1, but not ∗n(n− 2)(n− 1)1
((

n−2
2

)
x3 + (

(
n−2
2

)
− 1)x2

)
An−4(x)

4(b) ∗n?1? (n− 2)(n− 3)x2An−4(x)

4(c) ∗n1??
(
n−2
2

)
(x+ x2)An−4(x)

4(d) ∗n(n− 2)(n− 1)2 x2An−4(x)

Table 2: Permutations in En,n−3 for n ≥ 4

the type ∗nA(n− 2)B(n− 1)2 , where A∪B ̸= ∅, can be translated into the
form

∗n∗(n− 2)∗(n− 1)2, but not ∗n(n− 2)(n− 1)2,

and hence we obtain the descent generating polynomial as desired.
Class 3: 5(c)

To deal with case 5(c), we need the following lemma.

Lemma 12. For all n ≥ 3,

An⟨ ∗n∗(n− 1)∗(n− 2)∗ ⟩ = 1

6

(
An(x) + 3(x− 1)An−1(x) + 2(x− 1)2An−2(x)

)
.

Proof. We note that the set of all permutations of [n] is the disjoint union of
the following three sets, where abc forms a permutation of {n− 2, n− 1, n}:

(i) ⟨ ∗ a ?∗ b ?∗ c ∗ ⟩;

11

Descent generating polynomials for (n-3)- and (n-4)-stack-sortable (pattern-avoiding) permutations



Case Type of w Descent generating polynomial An⟨w ⟩

πn−i = n and i > 3

5(a) ∗nA(n− 2)B(n− 1)2, where A ∪B ̸= ∅ 1
2x (An−2(x) + (x− 1)An−3(x))− x2An−4(x)

5(b) ∗n∗(n− 3)∗(n− 1)(n− 2)1 1
2x

2 (An−3(x) + (x− 1)An−4(x))

5(c) ∗n∗(n− 1)∗(n− 3)∗(n− 2)1
1
6x (An−2(x) + 3(x− 1)An−3(x)+

+2(x− 1)2An−4(x)
)

5(d) ∗(n− 1)∗n∗
{
(n− 3)∗(n− 4)
(n− 4)∗(n− 3)

}
∗(n− 2)1

1
12

(
An−2(x) + 6(x2 − 1)An−3(x)

−(12x3 + x2 − 2x− 11)An−4(x)

+6(x4 − 1)An−5(x)
)

5(e) ∗n∗(n− 2)∗(n− 1)

{
1?
?1

}
(n− 4)(x2 + x2

2 ) (An−3(x) + (x− 1)An−4(x))

5(f) ∗n∗(n− 3)∗(n− 1)1(n− 2) 1
2x (An−3(x) + (x− 1)An−4(x))

5(g) ∗n∗(n− 3)∗(n− 2)1(n− 1) 1
2x

(
An−3(x) + (x− 1)An−4(x)

)
5(h) ∗(n− 2)∗n∗

{
(n− 3)∗(n− 4)
(n− 4)∗(n− 3)

}
∗(n− 1)1

1
12

(
An−2(x) + 6(x2 − 1)An−3(x)

−(12x3 + x2 − 2x− 11)An−4(x)

+6(x4 − 1)An−5(x)
)

Table 3: Permutations in En,n−3 for n ≥ 4

(ii) ⟨ ∗ a b ?∗ c ∗ ⟩ or ⟨ ∗ a ?∗ b c ∗ ⟩;.
(iii) ⟨ ∗ a b c ∗ ⟩.

