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Abstract
With the number of wind turbines being installed increasing, due to the commitment of a large number of countries
investing more in renewable energy, an informative method to determine when a drivetrain is coming to the end of it’s
life can be extremely useful. This paper investigates the uncertainty of an output of a methodology used for life extension
evaluation of a generator bearing in the drivetrain. A method has been developed to determine when the non-drive end
generator bearing is coming to the end of it’s life, based upon temperature data extracted from seven years of 10-minute
averaged SCADA data. Data from Kelmarsh wind farm was used, which consists of six onshore 2.05 MW Senvion MM92
wind turbines. A number of parameters from the SCADA data are used as the inputs for the model, in order to predict
the component temperature and then in turn determine a threshold value, in which if the component’s temperature passes,
indicates that it is reaching the end of it’s life. Due to the consequences that can occur if a component fails, such as loss of
power, cost of repair etc. it is extremely important for the model to be as accurate as possible by taking into account any
error or uncertainty. Other than the uncertainty of the measurements recorded in the SCADA data, which may be due to
noise and/or sensor failure, the other major source of uncertainty comes from the predictive machine learning model that
has been developed. Therefore, the model uncertainty is evaluated by a sensitivity analysis, where the input parameters are
changed to see how much the output changes. The contribution of this work has investigated the error propagated in the
component’s remaining life, that have originated from the uncertainty of the machine learning model, as well as the model
input parameters/data. The results show that the error arising from the machine learning model and the input data, should
fall within a certain range in order to obtain the level of accuracy of the methodology.
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1 Introduction

Due to the various agreements and policies set worldwide,
such as the commitment to limit the global temperature rise
to 1.5 ıC and achieve net zero emissions by 2050, discus-
sions at COP28, the United Nations Climate Change Con-
ference which addresses actions to meet these targets [1],
emphasized that the amount of global electricity produced
from renewable energy sources needs to increase at a much
faster rate. According to the International Energy Agency
(IEA) [2], by 2028 42% of global electricity will come from
renewable energy sources, with solar and wind account-
ing for 25%. The Global Wind Energy Council’s (GWEC)
Global Wind Report 2024 [3], states that 117 GW of wind
energy capacity was installed in 2023 and in order to reach
the targets, this annual growth needs to triple to 320GW
by the end of the decade. Therefore, 2.75TW of wind en-
ergy capacity needs to be installed by 2030, with the aim
of reaching the Net Zero targets.
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As mentioned above, 42% of global electricity will come
from renewable energy sources by 2028, with over 12%
coming from wind, therefore it is extremely important for
these wind turbines to operate efficiently and be reliable.
Hence, a method to determine the condition of drivetrain
components and predict when and/or if it may fail, is impor-
tant to minimise downtime and in turn maintain reliability
and efficiency.

The most common indication of component failure is an
increase in vibration and temperature. All turbines record
various temperature measurements within the nacelle as
part of the Supervisory Control and Data Acquisition
(SCADA), whereas vibration measurements are collected
by additional sensors as part of a condition monitoring
system, which not all turbines have. Therefore, a method to
determine remaining useful life (RUL) using temperature
would be extremely useful and cost effective.

Previous work has been carried out to develop an infor-
mative tool, which can be used for life extension evaluation
of wind turbine drivetrain components [4]. To summarise,
a method/model has been developed which uses SCADA
data together with an existing, straightforward model, to
spot any temperature trends or changes, of components
within the drivetrain, which may indicate that a compo-
nent is reaching the end of it’s life. SCADA data from the
Kelmarsh wind farm is used, which is an onshore wind
farm located in Northamptonshire, U.K. and consists of six
2.05MW Senvion MM92 wind turbines. The 10-minute av-
eraged SCADA data was recorded over seven years, from
2016 to the end of 2022, for all six wind turbines. Three
input SCADA parameters: power, rotor speed and nacelle
temperature, along with the component’s temperature, are
used along with a regression tree ensemble model to pre-
dict the temperature of the non-drive end generator bear-
ings. These rear generator bearings have been selected be-
cause there are two recorded failures of these components,
in two separate wind turbines and a proactive replacement
in a third. The difference between the predicted and actual
temperature values is calculated, followed by determining
the cumulative average. This cumulative average is used
to predict a threshold value. If the cumulative average for
a component crosses this threshold, it indicates that the
component may be nearing the end of its operational life.

Model validation is important and this can be achieved
by using measurement chains, to ensure the processes are
reproducible and thorough. A typical measurement chain
can consist of: data collection, preprocessing, feature ex-
traction, model prediction, error analysis, feedback. Reli-
able models related to wind turbines are vital due to their
importance in supplying energy and their costs. An inac-
curate prediction could have serious consequences, such
as shutting down a wind turbine and replacing a compo-
nent which is still functional, or a component failing unex-

pectedly forcing unforeseen downtime. Hence, due to the
importance of predicting an accurate threshold value, it is
crucial to determine any errors and/or uncertainties within
the model and incorporate these.

Model uncertainties can be classed as epistemic or sub-
jective uncertainties, along with measurement and statisti-
cal uncertainties [5]. These uncertainties are due to lack of
knowledge. Therefore, more information, data and better
models can all reduce these type of uncertainties.

