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Abstract 

There is wide recognition of the threats posed by the open dumping of waste in the environment. 

However, tools to surveil interventions for reducing this practice are poorly developed. This study 

explores the use of drone imagery for environmental surveillance. Drone images of waste piles 

were captured in a densely populated residential neighborhood in the Republic of Malawi. 

Images were processed using the Structure for Motion (SfM) technique and partitioned into 

segments using Orfeo Toolbox mounted in QGIS software. A total of 509 segments were manually 

labeled to generate data for training and testing a series of classification models. Four supervised 

classification algorithms (Random Forest, Artificial Neural Network, Naïve Bayes, and Support 

Vector Machine) were trained, and their performances were assessed regarding precision, recall, 

and F-1 score. 

Ground surveys were also conducted to map waste piles using a Global Positioning System (GPS) 

receiver and determine the physical composition of materials on the waste pile surface. 

Differences were observed between the field survey done by community-led physical mapping 

of waste piles and drone mapping. Drone mapping identified more waste piles than field surveys, 

and the spatial extent of waste piles was computed for each waste pile. The binary Support 

Vector Machine model predictions were the highest performing, with a precision of 0.98, recall 

of 0.99, and F1-score of 0.98. Drone mapping enabled the identification of waste piles in areas 

that cannot be accessed during ground surveys and further allowed the quantification of the total 

land surface area covered by waste piles. Drone imagery-based surveillance of waste piles thus 

has the potential to guide environmental waste policy, offer solutions for permanent monitoring, 

and evaluate waste reduction interventions. 

Keywords: Waste Pile mapping; Object-Based Image Analysis; Orfeo Toolbox; Environmental 

monitoring, low-income countries, waste management 
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1.�Introduction

Open dumping of waste poses a major global sustainability challenge, and 

eliminating the practice is a target on the global agenda for sustainable development 

(United Nations 2015) . Communities lacking systems for waste collection and disposal 

resort to uncontrolled dumping as the typical practice. It is estimated that three billion 

people worldwide lack access to controlled waste disposal facilities (Wilson et al. 2015), 

which presents serious consequences for natural ecosystems, human health, and 

economies. In Sub Saharan Africa, for example, over 70 % of the waste that is generated 

is openly disposed of in the environment (Ayeleru et al. 2020). On land, such disposed 

waste materials are generally transported by rainwater to rivers, lakes, and oceans, 

where they accumulate and harm natural ecosystems (Ostle et al. 2019; Zhu 2021), 

specifically by causing death and physical damage to aquatic fauna through 

entanglement and ingestion (Gall and Thompson 2015). Waste materials dumped in the 

environment can potentially present serious consequences for public health. Emerging 

studies indicate that waste materials such as plastics provide novel microhabitats for 

human pathogens (Gkoutselis et al. 2021; Rodrigues et al. 2019), and in 2022, a study 

showed for the first time the presence of microplastics in human blood (Leslie et al. 

2022). 

To curb the open dumping of waste into the environment, several solutions have 

been suggested, including the development and strict enforcement of legislation 

promoting household waste separation and collection, the development of adequate 

disposal facilities, and the implementation of waste recovery initiatives using a circular 

economy approach (Shi et al. 2021). Some countries have implemented a strict ban on 

the production and use of certain products such as plastics (Nyathi and Togo 2020; Xie 

and Martin 2022), discouraging the use of single-use carrier bags, promoting waste 

clean-up campaigns, and introducing community waste recycling programs (Dlamini and 

Simatele 2016). Assessing and monitoring the effectiveness of implementing these 

public health and environmental initiatives is essential to reducing or eliminating 

uncontrolled waste dumping. 

Surveillance plays a crucial approach in quantifying the problems associated with 

waste in the environment, thereby allowing policymakers to contextualize them. 

Mapping existing waste disposal sites is one approach to understanding where waste is 

dumped and assessing the effectiveness of waste mitigation strategies. This will render 

the scale of this problem visible to policy makers. Waste piles can be mapped using 

Global Navigation Satellite System (GNSS) for example handheld Global Positioning 

Systems (GPS). Mobile applications such as ‘Open Litter Maps’ 

4

Mapping waste piles in an urban environment 



(https://openlittermap.com/ ) allow users to capture geotagged photos which later 

enable mapping locations where waste is being dumped (Lynch 2018). However, the use 

of handheld GPS can only limit observations to locations that are physically accessible to 

the observer, and some dumpsites located in areas with rugged terrain or without a 

proper access road cannot be mapped. Additionally, it is difficult to quantify the spatial 

extent of existing waste piles. In contrast, aerial images have the potential to overcome 

these limitations. For instance, satellite images have been used for the mapping of 

floating marine plastics at a global scale (Topouzelis et al. 2020). Still, most open 

satellite data have relatively coarse spatial resolution, and it is difficult to use such data 

to map smaller waste piles, especially in urban settings (Glanville and Chang 2015). Even 

high-resolution optically satellite images, usually provided by private companies, are 

often affected by cloud cover (Shastry et al. 2023), and can be prohibitively expensive. 