Then, we obtain the following formulas for these three types

A(Sn ∩ ⟨ ∗a b ?∗ c ∗ ⟩) = xχ(a>b) × 1

2
(An−1(x) + (x− 1)An−2(x)) ,

A(Sn ∩ ⟨ ∗a ?∗ b c∗ ⟩) = xχ(b>c) × 1

2
(An−1(x) + (x− 1)An−2(x)) ,

A(Sn ∩ ⟨ ∗a b c∗ ⟩) = xχ(a>b)+χ(b>c) × x

2
(An−1(x) + (x− 1)An−2(x)) ,

where χ(·) is the function whose value is 1 if the statement is true and 0
otherwise. Hence, it follows that

6×A(Sn ∩ ⟨ ∗a ?∗b ?∗c∗ ⟩) + 6(x+ 1)× 1

2
(An−1(x) + (x− 1)An−2(x))

+(x2 + 4x+ 1)An−2(x) = An(x).
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Therefore, we obtain that

An⟨ ∗a ?∗b ?∗ c∗ ⟩) =
1

6

(
An(x)− 3(x− 1)An−1(x) + 2(x2 + x+ 1)An−2(x)

)
.

In order to obtain the desired formula, we note that the set of permutations
in Sn ∩ ⟨ ∗n∗(n− 1)∗(n− 2)∗ ⟩ is the union of the following four cases

⟨ ∗n ?∗(n− 1) ?∗(n− 2)∗ ⟩
∪

⟨ ∗n(n− 1) ?∗(n− 2)∗ ⟩∪
⟨ ∗n ?∗(n− 1)(n− 2)∗ ⟩

∪
⟨ ∗n(n− 1)(n− 2)∗ ⟩.

Hence, it follows that

An⟨ ∗n∗(n− 1)∗(n− 2)∗ ⟩ = 1

6

(
An(x)− 3(x− 1)An−1(x) + 2(x2 + x+ 1)An−2(x)

)
+ 2× x

2

(
An−1(x) + (x− 1)An−2(x)

)
+ x2An−2(x)

=
1

6

(
An(x) + 3(x− 1)An−1(x) + 2(x− 1)2An−2(x)

)
.

This completes the proof.

Class 4: 5(d) and 5(h)
For the remaining cases of 5(d) and 5(h), we can obtain the desired

formulas by following similar lines of the proof of Lemma 12.
Now we complete the proof of the formulas of the descent generating

polynomials of all types listed in Tables 2 and 3. By summing up all these
polynomials, we obtain the following expression for En,n−3(x).

Theorem 13. For all n ≥ 6, the descent generating polynomial of permu-
tations in En,n−3 is

En,n−3(x) =
1

6

(
(10x+ 1)An−2(x) +

(
(9n− 15)x2 + (9n− 21)x− 6

)
An−3(x)

+
( (

3n2 − 12n− 1
)
x3 +

(
12n2 − 48n+ 25

)
x2

+
(
3n2 − 12n+ 13

)
x+ 11

)
An−4(x) + 6

(
x4 − 1

)
An−5(x)

)
.

Since Wn,n−4(x) = Wn,n−3(x) − En,n−3(x), Theorem 2 follows immedi-
ately from (5) and Theorem 13.
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5 Proofs of Theorems 3–8
We note that Theorem 3 is an immediate corollary to formula (2) and the
observation that 1-stack-sortable permutations are precisely 231-avoiding
permutations.

For the other theorems, we can follow the same steps as in the proofs
of Theorems 1 and 2, and apply suitable known formulas for W p

n,n−1 in
question. Namely, we will iterate (6) for t = n−1, n−2, n−3 for each pattern
p in question. Additionally, we need to make sure that the forbidden pattern
does not occur in them. Below, we provide brief (omitting justifications for
easier parts) proofs of Theorems 4–8, where ↓ and ↑ stand for decreasing
and increasing permutations, respectively.

5.1 Proof of Theorem 4

Case Type of w Descent generating polynomial An⟨w ⟩

2(a) ↓ n3 xn−2

3(b) ↓ n?2, where ? ̸= 1 (n− 3)xn−2

4(a) ↓ n??1, but not 4231 (n−2)(n−3)
2 xn−2 + (n− 3)xn−3

(cases: 2n??1, ↓ n?21, ↓ n2?1)

4(b) ↓ n?1? n(n−3)
2 xn−3

(consider the cases 2 ∈↓ and 2 ̸∈↓)
4(c) ↓ n1ba, where b > a (n−2)(n−3)

2 xn−3

5(a) n(n− 2) ↓ (n− 1)2, ↓̸= ∅ xn−2

5(b) n(n− 3) ↓ (n− 1)(n− 2)1 xn−2

5(c) n(n− 1)(n− 3) ↓ (n− 2)1 xn−2

5(d) (n− 1)n(n− 3)(n− 4) ↓ (n− 2)1 xn−3

5(e) n(n− 2) ↓ (n− 1)

{
1?

