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Crop yield prediction using Earth Observation data presents challenges due to the diverse data 
modalities and the limited availability of relevant datasets, which are often proprietary or private. 
Decentralised federated learning has been proposed as a solution to address these privacy concerns 
as no data labels will have to be distributed to a third party. However, the performance of federated 
learning is significantly influenced by the number of clients and the distribution of data among them. 
This study investigates the impact of aggregation levels on federated learning using a proxy model 
trained on crop type data derived from Copernicus Sentinel-2 images. Interaction of these aggregation 
levels with other parameters is simulated and studied to aim to generalise the results to different 
situations. The analysis also includes an examination of the current and future distributions of crop 
yield datasets to determine the optimal aggregation levels for effective federated learning. The 
findings highlight that dataset size directly affects the learning outcomes as well as the degree of 
privacy that can be maintained. Other scenarios and the implications of these results are discussed for 
a future crop-yield decentralised federated learning architecture.
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In today’s rapidly evolving digital landscape, Earth Observation (EO) data has emerged as a critical tool for 
understanding and managing our planet’s resources. EO data, which includes information collected from satellites 
and other remote sensing technologies, offers a comprehensive view of the Earth’s surface, enabling detailed 
analysis across various domains. This type of data is invaluable for applications ranging from environmental 
monitoring to urban planning, providing insights that are both broad in scope and highly specific in detail.

The utility of EO data extends far beyond mere observation. It serves as a powerful resource for addressing 
some of the most pressing challenges in agriculture, such as crop type detection and yield prediction. By 
analysing EO data, researchers and practitioners can identify crop types across vast agricultural landscapes 
with unprecedented accuracy. Previous models such as WorldCereal1, are centralised machine learning model 
projects, that have completed this task of ground type and crop type detection and segmentation with high 
accuracy. This capability not only enhances our understanding of agricultural patterns but also informs strategies 
for improving food security and resource management. Furthermore, the ability to predict crop yields using EO 
data is crucial for planning and optimising food production, helping to mitigate the risks associated with climate 
change, such as famines, and fluctuating market demands.

However, despite its potential, there are significant gaps in the availability of crop yield data, primarily due to 
issues related to privacy and proprietary restrictions. These challenges hinder the full exploitation of EO data in 
agriculture, as access to reliable and comprehensive yield data is essential for accurate predictions and informed 
decision-making.

One promising solution to this dilemma is the adoption of decentralised federated learning. Federated 
learning is an innovative approach to machine learning that allows models to be trained across multiple 
decentralised devices or servers while keeping the data localised. This means that sensitive data, such as crop 
yields, can be utilised for training predictive models without ever leaving the owner’s control, thus preserving 
privacy and ownership using methods such as differential privacy2 and homomorphic encryption3. Federated 
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learning has been used in many agricultural tasks already from pest control and disease diagnosis45 to crop 
classification6, and many other tasks7.

Decentralised federated learning offers unique advantages over traditional centralised approaches, 
particularly in terms of privacy, security, and scalability. By distributing the learning process across a network of 
participants, or clients, this method reduces the risks associated with data breaches and enhances the robustness 
of the learning models. Moreover, it facilitates collaboration among diverse stakeholders, including farmers, 
local governments, nations and multi-national organisations, without compromising the confidentiality of 
proprietary data.

Decentralised architecture
In decentralised federated learning, the process of aggregating and coordinating model updates is distributed 
among clients, rather than relying on a centralised server. In this setup, clients share their model updates 
(weights) directly with each other, typically through a peer-to-peer network. The decentralised architecture is 
composed of the following modules:

•	 Weight propagation and communication—Each client exchanges model updates with a subset of other cli-
ents, known as peers. This peer-to-peer communication is the foundation of decentralised federated learning, 
where clients send their locally trained models or updates to neighboring peers. A common method to prop-
agate these updates across the network is through a gossip protocol89. In this approach, each client periodi-
cally shares its model with randomly selected peers. Those peers then further distribute the model updates, 
ensuring that the information spreads throughout the network over time.

•	 Local aggregation and model updating—Each client maintains its version of the global model, which it period-
ically updates based on the models received from its peers. This process is known as local aggregation. Clients 
aggregate the received models, typically by averaging them, to update their local models.

•	 Flexibility and resilience in updates—Unlike in centralised federated learning, where updates are usually 
synchronised, decentralised federated learning allows for asynchronous updates. Clients can perform local 
updates and exchange weights with peers at different times, making the training process more flexible and 
resilient.

•	 Weighted aggregation techniques—The aggregation process in decentralised federated learning can be en-
hanced by weighted aggregation. In this method, the received models are weighted based on factors such as 
the number of local training epochs, the size of the local dataset, or the trustworthiness of the peers. This helps 
balance the influence of different clients on the global model.

•	 Ensuring consensus—To ensure that all clients eventually converge toward a similar model, decentralised fed-
erated learning often employs consensus mechanisms. These algorithms help align the models across the 
network, despite the decentralised and potentially asynchronous nature of the updates.

•	 Privacy preservation—Privacy remains a critical concern in decentralised federated learning. Since each cli-
ent retains its local data, privacy is inherently preserved. However, to prevent potential information leakage 
through model updates, privacy-preserving techniques such as differential privacy2 or homomorphic en-
cryption3 are often used. These methods ensure that sensitive information is not revealed during the update 
exchanges.

The number of clients, the entities training the individual local model on their local dataset, participating in 
federated learning, also has a significant impact on the learning process and model performance. An increased 
number of clients generally brings greater data diversity, which can improve the model’s generalisation ability 
across different dataset distributions. However, this also introduces communication overhead and exacerbates 
issues related to non-identically and non-independently distributed (non-IID) data, where data distributions 
differ significantly between clients. This can lead to slower convergence and unstable training dynamics, as noted 
by10 and11 in their work on addressing non-IID data in federated learning.

On the other hand, involving fewer clients reduces communication costs and can speed up convergence but 
may result in overfitting, particularly if the data is less diverse or biased12. Balancing the number of clients is 
thus essential to optimising both the efficiency and effectiveness of federated learning systems, as discussed in 
comprehensive reviews by13. Current methods to reduce the number of clients include selecting a subset of the 
full group14–18, but this reduces the total size of the dataset across all clients, a problem if the dataset is not large. 
Methods for when small datasets are used for training are discussed in19 by combining data and models together 
with nearby clients.