High-resolution aerial images captured by drones offer a promising alternative to 

satellite imagery. The use of drone imagery has been employed in previous studies 

(Pinto, Andriolo, and Gonçalves 2021; Garcia-Garin et al. 2021; Jakovljevic, Govedarica, 

and Alvarez-Taboada 2020; Papakonstantinou et al. 2021; Wolf et al. 2020; Bao et al. 

2018; Gonçalves et al. 2020a; 2020b; 2020c; Fallati et al. 2019; Kylili et al. 2019; Ribeiro 

et al. 2017), which have reported different approaches for mapping waste. One 

approach involves visual identification and manual labelling of objects considered as 

waste (Pinto, Andriolo, and Gonçalves 2021; Garcia-Garin et al. 2021; Jakovljevic, 

Govedarica, and Alvarez-Taboada 2020). Another approach involves manually 

identifying and labelling a small sample of waste piles or individual objects that are 

visible on the drone captured imagery and use these data as examples to train an image 

classification algorithm (Papakonstantinou et al. 2021; Wolf et al. 2020). Such 

classification algorithms that have been previously employed include a segmentation 

threshold algorithm (Bao et al. 2018), Random Forest (RF) (Gonçalves et al. 2020a; 

2020b; 2020c; Martin et al. 2018), Artificial Neural Networks (ANN) (Pinto, Andriolo, and 

Gonçalves 2021) and Convolution Neural Networks (CNN) (Fallati et al., 2019; Garcia-

Garin et al., 2021; Gonçalves, et al. 2020; Jakovljevic et al., 2020; Kylili et al., 2019; 

Papakonstantinou et al., 2021; Wolf et al., 2020). These algorithms were applied on 

water surfaces and sandy beaches with a uniform background where it is relatively easy 

to discriminate and identify waste materials. In an urban environment with a non-

uniform background, simple algorithms such as the segmentation threshold algorithm 

are unlikely to work well. 

This study aimed to assess the practicality of using drones to collect high-

resolution aerial imagery for mapping waste piles in an urban environment in Malawi. 

We define a waste pile as a collection of waste found in the environment; these might 

have either been disposed of by humans or dispersed by an agent such as stormwater or 

wind. We hypothesize that on aerial images, piles of waste formed by disposing of waste 
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materials would exhibit distinct characteristics that might assist in the automatic 

mapping of waste piles from optical aerial images. We utilized the drone imagery to 

train classification algorithms to automate the detection of waste piles, and 

subsequently evaluated the performance of the detection workflow. To the best of our 

knowledge, this is the first application of low-cost drone imagery for mapping waste 

piles along a river in Sub-Saharan Africa. It is also worth noting that this is the first time 

to explore drone imagery for mapping waste piles in an environment other than sandy 

beaches or coastal areas.  This practical method will later be refined for use in studying 

or interrogating how humans get exposed to pathogens that might be hosted by the 

waste pile, thereby helping to shape public health discourse associated with open waste 

disposal. Currently, open waste disposal is seen as more of an environmental problem 

and less of a health problem, yet evidence of the growth of pathogenic microorganisms 

is increasing (Yang et al. 2023; Zettler, Mincer, and Amaral-Zettler 2013; Mphasa et al. 

2025), highlighting the public health risks tied to this issue. 