Errors in the model refers to the difference between the
actual and predicted values, whereas model uncertainty is
the ratio between the actual and predicted values. Errors in
the model may be caused by factors such as: model bias,
variance, noisy data and model limitations. Model uncer-
tainty may be caused by factors such as: insufficient in-
formation, complex models, data variability and inherently
ambiguous data patterns. Therefore, model errors refer to
specific discrepancies between the actual and predicted val-
ues, whereas model uncertainty refers to confidence or lack
of within the model and recognises that any discrepancies
may arise from fundamental issues.

This paper looks at both the model errors and uncertain-
ties. The main sources of errors/uncertainties in this case
may come from the machine learning model and the mea-
surements recorded in the SCADA data, which are used for
the model’s input parameters. Errors in the measurements
may be caused by sensor failures, malfunction and/or noise.
A method to predict and incorporate the errors has then been
proposed, in order to try and obtain a more reliable and ac-
curate predicted value i.e. component temperature and in
turn threshold value.

This paper is part of research work to develop and im-
plement a method to determine lifetime extension of wind
turbine drivetrains [4, 6, 7].

The novelty of this paper includes the probabilistic-
statistical approach, to develop metrics for identification
of drivetrain components approaching their end of life.
Through applying Monte Carlo simulation on the tempera-
ture estimates of the utilised machine learning method, the
modelling error is captured. This is to enable quantifying
the propagated error in the later stages, due to the machine
learning model’s inaccuracy and to enhance the robustness
of the deterministic approach, presented in [4]. Followed by
proposing a confidence interval-based method, the temper-
ature anomalies over the unhealthy stage of the components
can be detected. This contribution establishes a method to
determine confidence bands for the component tempera-
ture, so that any temperature value that exceeds these bands
require further investigation, as it may be a sign that the
component is reaching the end of it’s life, or it may just be
noise or a sensor error.

The rest of this paper is structured as follows: Section 2
details the existing literature to determine model errors and
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uncertainties. Section 3 describes the methods used, Sect. 4
discusses the results, Sect. 5 sums up the conclusions and
Sect. 6 explains any future work.

2 Literature review

Predicting and incorporating uncertainty or error is ex-
tremely important when predicting an outcome/output be-
cause it improves reliability and accuracy, so a large amount
of research has previously been carried out in this area. In
this case the output is the predicted component tempera-
tures.

[8] describes four types of uncertainty including: inher-
ent, measurement, statistical and model. They define model
uncertainty as “uncertainty due to imperfections and ideal-
izations made in physical model formulations for load and
resistance, as well as in the choices of probability distribu-
tion types for the representation of uncertainties”.

With regards to wind energy/wind turbines, models
are used for a variety of reasons. Examples include: pre-
dicting wind direction for yaw control [9], modelling of
wind speeds to forecast power production [10], predicting
wind speed [11], modelling component failures based upon
weather conditions [12] and identifying anomalies [13].

Many types of models are used and [14] found that ran-
dom forest machine learning models, provide the greatest
accuracy. They also conclude that the accuracy increased
when additional variables were included.

Model uncertainties have been investigated by [15–17]
and [18] to name a few. They define model uncertainty as
the actual or real value of a variable divided by the pre-
dicted value. [8] goes on to explain that bias exists when
the mean value does not equal one. They explain that when
no detailed information is available, either lognormal or
normal distributions are used. Load variables are described
using lognormal distributions, whereas normal distribution
is typically used for resistance variables. [18] confirm that
lognormal distribution is preferred to Gaussian distribution.
[17] explain that by dividing the standard deviation by the
mean, the coefficient of variation can be determined, which
is a “convenient measure of the relative error that the model
uncertainty represents”. A multiplicative model is then typ-
ically used by researchers, including [16], to account for
combined uncertainties but [17] suggests considering addi-
tive errors.

[19] investigated three different approaches to determine
uncertainty in machine learning predictions. They included
the Gaussian process and the quantile approach, which used
both the absolute difference and square of the difference,
where the difference is defined as the difference between
the predicted and observed values. They conclude that the
quartile approach was the easiest approach but the Gaussian

process gave a good estimate. They also found that the best
approach was achieved by using the absolute difference
between the predicted and expected values.

An error compensation prediction was proposed by [20],
based upon an extreme learning machine. This extreme
learning machine was used to predict the difference be-
tween the predicted and actual value, which is known as
the error. This predicted error is obtained from a time lag
correction model and is then added to the “raw wind speed
prediction result” to determine the “final wind speed pre-
diction result”.

Confidence intervals can be used to quantify uncertainty
from data-driven models. [21] proposed two approaches
with regards to confidence intervals, pointwise and simulta-
neous, to “measure the uncertainty associated with an SVM-
based power curve model”. They conclude that pointwise
confidence intervals gave the most accurate results, when
measuring the uncertainty of the power curve.