A possible method, introduced as a central topic of this paper, for reducing the number of clients while 
maintaining large-enough balanced datasets, is to change the entity aggregating the data to a different scale. This 
is particularly relevant for the agricultural application here explored as it can be implemented at the different 
administrative levels of the region/country.

Definition of data aggregation levels and scenarios
To be consistent with terminology in regards to the level at which the data is being aggregated, the following 
definitions are given based on the entity participating in the decentralised federated learning protocol:

•	 Micro level—Where the farmers are the clients within the decentralised federated learning protocol. Calculat-
ing the number of clients at this level can be estimated by the number of farms in the world. Estimates range 
from 456.07 million in the 1990s20 to 608 million in 202121.

•	 Meso Level—Where the provinces or counties are the clients within the decentralised federated learning 
protocol. Again, calculating the number of clients can be achieved by estimating the number of provinces 
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or counties. For example, in the European Union (EU) the Nomenclature of territorial units for statistics 
(NUTS) gives 104 regions at NUTS level 1, 283 regions at NUTS level 2 and 1345 regions at NUTS 322.

•	 Macro Level—Where the countries are the clients within the decentralised federated learning protocol. Con-
sidering the nations that are member states of the United Nations, there would be 193 clients23.

•	 Mega Level—Where the multi-national corporations or international organisations are the clients within the 
decentralised federated learning protocol. Some examples of these could be EU and/or multi-national agri-
cultural organisations who automatically collect data from farmers over large areas. Estimating the number 
of entities at this level is challenging, but a reasonable approximation is one entity per continent, resulting in 
7 Mega Level entities.

From these data aggregation levels the matching scenarios are envisioned:

•	 Micro level scenario—The labellers of the data, in this case the farmers, select and receive the required EO data 
from the EO data providers. The EO data is then combined with farmers labels, either crop type or crop yield, 
and train a model specific to the global task. This is then combined into the global decentralised federated 
learning model and new model weights are returned to them. They continually repeat the training process 
with these new model weights and their local dataset and send the model weights into the federated learn-
ing network and receive new model weights. This model at any time can be used to infer predictions on any 
available datasets to the farmers. This scenario can be seen in Fig. 1a with the labelled entities given in Fig. 1c.

•	 Meso Level Scenario—In this case the province or county select and receive the required EO data from the EO 
data providers. The farmers of the province or county provide their respective labels, either crop type or crop 
yield statistics to the province or county. This provincial/county EO data and farmers labels are combined and 
used to train a model specific to the global task. This is then combined into the global decentralised federat-
ed learning model and new model weights are returned to the province/county. The training is continually 
repeated with the new model weights and the local provincial/county dataset, followed by sending the model 
weights to the global model and receiving new weights. Again this model can be used to infer predictions 
on dataset available to any individual with access to the model. This scenario can be seen in Fig. 1b with the 
labelled entities given in Fig. 1c.

•	 Macro level scenario—The scenario is the same as at the meso level however the aggregator of the EO data 
and labels, and the model trainer are countries. This scenario can be seen in Fig. 1b with the labelled entities 
given in Fig. 1c.

•	 Mega level scenario—The scenario is the same as at the meso and macro levels however the aggregator of the 
EO data and labels, and the model trainer are multi-national corporations or international organisations. This 
scenario can be seen in Fig. 1b with the labelled entities given in Fig. 1c.

Figure 1.  Diagrams of different aggregation levels and scenarios.
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This paper tackles the question: How to find the right trade-off between centralisation and decentralisation in 
federated learning for agricultural predictions? To address this question, several key factors must be examined. 
First, we need to consider the data that is currently available, as well as what data might become available in the 
future. Next, to understand how different levels of data aggregation perform in decentralised federated learning, 
we conduct a simulation for crop type segmentation and classification using real-world data. Additionally, it 
is crucial to assess how these varying levels of aggregation impact the amount of data that must be transferred 
across the decentralised network and how privacy is maintained within these datasets. By exploring these 
factors, this paper aims to clarify the implications of decentralised federated learning in the context of crop yield 
estimation and to determine the optimal data aggregation levels for crop type detection, ultimately predicting 
the required level for accurate crop yield prediction.

The main contributions of this paper include demonstrating how the number of clients affect the learning 
metrics of a federated learning model, presenting the current data labels and Earth Observation (EO) data 
available for crop type and crop yield prediction, and exploring the different levels at which data aggregation can 
occur for these agriculture datasets to maximise the effectiveness of model learning while maintaining privacy 
and security of private and/or proprietary data. Comparison of different parameters to optimise and account 
for are considered, including simulating federated learning models with scenarios for different data distribution 
techniques, aggregation levels and number of crop classes in the segmentation task to understand how these 
parameters interact with each other. Additionally, the paper identifies the specific aggregation levels necessary 
for developing a decentralised federated learning model aimed at crop yield prediction tasks.

Data availability
EO data
EO data allows for rapid analysis of vast geographical areas, enabling large-scale environmental and agricultural 
monitoring with unprecedented efficiency. The extensive coverage provided by EO data results in large, diverse 
datasets, which are ideal for training machine learning models that can improve predictions and insights across 
a wide range of applications.

Moreover, EO data can capture information from remote and hard-to-reach areas, providing valuable insights 
where on-the-ground data collection is challenging or impossible. With daily revisit times, EO data can deliver 
continuous updates, ensuring that decision-makers have access to the most current information available.

To use EO data for crop type classification and yield prediction, a broad range of spectra information are 
required from the optical satellites in and outwith that of visible light. In previous work, European Space Agency 
(ESA) WorldCereal1 uses 9 spectral bands ranging from 490nm to 2190nm from Copernicus Sentinel-2 mission 
to achieve 97.8% global classification accuracy. The same bands were also used in this work to compare the 
accuracy achieved with a decentralised federated approach in different scenarios to measure the effect of different 
aggregation levels. Note that other modalities (or types) of EO data including synthetic aperture radar (SAR) 
were used in1. However, only multi-spectral optical S-2 data was used used in this work as sufficient accuracy 
was obtained in later tests without the use of SAR data.