2.�Methods

2.1.� Study area 

This study was conducted in Ndirande, the largest informal settlement in 

Blantyre – Republic of Malawi’s second largest city (population 800,264). According to 

the most recent population census (conducted in 2018), Ndirande had a population of 

97,839 people (NSO 2019). Indiscriminate disposal of waste in water drainage channels 

is common in the community (Maoulidi 2012; Banda 2015). Ndirande neighborhood has 

three administrative wards, namely Ndirande South, Ndirande West, and Ndirande 

North, and the current study specifically focused on a small part of the Ndirande South 

ward (Figure 1), chosen because the Nasolo River, a tributary of the Mudi River runs 

through it. The Mudi River is severely polluted and it has been the subject of several 

previous studies (Lakudzala, Tembo, and Manda 2000; Sajidu et al. 2007; Kumwenda et 

al. 2012; Kalina et al. 2022). The community also serves as one of the primary research 

sites for the Sustainable Attitudes to Benefit Communities and their Environments 

(SPACES - �https://spacesproject.stir.ac.uk/ ), aiming to investigate the public health 

risks associated with plastic waste. 
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Figure 1. Map of the study location. Panel (a) shows Malawi's location on the African 

continent, panel (b) zooms in on Blantyre city within Malawi, and panel (c) pinpoints 

Ndirande within Blantyre city. 

2.2.� Methodology 

Figure 2 is flowchart that illustrates the three methods that were utilized for 

mapping waste. The first method involved physical walking through the entire 

study community to map waste piles. The remaining two methods relied on 

drone imagery captured in a small part of the study community. All the three 

approaches resulted in the generation of maps highlighting community waste 

piles. 
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Figure 2. Graphical Workflow for all the three methods compared in the study. 

2.2.1.�Mapping waste pile using community-led physical mapping of waste piles 

A community-led physical mapping of waste piles was conducted by a seven-

member team, which comprised five researchers from the SPACES consortium and 

members of the local development committee. The team’s task was to locate 

waste piles – locations where waste accumulate after direct disposal - in the study 

community. The community members guided the study team in locating areas 

with existing waste piles. Once identified, the waste piles were assigned a number, 

and geographical coordinates were collected using GPS from Samsung Galaxy Tab 
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A (https://www.samsung.com/sa_en/business/tablets/galaxy-tab-a/galaxy-tab-a-

7-0-2016-t280-sm-t280nzkaksa/ ). Furthermore, data on specific attributes of

individual materials that formed the waste pile was collected. This information 

was subsequently used to characterize the overall composition of the waste pile 

surface.  

2.2.2.�Mapping using drone imagery 

To understand the practicalities of using drone imagery for mapping waste piles, 

we utilized a Mavic 2 Enterprise drone (Model: LIDE - 

https://www.dji.com/mavic-2-enterprise ). The drone was manufactured by DJI, 

and it is equipped with a 12 Megapixel camera (aperture range f/2.8 – 3. 8). To 

capture the aerial images, the drone was flown at an altitude of 60 meters. 

While method 1 focused on the entire study community (Figure 3a), we captured 

images for a subsection of the study community selected for long-term aerial 

monitoring by the SPACES consortium (Figure 3 b). The captured images were 

processed using Pix4D mapper (version 4.6.4.) to produce an orthomosaic with a 

Ground Sampling Distance (GSD) of 1.8 cm/pixel. The resulting orthomosaic was 

saved in a projected coordinate reference system (World Geodetic System 

1984/Universal Transverse Mercator Zone 36 S). The orthomosaic was clipped to 

only cover 20 meters distance to the river in the study community covering an 

area of 45,259 square meters. 
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Figure 3. Overview of the study community and a highlight of the area that was 

targeted for aerial mapping using drone technology. Subfigure (a) presents the 

study community and a highlight of the area that was targeted for drone 

mapping. Subfigure (b) is a closeup view of the section of the entire study 

community that was targeted for drone mapping, displayed on a standard 

basemap (Google Satellite), accessed through QuickMapServices plugin in QGIS 

(version 3.22.10). 

For method 2, the orthomosaic generated was visualized in QGIS (version 

3.22.10). The orthomosaic was inspected manually to identify waste piles, which 

were then manually digitized as polygons. The total surface area covered by 

waste piles was calculated by summing the surface of all digitized polygons using 

the field calculator tool in QGIS software.  
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For method 3, waste piles were automatically identified using an Object-Based 

Image Analysis (OBIA) approach.  OBIA involves grouping similar pixels into 

segments, calculating feature variables for each segment (e.g., spectral 

reflectance, texture), and building a segment-level classification model based on 

these feature variables.  A mean-shift algorithm was implemented in the open-

source software Orfeo Toolbox to group homogenous neighboring pixels of the 

orthomosaic into segments (Grizonnet et al. 2017). The mean reflectance of the 

optical bands was computed for each segment alongside segment Haralick 

textural characteristics. Haralick textural characteristics represent textural 

characteristics of adjacent pixels based on grey-level values (Haralick, 

Shanmugam, and Dinstein 1973). A total of twenty-two segment-level feature 

variables were extracted (Table S1). To train algorithms for automatic 

classification of the segments to identify waste piles, the drone imagery was 

examined to identify and label examples of major land cover classes, namely 

building rooftops, bare earth (soil), vegetation, waste piles, surface water, and 

shadow. A total of 509 segments were labeled, covering these land cover classes 

(Table S2).  