Monte Carlo simulation and methods have been used
by a number of researchers to account for uncertainty and
errors in models. [22] proposed an “uncertainty quantifi-
cation approach” to determine remaining useful life pre-
dictions, which consists of kernel density estimation and
Monte Carlo dropout. They conclude a high accuracy based
upon this proposed method. A method of combining both
a sensitivity analysis and Monte Carlo method was pro-
posed by [23], in order to try and determine how uncer-
tainties may effect the financial risks of wind projects. [24]
looked at modelling the effect of both aerodynamic and
structural uncertainties in wind turbine blades. They used
the Monte Carlo method to characterise the uncertainties in
the material properties in a structural model of the blade.
[25] used Monte Carlo simulation to obtain the “annual
energy production and its uncertainty for the wind farm”.

3 Method

A deterministic approach to identify drivetrain components
reaching the end of their operational life is documented
in [4]. In [4], the main aim was to use a machine learning
model to predict component temperatures, which are then
used to calculate the temperature differences between actual
and predicted temperatures. The actual component temper-
ature, Tadj

and predicted component temperature, Tpdj
, for

each day, j, are calculated from the instantaneous values of
actual and predicted temperature, Tai

and Tpi
, respectively,

as shown in Eqs. 1 and 2, where n refers to the number
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of ten minute blocks per day (i.e. 6 blocks in one hour, 24
hours a day, therefore n=6×24=144).

Tadj
=

Px+.n−1/
i=x Tai

n
(1)

Tpdj
=

Px+.n−1/
i=x Tpi

n
(2)

The daily temperature difference, ıTdj
, is then calculated

as shown in Eq. 3.

ıTdj
= Tadj

− Tpdj
(3)

From discrepancies between “healthy” and “unhealthy”
years/data, metrics including: temperature difference as de-
scribed above, cumulative sum and cumulative average are
obtained. “Healthy” years/data is assumed to be either the
first year of operation, or the year after a major repair has
occured, where there are no recorded failures. Whereas “un-
healthy” data is assumed to be all subsequent years.

For further information on the machine learning model,
definitions and metrics, please refer to [4].

Different methods are followed according to whether the
error within the model is investigated or the model uncer-
tainty determined.

3.1 Model uncertainty

The model uncertainty can be used in stochastic analysis,
for example for reliability analysis [16, 26], to represent
a probabilistic model of the uncertainty associated with the
data-driven model.

The first step in determining model uncertainty specifi-
cally uses the first year of SCADA data, which in this case
is all the data from 2016 because this data is assumed to be
“healthy” data. The data is randomly split into 70% training
data and 30% test data and applied to the regression tree
ensemble model, which has been developed previously. The
model is trained and tested on different data in order to get
an unbiased view of the model. The input parameters are:
power, rotor speed, nacelle temperature and rear generator
bearing temperature for the training dataset and just the first
three input parameters for the test dataset. The output from
the model is the predicted rear generator bearing tempera-
ture. Due to the data split being randomly generated, this
process is carried out a total of ten times, in order to get
a range of predicted rear generator bearing temperatures for
the test dataset. The predicted temperature values for all ten
runs are recorded and stored, both the predicted tempera-
tures for each 10-minute data value, as well as the daily
average values.

Once the first step has been completed, the next step
is to calculate model uncertainty, �, which as mentioned
in Sect. 2, is the ratio of the actual rear generator bear-
ing temperature, Xtrue, to predicted rear generator bearing
temperature, XPredicted [16], as shown below.

� =
Xtrue

XPredicted
(4)

The model uncertainty is calculated for each 10-minute
averaged data value and for the daily averaged value. The
uncertainty value is then modelled using the lognormal dis-
tribution to determine the mean and standard deviation.
Lognormal distribution is typically used because it only al-
lows the use of positive values, thus shortening the “random
variable range” [27].

The cumulative distribution function (CDF) of a lognor-
mal distribution can be defined as:

Fx.x/ = �.
lnx − a

c
/ (5)

Where �() is the standard Gaussian CDF, ln is natural
logarithm, a is the mean and c is the standard deviation of
lnx.

The next step is to work out the 95% confidence interval,
which is a range of values in which there is a 95% certainty,
that the predictions are expected to fall within this upper
and lower limit.

The above process is then repeated for different dataset
splits, i.e. 60% training/40% testing and 80% training/20%
testing, to determine if this will improve or affect the pre-
dicted values in any way.

3.2 Errors inmodel

The error in the model is the difference between the actual
and predicted rear generator bearing temperatures, which
were determined in the previous section. Once the error has
been calculated the Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE) can then be
determined, as these are all valuable performance indicators
for regression models.

The Mean Absolute Error (MAE) calculates the average
absolute difference or error between the actual and pre-
dicted values [28], so obviously the smaller the value the
better.

MAE =
1

n

nX

i=1

jXtrue − XPredictedj (6)

K



Forschung im Ingenieurwesen           (2025) 89:57    57 Page 5 of 17 0123456789

The Mean Squared Error (MSE) squares the average ab-
solute difference or error between the actual and predicted
values.

MSE =
1

n

nX

i=1

.Xtrue − XPredicted/
2 (7)

The Root Mean Squared Error (RMSE) calculates the
root of the mean of the differences between the actual and
predicted values squared [29].