The federated learning model used in this paper is trained on ESA Copernicus Sentinel-2 surface reflectance 
products (so called L2A). As the crop type labelled dataset’s observation date was on date 01/06/201824, cloud 
free images as close in time as possible to this date were selected. The geographic extent of the swath used is 
between coordinates 50.68°N 2.53°E and 50.89°N and 5.89°E. The full specifications of the data are given in 
Table 1.

The EO data is then subdivided into smaller patches of 256 × 256 pixels of 10m Ground Sample Distance 
(GSD), where bands with larger GSD are upsampled to 10m. A representation of the visible light bands of this 
subdivided EO data where it overlaps the crop yield dataset24, is shown below in Fig. 2. This subdivided dataset 
can be most easily viewed at25.

The use of EO data for crop yield estimation necessitates the integration of ancillary environmental information. 
Traditional on-ground measurements, which involve counting the grains per head or pod, provide direct yield 
assessments27. However, replicating these direct measurements using EO data is challenging. Instead, EO data 
can be employed to estimate crop yield by assessing the quality and progression of crop growth throughout the 
growing season. This approach requires temporal EO data that captures phenological changes, complemented 
by environmental variables such as precipitation, temperature, and sunlight. These environmental factors, which 
significantly influence crop growth, can be obtained from either modelled data or observational datasets.

Specification Value

Product name Sentinel-2 L2A

Date and time 10:54:40 30/06/2018 UTC

Cloud cover 0%

Geographic extent 50.68◦ N2.53◦ E to 50.89◦ N5.89◦ E

GSD 10 m

Sentinel-2 bands 2, 3, 4, 5, 6, 7, 8, 11, 12

Table 1.  Crop type EO data specifications.
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EO data labels
One challenge with EO data is the need for extensive labelling by experts, who are often geographically dispersed 
and difficult to coordinate. This can lead to inconsistencies, as the data labelled by different individuals may be 
non-IID, hindering the training of the machine learning model.

Crop type labels are provided by the farmers and regions across the world. These are often not aligned with 
each other and stored in different places. Projects such as WorldCereal have aligned many of these datasets, 
including 74814016 crop fields across the planet as of August 202428. The 97.8% global classification accuracy 
means that this model has good generalisation capabilities and can be used to classify new areas. While crop 
type prediction models are not novel, with several existing models in the literature29–31, the innovation lies in the 
application of federated learning to these models. This approach contributes to the crop type model’s scalability 
and serves as a proxy to evaluate the scalability of a crop yield prediction model.

The dataset used in the federated learning model here proposed contains 514860 features/fields across 
Belgium which represent the crop type of each field as of observations on 01/06/2018, an example of which 
can be seen in Fig. 3. This dataset, referenced in25 was derived from the original dataset24, which contained 
multiple crop types associated with the same class number. To address this redundancy, similar classes were 
merged, resulting in a refined dataset with 78 distinct crop types. However, the dataset exhibits an inconsistent 
distribution across different crop types. To ensure label balance during training, only the top 10 most represented 
classes were selected. Expanding the dataset would allow for the inclusion of a broader range of labels, enhancing 
the model’s capacity to generalise.

Belgium was selected as the sole country for the crop type dataset in this study due to several reasons. First, 
the dataset for Belgium is of substantial size, providing sufficient data for training an adequately accurate model 
for study. The dataset covers the same growing season across all samples, ensuring temporal consistency, and 
represents a uniform biome, minimising variability due to ecological differences. Since the focus of this study is 
on exploring different aggregation scales rather than achieving global model generalisation, a global dataset is not 
required. Additionally, the dataset benefits from low cloud cover, simplifying preprocessing and reducing noise 
in the data. Because of the origin of the dataset, it is likely that the data has undergone verification procedures, 
further supporting the presumed accuracy and reliability of the data labels, an essential factor for the study. 
Lastly, the complexity and resource-intensity involved in creating such a dataset necessitate a practical approach, 
and limiting the scope to Belgium made this effort feasible without compromising the study’s objectives.

Figure 3.  10m GSD images to show resolution of crop type data available. Each field is separately identified 
with the crop type. Crop types are randomly coloured for view-ability. (Data from map of Belgium between 
50.7 and 51.1511 Degrees North and 2.6 and 3.30915 Degrees East in 201824).

 

Figure 2.  Visible light bands (B04,B03,B02) of Belgium EO dataset used in this work. Contains modified 
Sentinel data 201826. The missing areas are areas with no crops recorded in the crop type dataset24 this includes 
areas such as cities and water.
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Crop yield labels  are scarce primarily due to the significant challenges and costs associated with obtaining 
accurate ground truth data. Collecting reliable yield data often requires extensive fieldwork, specialised 
equipment, and coordination with local farmers, making it both labor-intensive and expensive. Moreover, the 
global collection of crop yield data is particularly difficult, as it involves gathering consistent information across 
diverse agricultural landscapes with varying practices and conditions. Currently, crop yield data can be collected 
at the mega level by the organisations that produce smart farming equipment. For example, the data is measured 
by the tractor in the field, and the data is sent back to the manufacturers centralised servers32,33. These datasets 
are very precise however are proprietary data for the companies. This leads to datasets that are worth a lot of 
money and are either shared at great expense or not shared at all.

Other datasets that are publicly available are not precise to the level of a few square meters or even to the field. 
One of the dataset shared by the EU provides data at a resolution of Meso Level per NUTS level 2 region34. This 
data is patchy with some provinces not existing in the dataset and almost all provinces are missing crop types 
and/or years of data. The resolution of this data and its extent is displayed in Fig. 4. Without measurements taken 
at the resolution of a few square meters or per field, this dataset necessitates the aggregation of large volumes 
of EO data. Such extensive averaging can significantly compromises the capacity to effectively train a machine 
learning model.