We developed automatic classifiers for detecting waste piles using R Statistical 

Software (version 4.1.2). Segments that represented the labeled examples were 

divided into training and testing segments, with 80 % (406) of the labeled 

segments used for training and the remainder (103) used for testing. The 

extracted feature variables and labels were used to train binary and multi-class 

classifiers. We explored four classification algorithms: (1) RF; (2) ANN; (3) naïve 

Bayes classifier and (4) Support Vector Machine (SVM). Full description of the 

algorithms and parameters used are presented in Table S3. Figure 4 summarizes 

the approach employed to develop, train, and test the four classifiers. For each 
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model trained, performance was assessed using precision (Equation 1), recall 

(Equation 2), and F-1 score (Equation 3). Precision quantifies the proportion of 

correct positive predictions among all positive predictions made. Recall measures 

the proportion of actual positives correctly identified by the model. The F-1 score 

provides a harmonic mean of precision and recall, emphasizing their balance. The 

formulas for these metrics are presented in Table 1. 

Table 1: Equations for assessment of classification performance. 

Performance measure Formula Equation 

Precision 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(1) 

Recall 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(2) 

F-1 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3) 
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Figure 4: Flowchart used to implement the OBIA process for automating 

mapping of waste piles.  
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3.�Results

3.1.� Mapping of waste piles from community-led physical mapping of waste piles 

Table 2 summarizes the observations from the community-led physical 

mapping of waste piles conducted across the entire study community. The 

materials observed to be disposed of in the environment were almost uniform, 

encompassing common items such as plastics, textiles, cardboard, soil, glass, 

metal, and organic waste, including food waste, among others.  

Table 2. Summary of the characteristics of the waste piles observed during the 

community-led physical mapping of waste piles.  

Waste pile located along the 

riverbank 

Total number of piles and percentage 

Yes 51 (89.5%) 

No 6 (10.5%) 

Figure 5 presents some of the waste piles mapped during the community-

led physical mapping of waste piles. The mapped locations represent the center 

of the waste piles as identified by the research team conducting the walk. Most 

of the waste piles located during the community-led physical mapping of waste 

piles were along the banks of two local rivers, Nasolo and Chirimba, with the 

remaining ones not directly on the riverbank. Later observations revealed that 

one of the 57 waste piles had a positional accuracy of nearly 2000 meters. Of the 

57 waste piles, 16 were observed to be within the area that was mapped with 

drones.  
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Figure 5. Detailed overview of waste piles observed during the community-led 

physical mapping of waste piles. Subfigure (a) offers a close-up view of selected 

waste piles, while subfigure (b) specifically emphasizes 16 waste piles mapped 

during the community-led physical mapping of waste piles, coinciding with the 

region covered by drone imagery. Subfigure (c) displays a comprehensive 

overview of all 57 waste piles, showcasing their respective locations within the 

study community. 

3.2.� Mapping of waste piles by manual digitization of the drone imagery 

Figure 6 presents a map showing waste piles manually digitized from the 

drone imagery. 50 polygons were digitized across part of the study community 

where drone imagery was captured. Some of the digitized waste piles might 

have been created through the dispersal of waste from some of the waste piles 

mapped during the community-led physical mapping of waste piles. In general, 

digitized waste piles covered 5.76 % of the area covered by the drone imagery 

(2,609 of 45,259 square meters), with their surface area ranging from 3 to 251 

square meters (mean = 52.15).  
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Figure 6: Overview of the waste piles that were manually digitized in the part 

of the study community where drone imagery was captured. Subfigure (a) 

provides a zoomed overview of one of the manually digitized waste piles, and 

subfigure (b) provides a broader overview of all the waste piles that were 

mapped.  

3.3 Mapping waste piles through OBIA classification approach 

The use of mean-shift algorithm to segment the drone imagery produced 

2356 segments, of which 509 of them were manually labeled to support model 

building. Table 3 presents a summary of the characteristics of the feature 

variables (in terms of mean and standard error) extracted from the drone 

imagery for each of the land cover classes. It is worth noting that the mean 

values for some feature variables such as red, green, blue, cluster shade and 

haralick correlation show variations across the land cover classes and may be 

useful for building of an automatic classification model. Out of the 509 segments 

used for model development, 406 were for model training, and 106 were for 

model testing. 
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Table 3. Summary of feature variable values derived from the segments by land 

cover class.  