?1

}
(n− 4)(xn−3 + xn−2)

5(f) n(n− 3) ↓ (n− 1)1(n− 2) xn−3

5(h) (n− 2)n(n− 3)(n− 4) ↓ (n− 1)1 xn−3

Table 4: Permutations in E123
n,n−3 for n ≥ 6
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Considering (7) we can see that for n ≥ 4,

E123
n,n−2 = Sn ∩ ⟨ ↓ n2, ↓ n1?, ↓ n?1, n(n− 2) ↓ (n− 1)1 ⟩ (9)

where, for example, ∗(n − 1)1n disappears in the unrestricted set En,n−2

because n ≥ 4 and any element in the ∗ along with (n − 1) and n would
form the forbidden pattern 123. Also, because of (n − 1), the leftmost two
∗’s in ∗n∗(n − 2)∗(n − 1)1 in En,n−2 must be empty, while the remaining ∗
must be a decreasing permutation. And so on.

It is easy to see that An⟨ ↓ n2 ⟩ = xn−2, An⟨ ↓ n1? ⟩ = (n − 2)xn−3,
An⟨ ↓ n1? ⟩ = (n− 2)xn−2 and An⟨n(n− 2) ↓ (n− 1)1 ⟩ = xn−2, and hence
from (9) we have

E123
n,n−2(x) = (n− 2)xn−3 + nxn−2.

Now, since En,n−1 = Sn∩⟨ ∗n1 ⟩ ([25]), E123
n,n−1 = Sn∩⟨ ↓ n1 ⟩ and E123

n,n−1(x) =

xn−2. Since Wn,n−1 = Sn, formula (4) can be used to find W 123
n,n−1(x), and

then iteration of (6) for t = n − 1, n − 2 gives the desired formulas for
W 123

n,n−2(x) and W 123
n,n−3(x).

To complete the proof of Theorem 4, we need to compute E123
n,n−3(x) and

apply (6) for t = n − 3. We analyse Tables 2 and 3 presenting En,n−3. We
see that to avoid the pattern 123, the following cases are impossible when
n ≥ 6: 1(a), 1(b), 1(c), 1(d), 1(e), 2(b) (there is no place for 3), 2(c), 3(a),
4(d) (there is no place for 1 even for n = 4), 5(g). The remaining cases
are listed in Table 4, along with several brief comments, and they give the
desired formula for W 123

n,n−4(x).

5.2 Proof of Theorem 5
Considering (7) we can see that for n ≥ 4,

E321
n,n−2 = Sn ∩ ⟨ 1 ↑ n2, An2, ↑ (n− 1)1n, ↑ n1? ⟩ (10)

where, the element 1 in A is not in the leftmost position, while all other
elements in A are increasing (because of the element 2). Indeed, for example,
in the unrestricted set En,n−2 ∗(n − 1)1n becomes ↑ (n − 1)1n because of
the element 1, and ∗n?1 disappears because no matter what ? is, n?1 is an
occurrence of the pattern 321.

It is easy to see that An⟨ 1 ↑ n2 ⟩ = x, An⟨An2 ⟩ = (n − 3)x2, An⟨ ↑
(n− 1)1n ⟩ = x and An⟨ ↑ n1? ⟩ = (n− 2)x, and hence from (10) we have

E321
n,n−2(x) = nx+ (n− 3)x2.
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Now, since En,n−1 = Sn∩⟨ ∗n1 ⟩ ([25]), E321
n,n−1 = Sn∩⟨ ↑ n1 ⟩ and E321

n,n−1(x) =

x. Since Wn,n−1 = Sn, formula (3) can be used to find W 321
n,n−1(x), and then

iteration of (6) for t = n− 1, n− 2 gives the desired formulas for W 321
n,n−2(x)

and W 321
n,n−3(x).