Decentralised federated learning setup
As the crop yield data is not available in high enough resolution to train a model, the crop type segmentation task 
is used as a proxy to test the different aggregation scales. Initially, the client-side model is established, followed by 
the implementation of the federated learning aggregation layer. Subsequently, the decentralised protocol layer is 
configured. The process concludes with the application of a technique for quantifying the results.

To measure the performance of the federated learning on the Micro, Meso, Macro and Mega scenarios, the 
federated learning model is simulated with the same dataset split between a varying number of clients. These 
metrics are measured from both distributed validation sets (10% of each client dataset), and the centralised 
testset, (20% of the overall dataset). There are a total of 5990 labelled patches in the dataset of size 256 × 256 
pixels. Splitting these into the different datasets gives 1198 patches in the centralised testset for all tests, and the 
4792 other patches are distributed between the clients.

To measure the outcomes of the studies, five common metrics are calculated from the confusion matrix. 
These are calculated on the centralised testset and the predictions are compared against the dataset labels. First 
precision and recall are computed and then averaged across all classes. Secondly, the per class F1-scores are 
computed and used to calculate the weighted-averaged F1-score with background (F1-W), weighted-average F1-
score without background (F1-W-NB) and the non-weighted-averaged F1-score with background (F1-macro). 

Figure 4.  Map of Europe to show crop yield data available from34. Map divided into NUTS level 2 regions. The 
colouring is the average number of years out of 25 years of possible data that exists across all 79 crop types.
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The without background metric is used to analyse when the background is skewing the F1-score due to the 
existence of class imbalance in the crop type dataset, as the background is encoded as one of the classes.

When determining the parameters and hyperparameters of the local and global model training there a 
few things to consider. Firstly, we have the option to conduct a hyperparameter study globally, where optimal 
hyperparameters are uniformly applied across all clients, or locally, where each client independently optimises 
their own set of hyperparameters. In this study, we opt for global optimisation of hyperparameters because the 
clients are simulated and receive a randomised set of labelled data. Given this setup, local optimisation would 
not be appropriate.

Next we need to determine which parameters to optimise and account for:

•	 Model architecture and size—Different model scales and architectures can train faster and with potentially 
higher final accuracy.

•	 Model aggregation techniques—Different methods of combining federated individual client models into a sin-
gle global model exist.

•	 Model optimisation functions—Considerations towards the optimiser, the optimiser function hyperparame-
ters such as learning rate, and potential use of a learning rate scheduler must be considered to find a viable 
and efficient model training procedure.

•	 Loss function—The type of loss function used as well as the ratio of loss functions if multiple are used.
•	 Threshold levels—A threshold set upon the output soft-maxed neural network layer can add a requirement 

that the model must acquire a certain level of confidence before it predicts a class.
•	 Number of clients in the federation—This is our primary independent variable to determine how the number 

of participants effects the learning and final results.
•	 Number of classes and class imbalance—The dataset shows a class imbalance, especially among the most com-

mon crop types, as these represent a large share of the total crop classes. There is also an imbalance between 
the crop classes and the background class, which makes up the largest portion of all classes. When the largest 
crop classes are included in training, adding more classes further amplifies this imbalance because the sizes of 
each class tend to decrease sharply, reflecting the distribution of crop types grown in the country represented 
by the dataset. Consequently, increasing the number of classes leads to greater class imbalance.

•	 Dataset distribution across available clients—The distribution of the dataset across clients can be independent 
and identically distributed (IID) or non-IID.

•	 Dataset quality disparity—Disparity in the quality of the dataset can come from sources such as accuracy of 
labelling and dataset privacy protecting measures applied before training.

The first three of these parameters are defined. Optimisation of these parameters is outwith the scope of this 
work and therefore are determined from literature.

Local client model architecture
The WorldCereal product35 is obtained by training a random forest model. As random forest operates on each 
pixel rather than patch, spacial autocorrelation is not accounted for. Therefore, as the dataset already includes 
the spatial correlation element of a patch of pixels, an architecture which does allow for spatial autocorrelation 
is considered optimal for this study. Therefore, a U-Net is determined as the most suitable model architecture 
for this parameter. A U-Net model36 is a type of convolutional neural network architecture specifically designed 
for image segmentation tasks. Originally developed for biomedical image segmentation, U-Nets have gained 
popularity across various domains due to their effectiveness in precisely delineating the boundaries of objects 
within an image. The architecture of a U-Net model is characterised by a symmetric U-shaped design as seen 
in Fig. 5, with an encoder path that captures context and a decoder path that enables precise localisation. This 
structure allows the network to effectively learn both global and detailed features, making it highly suitable for 
segmentation tasks where accuracy and detail are critical. Another reason, the U-Net is used in this work is it 
excels in scenarios with limited training data, as they can achieve high-quality results even with relatively small 

Figure 5.  Diagram representing the U-Net used for this work.
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datasets. In this work, at the micro level, farmers may provide very small datasets if their farms are limited in 
size, therefore, the U-Net is chosen to mitigate this problem.

Federated learning aggregation
After the client has trained the model on their local data over a predefined number of epochs, the U-Net model 
is aggregated together with all the other client side models in the federated learning network. In this study, the 
local model is trained for 10 epochs, which represents another hyperparameter that can be further tuned to 
explore local learning capabilities. The aggregation of U-Net models can be performed using various methods, 
as outlined in37. The comparison of these methods is beyond the scope of this paper as they have already been 
studied in38. In this paper we use the Federated Averaging (FedAvg)12 aggregation scheme as this is the most 
commonly used in federated learning as well as methods similar to FedAvg having been already designed for 
decentralised networks such as39.

Learning optimisation
U-Net, is computationally demanding and benefits significantly from Adaptive Moment Estimation’s 
(ADAM)40 ability to dynamically adjust learning rates per parameter. This adaptability is especially useful 
in multi-class classification, where gradients vary widely due to imbalanced class distributions and sparse 
labels. ADAM combines elements of momentum and adaptive learning, resulting in faster convergence and 
more stable learning compared to traditional optimisers like Stochastic Gradient Descent. This is particularly 
advantageous in pixel-wise classification with U-Net, as it accelerates training and improves stability even 
with challenging input distributions. For deep architectures such as U-Net, ADAM’s robustness helps ensure 
consistent performance without extensive fine-tuning, allowing for efficient training with reliable convergence. 
This quality is advantageous in multi-class tasks where U-Net’s complex structure might otherwise require 
significant hyperparameter adjustments. This allows for a general value to be set for learning rate reducing the 
hyperparameter search required. Therefore, the learning rate for the ADAM is set to 0.001, a value deemed high 
enough to provide meaningful learning, while maintaining model generalisation by avoiding overfitting. As 
ADAM automatically adjusts learning rates per parameter and avoiding overfitting is important, a learning rate 
optimiser or hyperparameter study is not included in this study.