RMSE =

v
u
u
t1

n

nX

i=1

.Xtrue − XPredicted/2 (8)

The Mean Absolute Percentage Error (MAPE) calculates
the average magnitude of the difference or error between
the actual and predicted values. It is the percentage version
of MAE [30].

MAPE =
1

n

nX

i=1

jXtrue − XPredicted

Xtrue
j � 100 (9)

These error metrics are calculated in order to try and
observe how the model is performing, for example to see if
there is any bias.

3.3 Monte Carlo confidence interval-based anomaly
detection approach andmetrics

The next step is to use the Monte Carlo method to include
an ‘error’ value in any future predictions. This error value is
determined from the values of mean and standard deviation,
extracted from the probability distribution of the calculated
error values, in the “healthy” data and explained in further
details later in this Section. The following process is run
for each turbine separately.

The data preparation process that has been described
previously and which is shown in Fig. 21 is carried out on
all data from year 2016. For all data from years 2017 to
2022, the same process is carried out except for the last
stage.

The next step is to set up the Monte Carlo simulation
and this is detailed in a flowchart shown in Fig. 1. The
process is ran for each turbine separately. The number of
simulations is set to one thousand (1000). The “healthy”
data, which in this case is the 2016 data is randomly split
into 70% training data and 30% test data and the model ran.
The differences in actual and predicted component temper-
atures are then calculated and these errors are plotted using
a Matlab tool to fit the probability distribution to these er-
rors. From this normal probability distribution, the mean
and standard deviation are determined, which are then used

Fig. 1 Flow Chart Showing the Monte Carlo Method used to Deter-
mine Predicted Values
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Fig. 2 Flow Chart Showing the
Post-Processing Process used to
Determine Prediction Levels

to randomly generate an ‘error’. The model is then ran on
the new dataset, which consists of the future years data,
to predict the component’s temperature, in which the ran-
domly generated ‘error’ is added too. Once the simula-
tion has ran one thousand times, both the 95% and 99%
confidence intervals are determined from these simulated
predictions and the post-processing process is carried out,
which is detailed in a flowchart in Fig. 2. The daily values
are then calculated, along with the temperature difference
of any actual temperatures which fall outside of the con-
fidence intervals, the cumulative sum of these temperature
differences and cumulative average.

The process mentioned above is then repeated for
a “healthy” data split of 80%/20% and 60%/40%, in order
to observe if more or less training data affects the accuracy
of the predicted component temperature. It is also repeated
using different amounts of future data, i.e. 1 year–6 years,

in order to see if the amount of data available affects the
reliability and accuracy of the output.

4 Results and discussions

4.1 Model uncertainty

The lognormal probability distribution graphs of all turbines
are very similar. Turbines 3 and 4 are shown in Figs. 3 and 4.
Turbine 3 is an example of a turbine which did not have any
reported failures, whereas Turbine 4 did record a failure in
the rear generator bearing.

Tables 1 and 2 show the average mean and standard devi-
ation for each 10-minute SCADA data point, which will be
referred to as ‘all data’ going forth and the daily averages,
respectively, of the model uncertainty. They show the mean
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Fig. 3 Probability Distribution for Turbine 3

Table 1 Average Values for All Turbines Using Model Uncertainty

Turbine Mean Standard Deviation

1 1.0011 0.0918

2 1.0010 0.0899

3 1.0012 0.0951

4 1.0012 0.0933

5 1.0012 0.0936

6 1.0018 0.0997

Table 2 Average Values for All Turbines Using Model Uncertainty
(Daily Values)

Turbine Mean Standard Deviation

1 1.0010 0.0358

2 1.0005 0.0334

3 1.0017 0.0369

4 1.0010 0.0359

5 1.0014 0.0343

6 1.0017 0.0381

to be around 1 and standard deviation to be around 0.09 for
all data values and 0.03 for the daily average values. All
the mean values are slightly above 1, which indicates that
the model is pretty accurate, although a little conservative.
The standard deviation of 0.09 shows minimum variability,
demonstrating the model’s consistency. Converting the 10-
minute averages to daily averages, reduces the standard de-
viation, thus decreasing variability because it smooths out
any short-term fluctuations.

Tables 7 and 8 show the mean and standard deviation
of the model uncertainty when using different training/test
data splits. Table 7 shows that the standard deviation values
are slightly lower when using an 80%/20% split, whereas
this is the opposite in Table 8, where the average daily

Fig. 4 Probability Distribution for Turbine 4

Table 3 Average Error Metrics for All Turbines

Turbine MAE MSE RMSE MAPE

1 1.8321 5.5723 2.3605 7.0493

2 1.8376 5.4687 2.3385 7.0438

3 1.9485 6.2626 2.5025 7.3174

4 1.9355 6.0592 2.4615 7.2834

5 1.9341 5.9778 2.4449 7.3240

6 1.9411 6.3569 2.5211 7.5029

Table 4 Average Error Metrics for All Turbines (Daily Values)

Turbine MAE MSE RMSE MAPE

1 0.7735 0.9453 0.9720 2.9141

2 0.7204 0.8252 0.9082 2.7076

3 0.8035 1.0944 1.0460 2.9460

4 0.7950 0.9927 0.9960 2.9230

5 0.7436 0.9000 0.9483 2.7284

6 0.7982 1.0413 1.0202 2.9999

values are used. Although in general, changing the percent-
age split of training/test data, does not change the values
significantly.