Rooftops Bare earth 

(Soil) 

Vegetation Waste piles Surface water Shadow 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Red 149 3.9 173 3.1 74 1.9 132 2.6 67 2.5 43 2.7 

Mode (red) 152 4.4 185 3.2 71 2.2 132 3.7 58 3.3 32 3.4 

Mean(green) 149 4.1 161 2.9 80 1.9 129 2.4 71 2.4 42 2.5 

Mode (green) 151 4.7 171 2.9 80 2.3 128 3.2 63 3.2 32 3.4 

Mean(blue) 144 4.3 145 2.7 57 1.6 120 2.4 64 2.2 40 2.3 

Mode (blue) 147 5 153 2.8 52 1.9 118 3.3 56 2.7 32 3.1 

Mean(energy) 0.6 0.01 0.7 .01 0.5 .01 0.4 .01 0.6 .01 0.6 .01 

Mode (energy) 0.9 .00 1 .00 0.9 .01 0.9 .02 1 .00 1 .00 

Mean(entropy) 1.2 .04 0.9 .02 1.4 .03 1.9 .03 1.4 .06 1.2 .04 

Mode (entropy) 0 .00 0 .00 0.03 .01 .05 .02 0 .00 0 .00 

Mean(correlati

on) 

0.9 .04 0.8 .02 0.9 .02 0.9 .01 0.8 .03 0.7 .05 

Mode 

(correlation) 

-.01 .01 0 .00 .01 .01 .02 .02 0 .00 0 .00 

Mean (inverse 

difference 

moment) 

0.9 .00 0.9 .00 0.9 .00 0.8 .00 0.9 .00 0.9 .00 

Mode (inverse 

difference 

moment) 

0.9 .00 1 .00 0.9 .01 0.9 .01 1 .00 1 .00 

Mean(inertia) 0.3 .01 0.2 .01 0.3 .01 0.4 .01 0.3 .02 0.3 .02 

Mode (inertia) .02 .01 0 .00 0.2 .01 0.2 .01 .01 .01 .03 .01 

Mean (cluster 

shade) 

-0.2 .04 -.1 .01 0.1 .02 0.2 .02 0.6 .04 1.2 .09

Mode (cluster 

shade) 

0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

Mean (cluster 

prominence) 

5.1 .4 2.5 .2 2.4 .2 4.8 .3 5.2 .4 15.3 1 

Mode (cluster 

prominence) 

0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

Mean (haralick 

correlation) 

321 13 352 6 83 5 316 9 95 8 81 7 

Mode (haralick 

correlation) 

180 10 261 7 32 3 140 8 21 6 15 5 
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Table 4 presents the performance of four automatic classifiers - trained 

using RF, ANN, Naïve Bayes, and SVM algorithms respectively – in mapping waste 

piles from drone imagery using OBIA approach. Additionally, the table includes 

the performance metrics of analogous studies conducted previously. Among the 

four algorithms utilized, binary classifiers outperformed multi-class models 

(Table S4-10), with the mean Kappa of 0.815 [Range: 0.64-0.90] and accuracy of 

0.94 [Range: 0.88-0.97], compared to multi-class classifier with mean Kappa at 

0.675 [Range: 0.26-0.85] and accuracy of 0.73 [Range: 0.40-0.87]. In terms of the 

algorithms, ANN and SVM has the highest F-1 scores (0.98) highlighting best 

overall performance for binary classification. However, for a multi-class classifier, 

the RF predictor has the highest F-1 score (0.90) indicating that it outperformed 

the other multi-class models trained. The performance of each of the trained 

models at classifying the testing dataset has been presented in the 

supplementary tables. It has also been observed that there are instances where 

the automatic classifier could misclassify the segments, for example, by 

suggesting that a segment is a waste pile while in a real sense, the segments 

represent one of the other land cover classes considered, and vice-versa. This 

was observed for rooftops and vegetation (Supplementary Table S6). However, 

automatic classifiers estimated that waste piles covered more area than manual 

mapping. For example, the trained binary SVM classifier estimated that waste 

piles covered approximately 10,697.5 square meters, whereas the best multi-

class model estimated that waste piles covered approximately 5500 square 

meters.  
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Table 4: Performance of different algorithms and approaches for mapping waste 

piles 

Method Binary approach Multi-class approach 

Precision Recall F1-

score 

Precision Recall F1-

score 

This study RF 0.94 1 0.97 0.86 0.95 0.90 

ANN 0.97 1 0.98 0.72 0.65 0.68 

Naïve 

Bayes 

0.95 0.90 0.93 0.73 0.96 0.83 

SVM 0.98 0.99 0.98 0.83 0.95 0.88 

(Papakonstantinou 

et al. 2021) 

CNN 0.83 0.72 0.77 --- --- --- 

(Garcia-Garin et al. 