Loss ratio and output confidence study
A separate hyperparameter study to determine the best value for the loss function parameter λ, that represents 
the ratio between two loss functions (cross entropy loss and dice loss), and the threshold of the soft-maxed output 
is undertaken. Testing these parameters on a centralised model provides us with information on the relation 
between these parameters and the global learning behaviour. The training is done with the same 80%/20% train/
test split as that of the federated model and is trained over 50 epochs with 10 crop classes. These conditions where 
as the models learning begin to plateau. The loss function used for training is given in Eq. (1). Cross entropy loss 
is chosen to provide more stable learning and dice loss is used to improve learning on class imbalanced datasets 
such as the one used in this study. Thresholding is studied to understand what level of confidence in the outputs 
should be required to provide the highest accuracy in the model. The threshold is applied to the output of the 
soft-maxed probabilities of each class for each pixel. The results of this hyperparameter study, shown in Table 2, 
provide us the optimal values for λ and the thresholding level to use this study. From these results, a λ of 0.5 
with no thresholding gives the highest weighted F1-score and thus is chosen for the federated model. Weighted 
F1-score including the background class is prioritised over the weighted F1-score without the background class 
as false positives across the background could artificially inflates the quantity of each crop.

	 loss = λ · CrossEntropyLoss + (1 − λ) · DiceLoss� (1)

Number of clients study
For the set values of the hyperparameters described above, a study to determine how the number of clients effects 
model learning is undertaken. For this study, the number of crop classes is fixed to 10 plus the background, and 
the 4792 training and validation patches are evenly distributed between a set of varying number of clients. 
Training occurs over 10 local client epochs for each of 20 federated learning aggregation rounds. These values 
are selected because, as observed in the results section, they represent the point at which learning begins to 
plateau. As the independent variable in this simulation, the number of local clients are set to  2, 4, 8, 16, 32, 64, 
128 and 256. These are chosen to illustrate the training performance across scenarios with both small and large 
variations in the number of clients. For each simulation of the federated learning, for each number of clients, the 

No threshold 0.5 Threshold 0.75 Threshold

 Loss ratio (λ) F1-W F1-W-NB F1-W F1-W-NB F1-W F1-W-NB

0.1 0.875 0.725 0.875 0.725 0.870 0.713

0.3 0.883 0.741 0.882 0.739 0.870 0.710

0.5 0.900 0.766 0.898 0.761 0.887 0.732

0.7 0.898 0.779 0.895 0.773 0.860 0.690

0.9 0.897 0.778 0.895 0.775 0.873 0.724

Table 2.  Hyperparameter study for centralised model. Significant values are in bold.
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experiment is conducted five times. This repetition allows for the calculation of an average performance metric, 
thereby mitigating the impact of variability introduced by the random partitioning of the dataset prior to the 
commencement of the training process.

The federated learning aggregation is simulated using the Flower Federated Learning Framework41, to 
simulate many clients simultaneously. Table 3 shows an overview of the parameters used across the client side 
and the global federated learning for the number of clients study, however, further details can be found on the 
linked source.

Dataset imbalance study
To study the effect of dataset imbalance on learning performances, we can consider changing the number of 
classes, the distribution of patches across each client, the distribution of classes across clients, and the quality 
of the dataset across different clients or regions. In this study, only the first two parameters are studied, while 
disparity in datasets quality and class distribution across clients is only discussed with potential for future work. 
Based on the results from the study on the number of clients, we identify two values: one for the number of 
clients that yields the best-performing global model and another for a distinctly lower-performing global model 
that’s learning curve is significantly different in shape from the highest performing model while minimising 
the difference in number of clients. Therefore, the number of clients in this study is set to 2 and 32, the best 
performing and lesser performing global models respectively. The parameters on model architecture, aggregation 
and learning are fixed to the values discussed above, so that only the interaction between number of clients and 
class imbalance is explored.

The number of crop classes is set at either 10 or 20, plus the background class, this influences not only the 
total number of classes but also the degree of class imbalance. The crop types are ranked from the most to the 
least prevalent by pixel count across the entire dataset. Consequently, as more crop classes are included, crops 
that occur less frequently are incorporated into the background class. This can be seen in Fig. 6 which showcases 
the 20 crop classes used. When only 10 classes are utilised, the 10 least prevalent crops are absorbed into the 
background class.

To measure dataset imbalance over the clients, two setups are defined, an IID distribution and a non-IID 
distribution. The IID dataset distribution is a random but even distribution of all patches in the dataset. The 
non-IID dataset distribution is a random and non-even distribution of all patches in the dataset. This non-
even distribution is defined by each client being assigned an ID number and the number of patches each client 
receives is linearly correlated with the client ID. The client IDs are distinct and in the set {1, N}, where N is the 
total number of clients. Class imbalance between the clients is not studied due to the crop classes density being 

Figure 6.  Class imbalance across dataset for federated training set and centralised testset. The crops are sorted 
from highest number of pixels in entire dataset to smallest. The first 20 classes plus the background class are 
shown. When 10 classes are used in models, the smallest 10 out of 20 classes are merged into the background 
class.

 

Global federated learning parameters Local client training parameters

 Parameter Value Parameter Value

Total number of clients 2, 4, 8, 16, 32, 64, 128, 256 Client epochs 10

Overall train/test split 80%/20% Client train/validation split 90%/10%

Aggregation rounds 20 Optimiser type Adaptive moment estimation (ADAM)

Aggregation method FedAvg Optimiser learning rate 0.001

Table 3.  Global and local federated learning hyperparameters (number of clients study).
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varied throughout each patch, but could be an area for future work. The variable parameters in this study can be 
seen in Table 4. Other non-IID dataset distribution setups exist, such as exponential or natural distributions42, 
however this is chosen as a simple example to study the effect on training.