Therefore, in terms of model uncertainty, the results in-
dicate that the model demonstrates a reasonably high level
of accuracy.

4.2 Errors inmodel

The average error metrics for all data and the average daily
values for the “healthy” (2016) data are shown in Tables 3
and 4.

All the error metrics: MAE, MSE, RMSE and MAPE
are reduced when each 10-min data value is transformed
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Fig. 5 Cumulative Sum of the Temperature Differences for All Tur-
bines Over All Years

into the daily average. This transformation can be advanta-
geous because it smooths out any short-term fluctuations,
resulting in smaller error metric values, which can indicate
a better correlation between the actual and predicted values,
thus signifying a model with higher accuracy. These error
metrics determine the error between actual and predicted
values, so lower values demonstrate improved performance
of the model. Therefore, with regards to model evaluation,
minimizing these errors is a crucial goal.

A sensitivity analysis is carried out by adjusting the train-
ing/test data split. Tables 9 and 10 show the error metrics
for the “healthy” data only i.e. 2016 data, for the 70%/30%,
60%/40% and 80%/20% data splits, for all data and the av-
erage daily values, respectively. Table 10 shows that MAE
and MSE increases as the training dataset increases from
60% to 80%, but RMSE and MAPE reduce in value as the
training dataset increases. Whereas for all the data (Table 9),
all the error metrics, i.e. MAE, MSE, RMSE and MAPE,
reduce in value as the size of the training dataset increases.
Again, varying the training/test data split does not alter the
results significantly.

4.3 Monte Carlo confidence interval-based anomaly
detection approach andmetrics

The original graphs of the cumulative sum of the tempera-
ture differences and the calculated cumulative average, prior
to investigating the model errors and uncertainty, taken from
previous work, are shown in Figs. 5 and 6.

This work has been previously documented [4] but to
briefly summarise:

Figure 5 shows the cumulative sum of the temperature
differences between the actual and predicted rear genera-
tor bearing temperatures, for all turbines, across all years.

Fig. 6 Cumulative Average of the Temperature Difference

The graph shows that the turbines appear to split into two
groups around day 1000, which corresponds to the first
quarter of 2019. One group consists of Turbines 1, 4 and
6 and the other consists of Turbines 2, 3 and 5, with the
former group having a much higher cumulative sum. The
data logs recorded generator NDE bearing failures in Tur-
bines 2 and 4, with the proactive replacement of the same
component in Turbine 1, which all occurred within the year
2022. Therefore, this explains the higher cumulative sum
values in Turbines 1 and 4. With regards to the higher val-
ues in Turbine 6, there was around 600 hours of preventa-
tive maintenance carried out in the first quarter of 2021 and
forced outage in early 2022, with both events reducing the
temperature. Turbine 2 doesn’t appear to follow the same
failure pattern as Turbine 4 but appears to fail shortly after
sharp, sudden temperature rises, as opposed to degradation
over time.

Figure 6 displays the cumulative average, which has been
calculated in order to see if there is an obvious threshold
value, in which if the turbine crosses then it is reaching it’s
end of life. This has been calculated by dividing the cumu-
lative sum by the day. It was decided to use the cumulative
average for finding this threshold value because the cumula-
tive average is quite a straightforward process, which is also
effective in detecting any trends. The graph shows that just
prior to the time Turbine 4 failed, the threshold value was
1.2. The threshold value was captured at this point because
prior to that point the cumulative average had been increas-
ing but it was only once it reached that point, that the rear
generator bearing failed, resulting in turbine downtime. Tur-
bine 1 also passed this value around the same time and went
on to have the same component proactively replaced about
four months later. Turbine 6 crosses this threshold value
twice and underwent scheduled maintenance, although un-
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Fig. 7 Turbine 3—Actual Temperature and Confidence Limits (95%)

Fig. 8 Turbine 3—Actual Temperature and Confidence Bands (95%)

fortunately we do not have anymore details. Therefore, 1.2
was deemed a suitable threshold value, due to three turbines
crossing this point and either failing or undergoing mainte-
nance, even though the time between passing this point and
failing varied for each turbine, so didn’t really assist with
determining life extension, which was the ultimate aim of
the research.

As described in Sect. 3, the proposed Monte Carlo pro-
cess/method is originally carried out on all turbines, using
a training/test data split of 70%/30%. The 95% and 99%
prediction or confidence intervals of the predicted compo-
nent temperatures are then calculated. Figures 7 and 9 show
the actual rear generator bearing temperatures, along with
the 95% confidence upper and lower limits for the daily
values, for Turbines 3 and 4. Figures 8 and 10 show the
corresponding confidence bands. It can be seen from the
graphs that some actual component temperatures exceed
either the upper or lower limits, this may be due to exces-
sive noise, a temporary sensor issue or component failure,

Fig. 9 Turbine 4—Actual Temperature and Confidence Limits (95%)

Fig. 10 Turbine 4—Actual Temperature and Confidence Bands (95%)

especially in the case of Turbine 4, where there are many
more values exceeding the upper limit.