To complete the proof of Theorem 5, we need to compute E321
n,n−3(x) and

apply (6) for t = n − 3. We analyse Tables 2 and 3 presenting En,n−3. We
see that to avoid the pattern 321, none of the cases in Table 3 are possible,
and the following cases are impossible too: 1(b), 1(d), 3(b), 4(a), 4(b) and
4(d). The remaining cases are listed in Table 5 and they give the desired
formula for W 321

n,n−4(x). Here are our comments for three (more involved)
cases in Table 5.

1(a) Because of the element 2, all elements but 1 in ∗ must increase. The
case of 1 ↑ (n − 1)2n gives the term of x, and placing 1 differently in
∗ gives the term of (n− 4)x2.

2(a) Because of the element 3, all elements greater than 3 in ∗ must be
increasing. Note that if ∗ begins with 2, then we can place 1 in (n−3)
places that corresponds to the term of (n− 3)x2. Otherwise, to avoid
the pattern 321, 1 must precede 2. We distinguish four possible cases
here: 12 ↑ n3 giving x; ∗12∗n3, where to the left of 12 there is at least
one element that gives (n − 4)x2; 1∗2∗n3, where there is at least one
element between 1 and 2, that gives (n− 4)x2, and the remaining case
of 1 preceding 2, 1 being not the leftmost element, and 1 and 2 staying
not together, which gives the term of

(
n−4
2

)
x3.

3(a) Because of the element 2, all elements in ∗ that are greater than 3
must be increasing and ? ̸= 1, because otherwise n21 is an occurrence
of the pattern 321. The case of 1 ↑ n2? gives the term of (n − 3)x
and the remaining cases of placing 1 differently and choosing ? give
the term of (n− 3)(n− 4)x.

5.3 Proof of Theorem 6
Considering (7) we can see that for n ≥ 4,

E213
n,n−2 = Sn ∩ ⟨ ↑ n2, ↑ n12, ↑ n?1, AnB(n− 2)(n− 1)1 ⟩ (11)

where to avoid the pattern 213, AB =↑. Note that the pattern ∗(n−1)1n in
En,n−2 disappears because it contains the occurrence (n−1)1n of the pattern
213.
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Case Type of w Descent gen. pol. An⟨w ⟩

1(a) ∗(n− 1)2n x+ (n− 4)x2

1(c) ↑ (n− 1)1?n (n− 3)x

1(e) ↑ (n− 2)1(n− 1)n x

2(a) ∗n3 x+ (3n− 11)x2 +
(
n−4
2

)
x3

2(b) ↑ (n− 1)1n?, where ? = 4, 5, . . . , n− 2 (n− 5)x2

2(c) ↑ (n− 2)1n(n− 1) x2

3(a) ∗n2?, where ? ̸= 1 (n− 3)x+ (n− 3)(n− 4)x2

4(c) ↑ n1??, where ?? is increasing
(
n−2
2

)
x

Table 5: Permutations in E321
n,n−3 for n ≥ 4

Case Type of w Descent gen. polynomial An⟨w ⟩

2(a) ↑ n3 x

3(a) ↑ n23 x

3(b) 1 ↑ n?2 (n− 3)x2 (n− 3 choices for ?)

4(a) ↑ n??1, but not ↑ n(n− 2)(n− 1)1 (n− 4)x2 +
(
n−2
2

)
x3

4(b) ↑ n?12 (n− 3)x2 (n− 3 choices for ?)