The dataset imbalance generated in this simulation is compared to the real world distribution of crop yield 
data at different aggregation scales. By proxy, this helps determine how the different aggregation scales, and 
there accompanying dataset imbalances, will impact the training of a global federated learning crop yield model.

Results
Number of clients study
Figure 7 demonstrates that models trained with fewer clients (2, 4, 8, 16) exhibit a relatively steep initial increase 
in F1-score, which then quickly tapers off as the aggregation rounds progress. This rapid initial increase indicates 
that with fewer clients, the model can quickly adapt and improve, likely due to each client holding more data or 
contributing more significant updates during each round of aggregation. In contrast, models trained with more 
clients (32, 64, 128, 256) show a slower increase in F1-score, with low class F1-score values persisting over a 
larger number of aggregation rounds. This pattern suggests that as the number of clients increases, the impact 
of individual client updates on the overall model diminishes, possibly due to smaller data subsets per client or 
noisier gradients. Consequently, models with fewer clients tend to achieve a higher final F1-score compared 
to those with more clients, implying that increasing the number of clients may introduce greater variability or 
noise into the training process, which can hinder the model’s ability to converge to a lower loss. Interestingly, 
Fig. 7 also displays which classes are more difficult to classify, as the number of clients increases, per class F1-
scores separate at different number of clients simulations, meaning later separation from the combined weighted 
F1 score implies an easier crop to classify. Distributed validation accuracy has high variability in F1-score at 
larger number of clients due to the small validation dataset sizes, as mentioned in Table 5 per client, bringing 
uncertainty in the metrics and is therefore omitted here. However, the centralised testset does not decrease in 
size, and therefore the accuracy achieved on the testset remains consistent over different client numbers.

Figure 7.  Comparison of per class F1-scores for different number of clients in federated learning (averaged 
over 5 repetitions). The dataset is distributed in a IID way with 10 crop classes plus the background class. The 
grey lines represent the F1 score of each class over the aggregation rounds, with the dashed line being the 
background class. The red line represents the weighted F1 score without the background.

 

Global federated learning 
parameters Dataset parameters

 Parameter Value Parameter Value

Total number of clients 2, 32 Dataset distribution IID, non-IID

Number of crop classes 10, 20 (plus background)

Table 4.  Federated learning and dataset hyperparameters (dataset imbalance study).
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Looking at the metrics given in Table 5, it is obvious to see that increasing number of clients decreases all 
metrics, with 256 clients achieving a poor F1-W-NB score of 0.1. It can be seen that the background class, due 
to its large proportion of all pixels in the dataset, skews the F1-W scores and therefore both F1-W and F1-W-NB 
become important to determine the true accuracy of the model. This can also be seen in Fig. 7 where the dashed 
line, representing the background class F1-score, is consistently high.

Dataset imbalance study
In Fig. 8 the F1-score over aggregation rounds can be seen for parameter study on 2 and 32 clients, IID and 
non-IID distributed datasets, and 10 vs 20 class datasets. The most obvious differences in F1-score again come 
from those found in the number of clients study between 2 and 32 clients, however looking closer the difference 
between IID and non-IID in the 32 client simulations shows a difference in learning rate. IID learning dips in 
F1-score around 5 aggregation rounds in, before continuing to increase, however this dip does not exist when the 
dataset is distributed in a non-IID fashion. This can be seen in the 10 class simulations however is more prevalent 
in the 20 class simulations. Another point to highlight is that in 2 client 10 class simulations, all classes have a 
final F1-score of more than zero meaning that there must be a correct classification in the centralised testset of all 
crops occurring. However, this is not the case for 2 client 20 class simulations as some crop classes are achieving 

Figure 8.  Comparison of per class F1-scores for different federated learning scenarios (averaged over 5 
repetitions). This is a grid search across 2 and 32 clients, IID and non-IID distributed datasets, and 10 class 
and 20 class datasets (plus the background class). The grey lines represent the F1 score of each class over the 
aggregation rounds, with the dashed line being the background class. The red line represents the weighted F1 
score without the background.

 

Scenario Results

 Clients Train patches Validation patches Precision Recall F1-W F1-W-NB F1 Macro

2 2156 240 0.917 0.923 0.916 0.819 0.659

4 1078 120 0.913 0.919 0.913 0.808 0.63

8 539 60 0.905 0.91 0.904 0.785 0.576

16 270 30 0.877 0.897 0.886 0.739 0.456

32 135 15 0.863 0.886 0.874 0.713 0.435

64 67 7 0.844 0.866 0.854 0.662 0.399

128 34 4 0.757 0.817 0.783 0.442 0.258

256 17 2 0.616 0.747 0.667 0.1 0.108

Table 5.  Scores of different number of clients in federated learning (averaged over 5 repetitions). Significant 
values are in bold.
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final F1-scores of zero, meaning they are never being classified. This may be because these crops are intrinsically 
difficult to classify or they occur such a small number of times in the dataset as to where they are never learned.

From the trend seen in Table 5 it can be seen that increasing the number of clients decreases the F1 score, 
and from this dataset imbalance study, in Table 6, increasing the number of classes also decreases all versions 
of the F1-score, precision and recall. However, counter-intuitively, when comparing non-IID client datasets to 
IID client datasets, the F1-score is consistent or improves. This starts to make sense when considering who 
has the majority of the dataset. For example, when there are 2 clients in the non-IID scenario, one client has 
1/3 of the dataset and the other has 2/3 of the dataset. As the FedAvg aggregation algorithm is weighted by 
size of dataset, the client with the larger dataset contributes more to the global model, and has better training 
due to a larger training dataset available. This could be a reason for the non-IID scenario performing better 
than the IID scenario. More significantly, when considering the 32 client non-IID scenario, the client with the 
largest dataset has 32/496 ≈ 6% of the dataset. Again, the FedAvg algorithm is weighted towards the larger 
datasets, and considering the largest 10 clients hold over 50% of the whole dataset, meaning that the training is 
more centralised than the IID 32 clients scenario. In this scenario, clients with smaller datasets will contribute 
minimally, thus providing limited added value to the global model as they are carried through the learning 
process.