2021) 

CNN 0.79 0.94 0.86 --- --- --- 

(Pinto, Andriolo, 

and Gonçalves 

2021) 

ANN 80 67 73 56 49 49 

(Gonçalves et al. 

2020b) 

RF 0.73 0.74 0.75 --- --- --- 

(Gonçalves et al. 

2020c) 

RF 0.70 0.71 0.70 --- --- --- 

(Jakovljevic, 

Govedarica, and 

Alvarez-Taboada 

2020) 

CNN --- --- --- 0.82 0.75 0.78 

(Wolf et al. 2020) CNN --- --- --- 0.77 0.77 0.77 

(Fallati et al. 2019) CNN 0.54 0.44 0.49 --- --- --- 

3.4 Comparison of observations on the utilization of the three approaches 

Table 5 presents some observations of the three methods for mapping waste 

piles. Generally, the community-led physical mapping of waste piles involved a 
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team that walked in the community for nearly half a day to scout for waste piles. 

In contrast, the use of drone imagery involved a team that set up a ground 

control station, and the drone captured aerial pictures of the area of interest 

using a predetermined flight route. Processing the raw drone images into an 

orthomosaic with Pix4D mapper (version 4.6.4) took several minutes. However, 

segmenting the orthomosaic, generating segment-level statistics, and manually 

labeling training and testing segments was time consuming, taking 

approximately more than 6 hours. Model fitting and results extraction took a 

further few minutes, but once the model was developed, it could be reused. 

Table 5: qualitative pros and cons of three possible approaches for mapping 

waste piles. 

Community-led 

physical mapping 

of waste piles 

Drone imagery 

(manual 

digitization) 

Drone imagery 

(automatic 

mapping using 

OBIA)  

Pros  Does not require

expensive

equipment

 Convenient, it

can be practical 

to employ teams 

with no or 

limited training. 

 Enables

generation of 

data about the 

composition of 

the waste pile  

 Enable mapping

of inaccessible 

waste piles. 

 Allows estimation

of the area 

covered by waste 

piles. 

 Produces mapping

data for further 

automated or 

semi-automated 

classification 

processes 

 Once drone

imagery is 

collected, it can 

serve as a 

mapping basis for 

other survey 

topics, too 

 Waste piles are

automatically 

generated from 

drone imagery. 

 Enable mapping

of inaccessible 

waste piles 

 Allows estimation

of area covered 

by waste piles. 

 Once a model has

been developed, 

it is generally 

fast. 

 It can be tested

for reuse in other 

areas, too 

Cons  Only provide

point information

showing

 Visibility of

waste piles 

is limited by 

 Visibility of waste

piles is limited by 
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locations where 

waste is being 

disposed in the 

study area. 

 Underestimate

number of waste 

piles as it only 

records 

information 

about waste piles 

that are 

accessible.�  
 Prone to

positional errors 

especially when 

GPS receiver 

accuracy values 

are not checked 

in the field. 

the 

presence of 

vegetation. 

 Time

consuming 

 Require

more 

expensive 

equipment 

 Requires

technical 

experience 

of the pilot 

and drone 

team. 

 Require

time-

consuming 

ground 

truthing 

since it is a 

remote 

sensing 

method 

the presence of 

vegetation. 

 Model

development and 

application 

requires 

specialized 

training. 

 Labelled examples

for building a 

classification 

model are not 

always sufficient 

(waste examples 

were limited). 

 Prone to

misclassifications. 

 Require more

expensive 

equipment 

 Requires

technical 

experience of the 

pilot and drone 

team. 