4(c) ↑ n123 and ↑ n132 x+ x2

4(d) ↑ n(n− 2)(n− 1)2 x2

5(a) AnB(n− 2)(n− 1)2, AB =↑, B ̸= ∅ (n− 4)x2

5(b) AnB(n− 3)(n− 1)(n− 2)1, AB =↑ (n− 4)x3

5(c) AnB(n− 1)C(n− 3)(n− 2)1, ABC =↑
(
n−3
2

)
x3

5(d) A(n− 1)nB(n− 4)(n− 3)(n− 2)1 (n− 5)x2

AB =↑

5(e) AnB(n− 2)(n− 1)

{
12

?1

}
, AB =↑ (n− 4)

(
x2 + (n− 4)x3

)

Table 6: Permutations in E213
n,n−3 for n ≥ 5

It is easy to see that An⟨ ↑ n2 ⟩ = x, An⟨ ↑ n12 ⟩ = x, An⟨ ↑ n?1 ⟩ = (n−
2)x2 (choosing ? in (n− 2) ways) and An⟨ ↑ n ↑ (n− 2)(n− 1)1 ⟩ = (n− 3)x2

(choosing placement of n in (n− 3) ways), and hence from (11) we have

E213
n,n−2(x) = 2x+ (2n− 5)x2.
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Now, since En,n−1 = Sn∩⟨ ∗n1 ⟩ ([25]), E213
n,n−1 = Sn∩⟨ ↑ n1 ⟩ and E213

n,n−1(x) =

x. Since Wn,n−1 = Sn, formula (2) can be used to find W 213
n,n−1(x), and then

iteration of (6) for t = n− 1, n− 2 gives the desired formulas for W 213
n,n−2(x)

and W 213
n,n−3(x).

To complete the proof of Theorem 6, we need to compute E213
n,n−3(x) and

apply (6) for t = n− 3. We analyse Tables 2 and 3 presenting En,n−3 using
the observation that to the left of a large element, smaller elements must
be in increasing order to avoid the pattern 213. We see that to avoid the
pattern 213, the following cases are not possible: 1(a)–1(e), 2(b), 2(c), 5(f)–
5(h) (as well as the first subcase of 5(d)). The remaining cases are listed
in Table 6 and they give the desired formula for W 213

n,n−4(x). Here are our
comments for some cases in Table 6.

4(a) Suppose a < b. Then two possibilities are ↑ nab1 and ↑ nba1. Note
that in the latter case any choice of a, b gives a 213-avoiding permu-
tation (justifying the term of

(
n−2
2

)
x3), while in the former case to

avoid 213, we must have b = a+ 1. Since in the former case choosing
a = n − 2 is not an option by the 4(a) description, a can be chosen
from {2, 3, . . . , n− 3}, justifying the term of (n− 4)x2.

5(a) (n−4) is the number of ways to insert n in AB of length n−4 so that
B is non-empty.

5(c)
(
n−3
2

)
is the number of ways to insert n and n−1 in ABC of length n−6.

Any insertion will result in 3 descents in the resulting permutation.

5(d) (n− 5) is the number of ways to insert (n− 1)n in AB of length n− 5.
Any insertion will result in 2 descents in the outcome permutation.

5(e) In AnB(n − 2)(n − 1)12 we have 2 descents and n can be placed in
(n − 4) ways in the permutation AB of length n − 5. On the other
hand, independently to the choices of placing n in AnB(n−2)(n−1)?1
with 3 descents, we can choose ? in (n−4) ways (any choice will result
in a 231-avoiding permutation).

5.4 Proof of Theorem 7
Considering (7) we can see that for n ≥ 4,

E132
n,n−2 = Sn ∩ ⟨ ∗(n− 1)1n, ∗n12, ∗n21, n∗(n− 2)∗(n− 1)1 ⟩ (12)

where ∗ represents any 132-avoiding permutation in the first three pat-
terns, and ∗(n − 2)∗ represents any non-empty permutation on elements
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{2, 3, . . . , n − 2}. Indeed, for example, in the unrestricted set En,n−2, the
pattern ∗n2 is not taken to the set E132

n,n−2 as any permutation corresponding
to it contains the pattern 132 (formed by the elements in {1, 2, n}). Also,
the leftmost ∗ in ∗n∗(n − 2)∗(n − 1)1 must be empty as otherwise any el-
ement in it along with n and n − 1 will form an occurrence of the pattern
132. Moreover, ? = 2 in ∗n1? or otherwise the element in place of ? along
with 2 and n will form an occurrence of the pattern 132.