To analyse the structure of the model predictions, Fig. 9 presents results from four models, involving 2 clients 
and 32 clients, configured for 10 and 20 classes, respectively. These models were used to predict on two selected 

Figure 9.  Predictions of highest (2 client IID) and lowest (32 client IID) F1-scoring models for 10 class 
models and 20 class models compared to the data labels/ground truth. The two patches are selected from the 
centralised testset representing a patch with small fields and high class diversity and a patch with large fields 
with low class diversity.

 

Scenario Results

 Clients Classes IID Precision Recall F1-W F1-W-NB F1 Macro

2 10 True 0.917 0.923 0.916 0.819 0.659

32 10 True 0.863 0.886 0.874 0.713 0.435

2 20 True 0.902 0.91 0.902 0.79 0.564

32 20 True 0.826 0.869 0.846 0.645 0.223

2 10 False 0.915 0.92 0.915 0.819 0.668

32 10 False 0.868 0.89 0.878 0.724 0.443

2 20 False 0.897 0.905 0.896 0.774 0.528

32 20 False 0.836 0.874 0.853 0.658 0.237

Table 6.  Scores of different federated learning scenarios (averaged over 5 repetitions). Significant values are in 
bold.
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patches from the centralised test set. These patches were chosen to exemplify scenarios with high class diversity 
and small fields, as well as low class diversity and large fields. This comparison is designed to represent the best 
and worst-performing models from the dataset imbalance study, each classifying one patch that is relatively easy 
to classify and another that is difficult. It can be seen that the highest F1 scoring models predict more classes 
which is to be expected from the F1-scores, but also classifies boundaries better than the low F1 scoring models. 
In the patches with small fields, the classes transition directly without any intervening background. Conversely, 
in the patches with large fields, the fields are separated by areas of background. The models with higher F1 
scores accurately predict these distinctions, whereas models with lower F1 scores often predict the opposite. 
Additionally, the high F1 scoring models generally produce better-defined field edges, characterised by sharper 
edges and corners, compared to the low F1 scoring models, which tend to produce fuzzier edges and more 
rounded corners. Pre-training of a model with shapes such as on ImageNet43, could help increase the learning 
speed to define sharper edges and corners as well as recognise other features required in crop type and yield 
prediction.

If these results from the IID and non-IID comparisons are to be applied to crop yield, we need to determine 
the dataset distribution across possible clients for the different aggregation levels. This is shown in Fig. 10 where 
we compare three different aggregation levels:

•	 Micro Level—The area of every feature in the Belgium crop type dataset24.
•	 Meso Level—The area harvested per year, per crop, per NUTS level 2 region in Europe, from crop yield da-

taset34.
•	 Macro Level—The area harvested per year, per crop, per NUTS level 2 region combined into each country in 

Europe, from crop yield dataset34.

Analysis of Fig. 10 reveals that at the micro level, the balance of dataset size per client varies significantly by crop 
type. However, when averaged across all crop types, the micro aggregation level is the most balanced. In contrast, 
at the macro level, the variation in dataset size across clients is less dependent on crop type, but averaging across 
all types indicates that macro aggregation is the least balanced.

Discussion
Aggregation level effects on federated learning
The decrease in F1-score as the number of clients increases, as shown in Fig. 7, suggests that aggregation would 
be more effective with fewer clients. Therefore the Mega aggregation level might be optimal. Nonetheless, the 
size of each client’s dataset is also crucial for effective learning. At the Meso and Macro aggregation levels, the 
datasets may remain sufficiently large to support adequate training.

Crop yield data
Crop yield models will likely be specific to individual crop types and therefore, each crop’s model will have an 
associated imbalance in dataset size across all clients depending on the aggregation level chosen. As seen in 
the dataset imbalance study, dataset distribution imbalance does not necessarily reduce learning effectiveness, 
however in a real client scenario where the clients have data specific to their region, this may start to overfit the 
global model to specific regions with high crop areas such as large countries or farms. For example, the model 
will be specialised to certain countries where single farm holdings are very large, such as Canada and Australia 
rather than those of smaller single field farms, that actually make up the most of all holdings21. Therefore, 
addressing the imbalance in dataset size becomes crucial, and selecting the appropriate aggregation level can 
effectively achieve this. Crops with the lowest standard distribution in Fig. 10, should choose to operate on micro 

Figure 10.  The three datasets are normalised per crop, per year (where years are given), and then the standard 
distribution is taken per year per crop. The x-values are the standard distribution and the y-values are how 
many crop types have that standard distribution.
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aggregation levels, whereas when approaching a standard distribution of 0.1-0.2, meso and macro aggregation 
levels will become preferable. Again, this effect can be reduced if individual global models are trained for each 
continent, subcontinent or biome, however this will require smaller aggregation levels. Therefore, it will be 
preferable for some crops to operate on micro aggregation levels whereas other crop types may require meso 
or macro aggregation levels or individual global models for different global regions. Class imbalances will also 
occur across a global dataset due to different crops being grown in different quantities in different regions due to 
climate and culture. For example hotter climates grow maize in larger quantities and root vegetables are grown 
more frequently in colder climates. This means that many smaller, biome dependent, datasets will be preferred 
to produce better training.

The biggest problem is lack of labelled per field data for crop yield. Currently very little exists publicly over 
large enough areas to train a model. Until such data is made public, one of the only ways to produce a model 
is by the federated learning approach discussed. Without this data, testing and validating the model is also 
difficult without a large enough sample size of many regions across the globe. When acquiring ground truth data 
labels in a centralised or federated scenario labels will inevitability have different qualities. This issue may arise 
from accidental mislabelling but could also have more epistemic origins. It could stem from challenges at the 
micro-aggregation level, such as farmers facing difficulties with technology adoption, or from specific regions 
producing inaccurate or unreliable data. Standardisation of labelling and fact checking would be more suited to 
the larger aggregation levels where organisations or nations could align data labels. In a decentralised federated 
learning process a further consideration of adversarial clients should be considered. To reduce the effect of 
attackers on such a network, early stopping mechanisms for specific clients could be used. If a certain client 
is providing weights or tested metrics that are outside a distribution of the mean of all other clients, this client 
could be removed from aggregation. This approach would enable learning to progress with clients that align 
with the average behaviour of all clients, potentially stabilising the learning process. This issue is prevalent in 
open decentralised networks and could be mitigated by transitioning to permissioned networks. However, this 
solution would further centralise the process. Alternatively, implementing consensus mechanisms across each 
aggregation level may offer a balance.