 Require time-

consuming 

ground truthing 

since it is a 

remote sensing 

method 

4.�Discussions

4.1.� Waste disposal patterns and environmental impacts 

It is worth noting that waste disposal into the environment is widespread in the 

study community, with 89.5 % of the waste piles located along the riverbanks, 

reflecting a reliance on the river as a waste management system that sweeps 

waste away from communities (Kalina et al. 2022). Despite this, waste materials 
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disposed of in areas not along the riverbanks might possibly be dispersed by 

wind and rainwater; potentially, they get dispersed into the river system.  Non-

biodegradable materials such as plastics are present in these waste piles, raising 

concerns about their impact on the environment and human health. There is a 

growing body of evidence reporting the presence of communities of pathogenic 

microorganisms on plastic surfaces (Liang et al., 2023), with some studies 

reporting the enrichment and dispersal of antimicrobial resistance genes (Rasool 

et al., 2021; Yang et al., 2022). Furthermore, reports suggest that rivers play a 

role in the dispersal of plastics, contributing to the spread of pathogenic 

microorganisms (Rodrigues et al. 2019; Silva et al. 2019).  

4.2.� Comparison between the three mapping approaches 

In general, the current study presented three mapping approaches: (1) 

community-led physical mapping of waste piles; (2) manual digitization of drone 

imagery; and (3) automatic mapping of waste piles from drone imagery using 

OBIA. Drone imagery enabled the identification of waste piles that could not be 

reached by ground surveys, for example, due to lack of access roads or 

dangerous terrain (Lo et al. 2020). However, mapping waste piles using drone 

imagery depends on the reflectance captured by the drone sensor. In our study 

area, there are many big trees, and it could not be ascertained what was 

beneath the branches using drone imagery. Previous studies have also reported 

that waste materials might be hidden by shadows or vegetation, so much so that 

they are difficult to detect, resulting in a general underestimation of waste 

material density (Martin et al. 2018). Nonetheless, drone imagery provides 

information such as the spatial extent of waste piles, and though not explored in 

this study, the volume of the waste pile can also be explored.  

There is a sharp distinction between mapping waste piles from drone imagery 

manually and automating the process with OBIA. The number of waste piles and 

total surface area detected by OBIA was greater than the corresponding figures 

generated through manual digitization. OBIA has a possibility of misclassifying 

other land cover classes as waste piles or vice versa, and this can falsely increase 

or decrease the number of waste piles in the study region. OBIA 

misclassifications may have arisen from two possible sources. One possible 

explanation is that OBIA could not detect objects by detecting multiple objects as 

one (under segmentation). Another possible explanation might be the 

algorithm's shortcomings from learning patterns that differentiate waste piles 

from other classes. Still, depending on the application, misclassified waste piles 

can be filtered using posterior class probabilities. Nonetheless, manual 

digitization can be slow when human resources are limited; however, this 
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approach requires limited training in image labeling. In a previous study by 

Papakonstantinou et al. (2021), 27 volunteers underwent training in image 

labeling. They successfully classified and labeled 30,793 objects based on 

whether they contained waste materials or not  (Papakonstantinou et al. 2021). 

Nevertheless, waste piles generated through manual digitization might require 

ground validation and quality assurance processes to be developed to be reliable 

and reproducible. Crowdsourcing labeling platforms such as Humanitarian 

OpenStreetMap Tasking Manager (https://tasks.hotosm.org/ ) or MapSwipe 

(https://mapswipe.org/  ) offer opportunities for crowdsourcing mapping effort 

and validation. These platforms have the potential to accelerate manual mapping 

especially when human resources are limited. Automating the digitization of 

waste piles using OBIA is a faster approach, and once a model has been 

developed, it can be reused and applied on a large scale. While OBIA has 

previously been applied to mapping marine waste (Gonçalves et al. 2020b), 

categorizing beach macro waste items (Gonçalves and Andriolo 2022), and 

studying the role of vegetation in trapping beach waste (Andriolo et al. 2021), 

this study extends its application to mapping waste on land for the first time. The 

study also breaks new ground for leveraging entirely free software, including the 

Orfeo Toolbox (https://www.orfeo-toolbox.org/ ) and R Statistical Software (R 

Core Team 2022), to implement the approach.   

4.3.� Potential improvement on using OBIA for mapping waste piles 

Despite a few misclassifications, it is worth noting that, binary classifiers 

outperformed the corresponding multi-class models for all algorithms used. This 

observation aligns with earlier observations in Portugal, where a binary classifier for 

differentiating marine litter items from non-litter items was reported to have higher 

accuracy than a multi-class approach (Pinto, Andriolo, and Gonçalves 2021). One 

possible explanation for the misclassification is that a binary classifier is trained to 

maximize differentiation between segments of waste and non-waste. Conversely, the 

multi-class classifier is optimized to differentiate multiple classes. However though, 

previous studies (Gonçalves et al. 2020a; 2020b; 2020c; Martin et al. 2018) focused on 