It is easy to see that An⟨ ∗(n−1)1n ⟩ = xNn−3(x), An⟨ ∗n12 ⟩ = xNn−3(x),
An⟨ ∗n21 ⟩ = x2Nn−3(x) and, as n ≥ 4, An⟨n∗(n−2)∗(n−1)1 ⟩ = x2Nn−3(x).
Hence, it follows from (12) that

E132
n,n−2(x) = 2(x+ x2)Nn−3(x).

Now, since En,n−1 = Sn ∩ ⟨ ∗n1 ⟩ ([25]), E132
n,n−1 = ⟨ ∗n1 ⟩, where ∗ is any

132-avoiding permutation on {2, 3, . . . , n − 1}, and E132
n,n−1(x) = xNn−2(x).

Since Wn,n−1 = Sn, formula (2) can be used to find W 132
n,n−1(x), and then

iteration of (6) for t = n− 1, n− 2 gives the desired formulas for W 132
n,n−2(x)

and W 132
n,n−3(x).

Case Type of w Descent gen. polynomial An⟨w ⟩

1(b) ∗(n− 1)21n x2Nn−4(x)

1(c) ∗(n− 1)12n xNn−4(x)

1(d) (n− 1)∗(n− 3)∗(n− 2)1n x2Nn−4(x)

1(e) ∗(n− 2)1(n− 1)n xNn−4(x)

4(a) ∗n231 and ∗n321 (x2 + x3)Nn−4(x)

4(b) ∗n213 and ∗n312 2x2Nn−4(x)

4(c) ∗n123 xNn−4(x)

5(c) n(n− 1)∗(n− 3)∗(n− 2)1 x3Nn−4(x)

5(d) (n− 1)n∗
{
(n− 3)∗(n− 4)

(n− 4)∗(n− 3)

}
∗(n− 2)1 x2Nn−4(x)

5(e) n∗(n− 2)∗(n− 1)

{
12

21

}
(x2 + x3)Nn−4(x)

5(g) n∗(n− 3)∗(n− 2)1(n− 1) x2Nn−4(x)

Table 7: Permutations in E132
n,n−3 for n ≥ 6

To complete the proof of Theorem 7, we need to compute E132
n,n−3(x) and

apply (6) for t = n − 3. We analyse Tables 2 and 3 presenting En,n−3. We
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see that to avoid the pattern 132, none of the following cases are possible:
1(a), 2(a), 2(b), 2(c), 3(a), 3(b), 4(d), 5(a), 5(b), 5(f), 5(h); in particular,
in 4(d) the elements in {1, 2, n} form the pattern 132. The remaining cases
are listed in Table 7 and they give the desired formula for W 132

n,n−4(x). We
comment three cases in Table 7.

1(b) x2 records the descents (n− 1)2 and 21, and ∗ is any permutation on
{3, 4, . . . , n− 2}.

1(d) No matter if ∗ is empty or not in (n − 1)∗(n − 3), (n − 1) will be
involved in a descent, and (n − 2)1 is the other descent recorded by
x2. Also, ∗(n − 3)∗ is any non-empty 132-avoiding permutation on
{2, 3, . . . , n− 3}.

5(d) Note that ∗(n−3)∗(n−4)∗ or ∗(n−4)∗(n−3)∗ can be any non-empty
132-avoiding permutation on {2, 3, . . . , n− 3}. This gives the term of
x2Nn−4(x).

5.5 Proof of Theorem 8
Considering (7) we can see that for n ≥ 4,

E312
n,n−2 = Sn ∩ ⟨ 1∗n2, ∗(n− 1)1n, ∗n?1 ⟩ (13)

where ∗ can be any 312-avoiding permutation over the respective set. Note
that the pattern ∗n1? in En,n−2 disappears because it contains the occurrence
n1? of the pattern 312.

It is easy to see that An⟨ 1∗n2 ⟩ = An⟨ ∗(n − 1)1n ⟩ = xNn−3(x). Com-
puting An⟨ ∗n?1 ⟩ requires the following lemma.