Crop yield problem complexity
In Table 5, and viewing Fig. 7, the the F1-scores show that some classes are more difficult to classify. This may be 
due to the class imbalance across the dataset, but also could be due to the difficulty of identifying certain crops. 
If identifying certain crops is difficult, it will be even more difficult to estimate their yield. In this study only nine 
optical bands from Sentinel-2 L2A are used to attain sufficiently accurate models to study the effect of the number 
of clients in the federated learning scheme. Crop yield predictions will be a substantially more difficult problem. 
More modalities of data, such as synthetic aperture radar, will be required to detect parameters including height, 
weather and ground water content of the crops, landscape and atmosphere. The other major complexity is crop 
yield prediction takes place over substantial amounts of time. Monitoring crops from cultivation and planting 
through to harvest requires large amounts of temporal data.

Applying additional models, such as those for land cover and crop type to identify specific crop locations, 
along with cloud masking models, will also introduce their own inaccuracies into crop yield prediction models. 
Due to all these difficulties, large amounts of parameter optimisation would be required for optimisation of 
a global federated learning model, therefore, making smaller biome dependent models and using smaller 
aggregation levels more effective in attaining better results.

Privacy concerns
When considering smaller dataset sizes, differential privacy starts to fluctuate quickly between high-utility-
low-privacy and low-utility-high-privacy. Therefore if small client datasets with high privacy exist, little to no 
information can be learned from these clients as the differential privacy noise applied can reduce any meaningful 
data. An increased dataset size and therefore larger aggregation level could help reduce these fluctuations 
between utility and privacy.

Further considerations
Decentralised data propagation due to larger data
In federated learning, large data volumes pose a significant challenge. Globally, there is 16 billion hectares of 
agriculture land, dividing that into 10 m2 (same as the Sentinel data used in this work) gives, 1.6 × 1012 cells. 
This works out at approximately 0.37TB per band of data globally. This comes from the size of the crop type 
dataset in PNG file type, divided by the number of patches in the crop type dataset, multiplied by the number of 
global cells. As discussed previously, many extra bands, modalities and temporal data are required, potentially 
creating very large datasets for crop yield. Transmitting this entire dataset between clients and a central server is 
impractical due to the high communication overhead. To address this, federated learning optimises data sharing 
by transmitting model weights instead of raw datasets. Using decentralised protocols to manage these exchanges 
allows the system to handle large data efficiently while minimising computational and communication burdens. 
A trade off is made here where reducing the aggregation level will increase the number of weights distributed 
on the entire decentralised network however this could be larger in size than that of all the patches being used 
for training.

Computational requirements due to difficulty of problem
In the case of micro level aggregation, in federated learning, the computational requirements for running local 
training on farmers’ devices and conducting decentralised aggregation can be substantial. Farmers, particularly 
those in rural areas, often rely on relatively modest computing resources, which may not be sufficient for the 

Scientific Reports |        (2025) 15:10454 14| https://doi.org/10.1038/s41598-025-94244-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


intensive computational tasks involved in local model training. For instance, the local training process, requires 
significant processing power and memory. This concern is addressed in part by13 focusing on optimising 
federated learning algorithms to reduce their computational and communication overhead. Additionally, 
decentralised aggregation, where multiple clients contribute to the model updates without a central server, 
introduces further complexity. Different aggregation schemes, such as federated averaging on all client models 
simultaneously versus more advanced approaches like daisy chaining models in19, can significantly affect the 
computational power and data storage requirements of each client. These issues would diminish if aggregation 
levels such as Meso, Macro, and Mega are employed, as these levels involve fewer clients and each client possesses 
greater computational resources.

Conclusion
To use EO data in the context of crop yield prediction modelling is difficult due to the many modalities of data 
and the limited extent of data. This data is generally private or proprietary and limited examples exist publicly. 
To overcome such data privacy issues decentralised federated learning is introduced as a solution to the problem. 
However, decentralised federated learning is affected by the number of clients in the learning process as well as 
the distribution of data between each client, number of classes and imbalance of classes.

This paper has shown that increasing the aggregation level to fewer clients with more data reduces the impact 
of these problems. Balance of dataset size across different clients is also an issue where even distributions do 
not always produce the best learning but could produce skewed learning to specific parts of the world. The 
labelled datasets that do exist publicly for crop yield prediction at the farmer level are too unbalanced to provide 
meaningful weights to the global federated learning model. Increasing aggregation level to that of the described 
Meso, Macro or Mega levels is again a solution to this problem. When looking at dataset privacy mechanisms, 
systems such as differential privacy also break down with small datasets such as those on a per farm basis. 
Solutions to these three problems of number of clients, dataset balance, and privacy utility all lead to a more 
centralised aggregator being more effective for learning. Therefore, the more centralised the more effective the 
learning becomes at the trade off of privacy. Multiple, biome or region specific, models could be a compromise 
between these two problems.

Future research in this area could explore how different model architectures and sizes of model, are influenced 
by the number of clients involved. Another valuable direction would be to train an EO crop yield prediction 
model using private datasets, should they become available. Looking at generalisation difficulties across different 
biomes and time frames will also be a important step towards a global crop yield model. Understanding the 
difficulty of training a model for each crop type, to determine if dataset imbalance is the cause of some crops 
not being identified or if these crops are intrinsically difficult to identify from EO data will be a critical step for 
some crop yield models. Finally, studying the impact of differential privacy across datasets of different sizes and 
understanding how this affects the learning process could provide important insights.

Data availability
The datasets provided as part of this work are public at https://huggingface.co/0x365.
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