The number of daily average data values, that fall outside
the upper and lower limits, are shown in Table 5, for both
95% and 99% confidence intervals. It shows that for the
95% confidence interval, between 5% to 11% of the total
dataset values fall outside the limits, whereas between 2%

Table 5 Number of Data Points that fall outside the Lower and Up-
per Limits for both 95% and 99% Confidence Intervals

No. of Values Outside Limits

Turbine 95% 99%

1 171 (8%) 108 (5%)

2 123 (6%) 73 (3%)

3 108 (5%) 58 (3%)

4 202 (9%) 131 (6%)

5 119 (6%) 52 (2%)

6 236 (11%) 132 (6%)
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Fig. 11 Cumulative Sum of the Temperature Differences for All Tur-
bines Over All Years Using the New Process (95% Prediction Level)

Fig. 12 Cumulative Average (95% Prediction Level)

to 6% fall outside the limits when using the 99% confidence
interval.

The new graphs of the cumulative sum of the tempera-
ture differences and the cumulative average for all turbines
are displayed in Figs. 11–14. The graphs appear different
to the original because only actual temperatures that do not
fall within the prediction/confidence limits for each daily
average value, are recorded as having a temperature differ-
ence. Any values that fall within the limits, are recorded
as having zero temperature difference, which means that
the cumulative sum can stay at the same value for a period
of time, until an actual temperature outside the limits is
recorded. This explains why there are more horizontal and
vertical lines on the new graphs.

From these graphs, it can be seen that by using the same
technique that was used to determine the threshold value

Fig. 13 Cumulative Sum of the Temperature Differences for All Tur-
bines Over All Years Using the New Process (99% Prediction Level)

Fig. 14 Cumulative Average (99% Prediction Level)

in Fig. 6, that the threshold value is approximately 0.15
for 95% confidence interval and 0.1 for 99% confidence
interval, as opposed to 1.2 in the original results. They
also show that only Turbines 1 and 4 cross the threshold
value, which matches the information recorded in the data
logs. The data logs recorded generator NDE bearing failures
in Turbines 2 and 4, as well as the proactive replacement
of the component in Turbine 1. Turbine 6 does not cross
the threshold value in this case, even though it gets close,
this may be due to the fact that the issues it had were not
related to the rear generator bearing, or that maintenance
was carried out before it failed.

Some of the error metrics, specifically the mean absolute
error (MAE) and mean squared error (MSE), are calculated
for the results obtained via the new process and compared
with the results from the original method. The results are
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Fig. 15 Turbine 4—Probability Distribution Graph Two Days Prior to
Failure

Fig. 16 Turbine 3—Probability Distribution Graph

displayed in Table 11. It shows that the proposed Monte
Carlo method reduces both the MAE and MSE, in all tur-
bines, which is advantageous.

It can also be seen from the table that the MSE values
for Turbines 2 and 4 are higher than the others in the new
Monte Carlo method, probably due to the fact that failures
occurred in both these turbines.

The probability distribution related to the temperature
differences for Turbine 4 just prior to failure and Turbine 3
are shown in Figs. 15 and 16.

Figure 15 shows a range of temperature difference values
from 30 to 48 for Turbine 4, compared to a range of values

Fig. 17 Cumulative Sum of the Temperature Differences for Turbine
3 Over All Years: Comparison Using Training/Test Split of 60%/40%
vs. 70%/30% vs. 80%/20% (99% Prediction Level)

Fig. 18 Cumulative Average for Turbine 3 Over All Years: Compari-
son Using Training/Test Split of 60%/40% vs. 70%/30% vs. 80%/20%
(99% Prediction Level)

from -8 to 12 for Turbine 3, which is a noticeable difference
between a turbine that failed and one that did not.

A sensitivity analysis is performed, which involves re-
peating the process using a different data split for the
“healthy” data, a split of both 80%/20% and 60%/40%
is applied and the results are shown in Figs. 17–20. The
tabular results from the sensitivity analysis are shown in
Table 6.

The error metrics for the complete process, i.e. the error
calculated from applying the proposed Monte Carlo method
to years 2017–2022, using the different “healthy” dataset
splits are calculated and are shown in Table 6. The table
shows that both the MAE and MSE increase as the train-
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Fig. 19 Cumulative Sum of the Temperature Differences for Turbine
4 Over All Years: Comparison Using Training/Test Split of 60%/40%
vs. 70%/30% vs. 80%/20% (99% Prediction Level)

Fig. 20 Cumulative Average for Turbine 4 Over All Years: Compari-
son Using Training/Test Split of 60%/40% vs. 70%/30% vs. 80%/20%
(99% Prediction Level)

ing dataset increases from 60% to 80% and testing dataset
reduces from 40% to 20%.

With regards to the amount of data required to obtain
accurate results, the process is repeated and the model ap-
plied to different durations, i.e. 1-6 years, to Turbine 4. The
results for years 1, 3 and 5 are shown in Figs. 22–27. These
results show that no matter how much data is available, this
process can still be applied in order to see any anomalies
or trends.