Lemma 14. The descent generating polynomial for 312-avoiding permuta-
tions of length n that end with

• an ascent is Nn−1(x);

• a descent is Nn(x)−Nn−1(x).

Proof. To avoid the pattern 312, any permutation ending with an ascent
must end with the largest element n. But then the element n does not
contribute any descent and is independent from the rest of the permutation
hence proving the first claim. The second claim is straightforward as any
permutation either ends with an ascent or with a descent.
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Now, An⟨ ∗n?1 ⟩ = xAn−1⟨ ∗(n − 1)? ⟩ where ∗? can be any 312-avoiding
permutation of length (n − 2). If ∗? ends with an ascent, an extra descent
will be created after inserting (n−1), so by Lemma 14 descents are counted
by xNn−3(x). If ∗? ends with a descent, inserting (n− 1) does not create an
extra descent, so by Lemma 14 descents are counted by Nn−2(x)−Nn−3(x).
Hence

An⟨ ∗n?1 ⟩ = xNn−2(x) + x(x− 1)Nn−3(x), (14)
and from (13) we have

E312
n,n−2(x) = xNn−2(x) + x(x+ 1)Nn−3(x).

Now, since En,n−1 = Sn∩⟨ ∗n1 ⟩ ([25]), E312
n,n−1 = Sn∩⟨ ∗n1 ⟩ and E312

n,n−1(x) =

xNn−2(x). Since Wn,n−1 = Sn, formula (2) can be used to find W 312
n,n−1(x),

and then iteration of (6) for t = n − 1, n − 2 gives the desired formulas for
W 312

n,n−2(x) and W 312
n,n−3(x).

To complete the proof of Theorem 8, we need to compute E312
n,n−3(x) and

apply (6) for t = n− 3. We analyse Tables 2 and 3 presenting En,n−3 using
the observation that to the right of a large element, smaller elements must
be in decreasing order to avoid the pattern 312. We see that to avoid the
pattern 312, the following cases are not possible: 1(c),1(d), 2(b), 3(a), 4(b)–
4(d), 5(a-h), and also the restriction “but not ...” in 4(a) can be removed
because n(n−2)(n−1) forms the pattern 312. The remaining cases are listed
in Table 8 (∗ there denotes any 312-avoiding permutation over the respective
set) and they give the desired formula for W 312

n,n−4(x). We comment on three
cases in Table 8.
1(b) An⟨ ∗(n− 1)?1n ⟩ = An−1⟨ ∗(n− 1)? ⟩ and is given by (14).

3(b) An⟨ 1∗n?2 ⟩ = An−1⟨ ∗(n− 1)?1 ⟩ and is given by (14).

4(a) An⟨ ∗nba1 ⟩ = xAn−1⟨ ∗(n − 1)ba ⟩. To compute An−1⟨ ∗(n − 1)ba ⟩,
note that the elements 1, 2 . . . , a − 1 in ∗ must be in the leftmost
a − 1 positions (or else there will be an occurrence of the pattern
312). Hence, the permutation formed by the smallest a−1 elements is
independent from the rest of a 312-avoiding permutation π of length
n− 1, and we have

An−1⟨ ∗(n− 1)ba ⟩ =
n−3∑
a=1

W 312
a−1,a−2(x)An−a⟨ ∗(n− a)?1 ⟩

=
n−3∑
a=1

Na−1(x) (x(x− 1)Nn−a−3(x) + xNn−a−2(x))
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where ∗(n − a)?1 is the pattern formed by the n − a largest elements
in π and formula (14) can be applied.
By using the following recurrence relation of Narayana polynomials (see [21,
Theorem 2.2])

Nn(x) = Nn−1(x) + x
n−2∑
i=0

Ni(x), Nn−1−i(x) for n ≥ 1,

we get that

An−1⟨ ∗(n− 1)ba ⟩ = (Nn−3(x) + (x− 1)Nn−4(x)) + (Nn−2(x)−Nn−3(x))

= Nn−2(x) + (x− 2)Nn−3(x) + (x− 1)2Nn−4(x).