mapping individual waste objects disposed of in the environment, while the current 

study maps waste piles with aggregates of different waste types. Mapping individual 

objects such as plastics has the potential to aid in quantifying the abundance of 

pollutants or other discarded materials in the environment. However, it is equally 

imperative to note that drone data of GSD between 0.5 and 1.25 cm/pixel is suitable for 

mapping individual waste materials (Andriolo et al. 2023). Most common drone sensors 

can only achieve this GSD by flying low altitudes. Such flight altitude is impractical in 

settings with tall buildings, trees, and powerlines. As demonstrated in this study, drone 

data with relatively high GSD can map waste aggregates (waste piles). Thus, mapping 
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aggregates of waste has the potential to serve as indicators for monitoring the impact of 

waste management programs on reducing waste disposal in the environment. 

In terms of the algorithms that were trained to build the models, the current 

study observed that the model developed using an SVM algorithm slightly outperformed 

the other binary models, achieving the highest precision, recall, F1-score, overall 

accuracy, and Kappa. Similarly, the trained RF model slightly outperformed other multi-

class models, also demonstrating the best performance across these metrics. 

Nevertheless, studies that explored automating the mapping of waste materials have 

reported the use of diverse descriptor variables and model-building practices. For 

example, Martin (Martin et al. 2018) used histogram oriented gradients (HOG) as 

descriptor variables to train a SVM classifier. Conversely, numerous other published 

works transformed RGB bands into alternative color spaces, including Hue Saturation 

Value (HSV),  CIE-Lab, and YCbCr for modelling purposes(Gonçalves et al. 2020b; 2020c; 

2020a). This underscores the need for standard approaches in developing and 

implementing classifiers for mapping waste materials in various environments. 

4.4.� Study strengths and limitations 

The study is the first practical application of drone imagery for mapping disposed 

of waste in Sub-Saharan Africa. One of the key strengths of this study is the use of QGIS 

and Orfeo Toolbox, free and open-source software for geospatial (FOSS4G), and are 

ideal for environmental monitoring program, especially when financial resources to 

support purchasing software are lacking. Nevertheless, due to limited GSD, individual 

materials within waste piles are not visible in the drone imagery. Visibility of materials in 

aerial imagery depends on spatial resolution. Additionally, the current waste mapping 

only focused on mapping waste piles located within 20 meters of the river in the study 

community. Further investigation is needed to assess the generalizability of the 

developed OBIA model to the region beyond the river or images captured at different 

time points. We also acknowledge that we did not formally test for class separability 

before training the classification model, and we used all the 21 extracted feature 

variables without regard to their importance on class separability. Some of the extracted 

feature variables might not effectively contribute to class separability and could 

introduce noise, complicating the classification process. Future studies should 

investigate class separability and apply dimension reduction techniques to remove 

irrelevant or redundant features. This could improve model performance by focusing on 

the most informative feature variables and simplifying the classification process. 

. 
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5.�Conclusions and outlook for further work

The current study illustrates the practicalities associated with using images 

collected by drones for mapping waste piles on land in an urban environment in Malawi. 

Drone imagery enables the mapping of inaccessible waste piles and the characterization 

of their sizes, surpassing the capabilities of field walks.�To our knowledge, this is the first 

successful application of drone-based remote sensing for mapping waste in an 

environment other than beaches or coastal areas, particularly on land and in an urban 

environment.  Implementation of OBIA for automating waste pile detection reported 

higher accuracy than previous studies. Considering these observations, drone imagery 

can be used for mapping waste piles. Thus, future work should focus on three areas: (1) 

establishing mapping requirements for mapping materials and individual objects on the 

surface of waste piles; (2) exploring the operational performance of different image 

classification approaches for automating the process of mapping waste piles; and (3) 

translating generated information on waste piles into practical policy actions.�

Currently, we are focused on mapping the distribution of plastic waste within 

waste piles and quantifying its dispersal patterns. Future work on automating waste pile 

mapping can focus on improving image capturing, object detection, and classification. 

For image capturing, we recommend exploring optimal spatial resolution for mapping 

individual waste materials (such as plastics). Furthermore, investigating the potential 

contribution of different camera choices (optical sensor, infrared, thermal, etc.) on the 

performance of the waste pile mapping models is recommended. Besides, exploring 

emerging object detection and classification approaches, especially those with capability 

to learn patterns associated with waste materials without needing to know the actual 

variables needed for model training  - only requiring imagery spectral bands will simplify 

the model development process. 
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