Table 6 Error Metrics for Different Data Splits—Daily Values for
All Years

Turbine Error Metric 60%/40% 70%/30% 80%/20%

1 MAE 0.36 0.37 0.38

1 MSE 3.50 3.59 3.67

2 MAE 0.36 0.37 0.38

2 MSE 15.32 15.43 15.63

3 MAE 0.21 0.22 0.23

3 MSE 2.24 2.36 2.40

4 MAE 0.49 0.50 0.52

4 MSE 5.08 5.17 5.36

5 MAE 0.17 0.17 0.19

5 MSE 1.27 1.34 1.48

6 MAE 0.47 0.49 0.49

6 MSE 4.47 4.68 4.76

5 Conclusion

The aim of this research was to determine the uncertainty
and errors of a regression tree ensemble model, which was
used to predict the temperature of a non-drive end generator
bearing in multiple wind turbines, in order to predict if it
was coming to the end of it’s life. Determining errors and
uncertainties in a model, especially ones concerned with
wind turbines are extremely important due to the severe
implications of inaccurate and unreliable models, such as
sudden component failure causing unexpected downtime.
Therefore, not only is it important to try and predict when
a component is coming to the end of it’s life, it is also
important that the predictions are as accurate as possible.

For this research, data had been obtained from an on-
shore wind farm, which consists of six wind turbines and
their SCADA data recorded from years 2016 to 2022.

The first step was to determine model uncertainty, which
is defined as the ratio of actual to predicted temperature.
Once the model uncertainty was calculated for the first year
of the turbine operating, it was displayed as a lognormal
probability distribution graph, in which the mean and stan-
dard deviation were calculated. Obviously the ideal mean
value is 1 and in this case the mean was determined to be
just above 1, ranging from 1.001 to 1.0018 for all turbines.

The next step was to calculate the error metrics, such as
the mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE) and mean absolute per-
centage error (MAPE). These were calculated in order to
get an idea as to how the model performs.

The final step was to utilise Monte Carlo simulation.
The difference between the actual and predicted tempera-
tures were calculated for “healthy” data. These errors were
then displayed as a normal probability distribution and the
mean and standard deviation calculated. These values were
then used to randomly generate an error, which was added
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to future temperature predictions. Both the 95% and 99%
confidence intervals were then determined, prior to calcu-
lating the temperature difference for any point that falls
outside the upper and lower limits. From here, the cumu-
lative sum of the temperature differences were calculated
along with the cumulative average, which was used to de-
termine a new threshold value. The process was repeated
for each turbine. The inputs were also varied by using dif-
ferent “healthy” training/test dataset splits i.e. 70% /30%,
60%/40%, 80%/20%, to see if this affected the predicted
values, as well on different periods of time i.e. 1-6 years.

The results showed that by using the proposed Monte
Carlo method along with the confidence intervals, the er-
ror metrics reduced, which is promising. The reduction in
MAE was between 78% and 90% across the turbines and
between 33% and 82% for MSE, although the MSE values
for Turbines 2 and 4 stayed higher than the others, due to the
fact they had component failures. The revised cumulative
average graph, showed Turbines 1 and 4 crossing the new
threshold value, which coincides with the failure/issue data
log. As mentioned previously, Turbine 2 appears to follow
a different failure pattern to Turbine 4, in the sense failure
occurred shortly after a sudden, sharp temperature rise, in-
stead of failure due to operating at higher temperatures over
a long period of time (Turbine 4).

The sensitivity analyses concerning adjusting the train-
ing/test data split did not seriously affect the results, there
was an increase from the 60%/40% results to 80%/20%,
which ranged from 2% to 16% (MSE) and 4% to 12%
(MAE). With regards to the use of 95% or 99% confidence
intervals, obviously the 99% confidence interval includes
more data points and with regards to calculating a thresh-
old value, there was a difference in values of around 33%
i.e. 0.1 as opposed to 0.15.

Therefore, it can be concluded that when trying to deter-
mine a threshold value, in which if an actual temperature
value passes then the component may be reaching the end
of it’s life, using the Monte Carlo method to add a random
‘error’ to the predicted temperature based upon the prob-
ability distribution of errors in the “healthy” data, along
with using confidence intervals, can be useful to take into
account any uncertainties or errors that the model may con-
tain. Thus, creating a slightly more accurate model, which
is important when trying to evaluate component life ex-
tension. Although, as previous research and literature has
stated, using only temperature data to try and determine
remaining useful life of a component long in advance, is
not such a good indicator but can assist the operator in
identifying problematic components.

6 Future work

Future work will include, trying to improve the method
further, it may be helpful to investigate whether improving
the pre-processing method may help remove any false posi-
tives, or values that exceed the limits due to noise or sensor
issues. It will also be advantageous to apply the method/
process to another wind farm, which has had more failures
and also failures of various different components.