Case Type of w Descent gen. polynomial An⟨w ⟩

1(a) 1∗(n− 1)2n xNn−4(x)

1(b) ∗(n− 1)?1n xNn−3(x) + x(x− 1)Nn−4(x)

1(e) ∗(n− 2)1(n− 1)n xNn−4(x)

2(a) 12∗n3 and 21∗n3 x(x+ 1)Nn−4(x)

2(c) ∗(n− 2)1n(n− 1) x2Nn−4(x)

3(b) 1∗n?2 xNn−3(x) + x(x− 1)Nn−4(x)

4(a) ∗nba1, b > a xNn−2(x) + x(x− 2)Nn−3(x) + x(x− 1)2Nn−4(x)

Table 8: Permutations in E312
n,n−3 for n ≥ 4

6 Concluding remarks
Table 1 confirms the following conjecture in the cases of t ∈ {n − 1, n −
2, n−3, n−4}, while the case of t = 1 is equivalent to avoiding two patterns
(additionally the pattern 231 in each case) and is known, and is easy to see
to be true [18].

Conjecture 15. The number of 213-avoiding t-stack-sortable permutations
of length n is the same as that of 321-avoiding t-stack-sortable permutations
of length n for any t ≥ 0 and n ≥ 0.
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t = 1 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .
t = 2 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, . . .
t = 3 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, . . .
t = 4 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, . . .
t = 5 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, 54320, . . .

Table 9: The number of t-stack-sortable p-avoiding permutations of length
n ≥ 1 for p ∈ {213, 321}

Conjecture 15 has also been confirmed computationally for t ∈ {2, 3, 4, 5}
for small values of n, and the respective numbers, along with those corre-
sponding to t = 1, are given in Table 9. Interestingly, Table 9 matches the
table in Section 4 in [9], which leads to the following conjecture related to
so-called 321-machine that we state in terms of pattern avoidance (again,
based on Section 4 in [9]).

Conjecture 16. For any t ≥ 1, t-stack-sortable p-avoiding permutations
of length n ≥ 0, for p ∈ {213, 321}, are in one-to-one correspondence with
permutations of length n avoiding the patterns 132 and 12 · · · (t+ 2) simul-
taneously.

Research directions for t-stack-sortable permutations include the study
of unimodality, log-concavity and real-rootedness of the polynomials Wn,t(x)
for any 1 ≤ t ≤ n−1. We will not define these notions here, instead referring
the interested readers to [2, 4, 5, 6, 23]. In particular, Bóna [2] proved the
symmetry and unimodality of Wn,t(x) by giving combinatoiral bijecitons
and injections. Based on numerical evidence, Bóna further conjectured log-
concavity and real-rootedness of Wn,t(x). Brändén [4] strengthened Bóna’s
result by showing its γ-positivity via a combinatorial group action. Since no
exact formulas are known for Wn,t(x) in general, the remaining log-concavity
and real-rootedness problems seem to be very hard. The real-rootedness of
Narayana polynomials and Eulerian polynomials are well-known [20] and
the real-rootedness of Wn,n−2(x) was proved by Brändén [3] and Zhang [26].

In this paper, we obtained expressions for Wn,t(x) in the cases of t = n−3
and t = n − 4 in terms of Eulerian polynomials. There are several known
approaches to study the unimodality, γ-positivity, log-concavity and real-
rootedness for Eulerian polynomials, see [4, 5] for example. In particular,
Brändén [4] proved combinatorially γ-positivity for Wn,t(x) for any t that
also implies unimodality of Wn,t(x). However, we still cannot prove the
log-concavity and real-rootedness for Wn,t(x). The formulas derived in this
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paper could potentially be useful to answer the questions, for example, if
more analytic properties of Eulerian polynomials and/or the stack-sorting
operation are discovered.

Finally, p-avoiding t-stack-sortable permutations can be studied for longer
patterns p, or indeed for other types of patterns p (consecutive, vincular,
bivincular, etc [18], not to be defined here). Such studies are interesting in
their own right, but also may bring interesting connections to other combi-
natorial objects.
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