7 Appendix: Flowchart showing the data
preparation

Fig. 21 Flow Chart Showing the Data Preparation
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8 Appendix: Tables showing the model
uncertainty—mean and standard
deviation—for different training/test data
splits

Table 7 Average Mean and Standard Deviation Values for All Tur-
bines Using Different Training/Test Data Split

Training/Test : 60%/40% Training/Test : 80%/20%

Tur-
bine

Mean Standard
Deviation

Mean Standard
Deviation

1 1.0010 0.0929 1.0011 0.0908

2 1.0017 0.0913 1.0012 0.0893

3 1.0014 0.0960 1.0008 0.0940

4 1.0013 0.0941 1.0005 0.0924

5 1.0014 0.0945 1.0011 0.0926

6 1.0017 0.1004 1.0018 0.0978

Table 8 Average Mean and Standard Deviation Values for All Tur-
bines Using Different Training/Test Data Split (Daily Values)

Training/Test : 60%/40% Training/Test : 80%/20%

Tur-
bine

Mean Standard
Deviation

Mean Standard
Deviation

1 1.0010 0.0348 1.0012 0.0364

2 1.0014 0.0330 1.0006 0.0352

3 1.0018 0.0369 1.0011 0.0384

4 1.0009 0.0350 1.0005 0.0373

5 1.0017 0.0333 1.0015 0.0366

6 1.0013 0.0371 1.0015 0.0391

9 Appendix: Tables showing the
error metrics for all data and daily
values—sensitivity analysis

Table 9 Error Metrics for Different Data Splits for 2016 Data—All
Values

Turbine Error Metric 60%/40% 70%/30% 80%/20%

1 MAE 1.847 1.832 1.817

1 MSE 5.694 5.575 5.460

1 RMSE 2.386 2.361 2.337

1 MAPE 7.126 7.060 7.002

2 MAE 1.854 1.829 1.817

2 MSE 5.560 5.403 5.345

2 RMSE 2.358 2.324 2.312

2 MAPE 7.113 7.022 6.968

3 MAE 1.972 1.946 1.931

3 MSE 6.427 6.282 6.176

3 RMSE 2.535 2.506 2.485

3 MAPE 7.404 7.316 7.254

4 MAE 1.950 1.933 1.920

4 MSE 6.168 6.051 5.948

4 RMSE 2.483 2.460 2.439

4 MAPE 7.340 7.275 7.239

5 MAE 1.951 1.935 1.917

5 MSE 6.107 5.998 5.883

5 RMSE 2.471 2.449 2.425

5 MAPE 7.396 7.339 7.265

6 MAE 1.962 1.949 1.920

6 MSE 6.487 6.423 6.214

6 RMSE 2.547 2.534 2.493

6 MAPE 7.592 7.541 7.414
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Table 10 Error Metrics for Different Data Splits for 2016
Data—Daily Values

Turbine Error Metric 60%/40% 70%/30% 80%/20%

1 MAE 0.747 0.770 0.775

1 MSE 0.885 0.935 0.968

1 RMSE 2.386 2.361 2.337

1 MAPE 7.126 7.060 7.002

2 MAE 0.706 0.715 0.751

2 MSE 0.784 0.808 0.890

2 RMSE 2.358 2.324 2.312

2 MAPE 7.113 7.022 6.968

3 MAE 0.791 0.794 0.829

3 MSE 1.052 1.049 1.140

3 RMSE 2.535 2.506 2.485

3 MAPE 7.404 7.316 7.254

4 MAE 0.773 0.796 0.820

4 MSE 0.950 0.994 1.058

4 RMSE 2.483 2.460 2.439

4 MAPE 7.340 7.275 7.239

5 MAE 0.731 0.748 0.781

5 MSE 0.855 0.897 1.014

5 RMSE 2.471 2.449 2.425

5 MAPE 7.396 7.339 7.265

6 MAE 0.782 0.803 0.816

6 MSE 1.009 1.053 1.106

6 RMSE 2.547 2.534 2.493

6 MAPE 7.592 7.541 7.414

10 Appendix: Table showing a comparison
of the error metrics—original vs new
process

Table 11 Error Metrics for Original vs. New Process

Turbine Error Metric Original Method New MC
Method

1 MSE 12.69 3.59

2 MAE 1.90 0.37

2 MSE 23.19 15.43

3 MAE 1.84 0.22

3 MSE 9.81 2.36

4 MAE 2.30 0.50

4 MSE 15.61 5.17

5 MAE 1.71 0.17

5 MSE 7.46 1.34

6 MAE 2.79 0.49

6 MSE 20.88 4.68

11 Appendix: Figures showing actual
temperature and confidence intervals for
1, 3 and 5 years of data for turbine 4

Fig. 22 Actual Temperature and Confidence Intervals for 1 Year Data
for Turbine 4

Fig. 23 Actual Temperature and Confidence Bands for 1 Year Data for
Turbine 4
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Fig. 24 Actual Temperature and Confidence Intervals for 3 Year Data
for Turbine 4

Fig. 25 Actual Temperature and Confidence Bands for 3 Year Data for
Turbine 4

Fig. 26 Actual Temperature and Confidence Intervals for 5 Year Data
for Turbine 4

Fig. 27 Actual Temperature and Confidence Bands for 5 Year Data for
Turbine 4
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