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• A novel implicit method for the full nonlinear form of bond-based peri-
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• A comprehensive comparison of the efficiency and accuracy of explicit
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static fracture formation and evolution
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Abstract

Understanding the quasi-static fracture formation and evolution is essential

for assessing the mechanical properties and structural load-bearing capac-

ity of materials. Peridynamics (PD) provides an effective computational

method to depict fracture mechanics. The explicit adaptive dynamic re-

laxation (ADR) method and the implicit methods are two mainstream PD

approaches to simulate evolution of quasi-static fractures. However, no com-

prehensive and quantitative studies have been reported to compare their

accuracy and efficiency. In this work, we first develop an implicit method

for bond-based peridynamics (BBPD) based on the full nonlinear equilib-

rium equation and the degenerate form of the bond failure function, where

the Jacobian matrices are derived using the Newton-Raphson (NR) scheme.

Subsequently, we analyze the solvability of the implicit BBPD scheme. Sec-
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ond, a consistent and comprehensive comparison of accuracy and efficiency of

the explicit ADR and implicit methods is conducted, which reveals compu-

tational efficiency of the implicit methods and their limitations in accurately

describing crack formation. Finally, by utilizing the unique advantage of

both methods, we develop an adaptive explicit-implicit method and propose

a switching criterion to deploy appropriate scheme accordingly. Four typi-

cal quasi-static problems are employed as the numerical experiments, which

show the acceleration ratios of the current method range from 6.4 to 141.7

when compared to the explicit ADR. Therefore, the explicit-implicit adap-

tive method provides a powerful method to simulate quasi-static fracture

formation and evolution.

Keywords: Peridynamics; quasi-static fracture mechanics; computational

mechanics; implicit method; explicit ADR
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Nomenclature

Symbols Physical quantities, units

x Position vector before deformation, unit: m

y Position vector after deformation, unit: m

u, ü Displacement vector, unit: m, acceleration vector, unit:

m/s2

ξ, η Relative position vector, relative displacement vector,

unit : m

f(u′ − u,x′ − x, t) Interaction force density vector between the particles at

x′ and x at the time t, unit: N/m3

F(ξ,u) Set of the total interaction force density vectors acting

on each PD point in the entire material, unit: N/m3

b Volumetric body force density vector, unit: N/m3

c Bond constant, unit: Pa/m4

s Bond stretch

ρ Density, unit: Kg/m3

E Young’s modulus, unit: Pa

N Total number of particles in the computed materials

Ni Number of particles within the horizon Hi

∆um Displacement increment vector, unit: m

K Jacobian matrix

e Relative error tolerance of the NR procedure

e0 Relative error tolerance of the whole-field displacement

S Sparsity index
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Symbols Physical quantities, units

∆x Spatial discretization size, unit: m

Ts Degradation function

sm Minimum bond stretch for bond interaction degradation

sc Critical bond stretch

l, w, h Length, width, height, unit: m

∆ui Displacement loading increments for the implicit

scheme, unit: m

∆ue Displacement loading increments for the explicit scheme,

unit: m

utotal Total displacement loading, unit: m

Ni Total implicit loading steps to reach the total displace-

ment

Ne Total explicit loading steps to reach the total displace-

ment

ra Acceleration ratio of the adaptive method in comparison

to the explicit-ADR method

rn Ratio of the duration of the deformation stage to the

total simulation duration

1. Introduction

Peridynamics (PD) offers an alternative method for modelling and sim-

ulation of fracture behavior [1–7], which has made rapid progress in the

recent years. Unlike classical continuum mechanics (CCM) that relies on
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differential operators, PD models the evolution of materials using non-local

interactions between the material points within a finite distance. Thus, it

naturally mitigates the well-posedness issue of the derivatives appearing at

cracks and voids. Both continuous and discontinuous fields can be solved

within the same framework, where cumbersome remedial techniques are not

required [8–18]. Based on modelling of non-local interactions, PD can be di-

vided into two categories, i.e., bond-based PD (BBPD) and state-based PD

(SBPD) methods. BBPD models the interaction between material points

as the force of equal magnitude pointing to the opposite directions along

the interaction direction [9]. Despite the limitation of fixed Poisson’s ratio,

BBPD models are widely used in the modelling of brittle materials due to the

favorable numerical stability, succinct mathematical form and low computa-

tional cost, and effectiveness in addressing multi-physical coupling problems

[19–35]. Therefore, this study will focus on the BBPD, and may be extended

to SBPD in the future.

Quasi-static problems are vital in the study of engineering structural

deformation, subsurface movement and deformation, material performance

testing, and loading assessment [36–43]. Although PD has been successfully

applied to simulate dynamic fracture propagation [38, 39, 41, 44–46], obtain-

ing steady-state solutions under quasi-static conditions remains challenging

[36]. This difficulty arises due to the fact that the small time step employed in

the explicit time integrators leads to overwhelmingly-costly computation. To

address this issue, Kilic et al. [36] extended the adaptive dynamic relaxation

(ADR) method to PD simulation, where the damping coefficient in dynamic

relaxation was estimated using Rayleigh’s quotient to effectively dampen the
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system from higher frequency modes to lower frequency modes. This explicit-

ADR method can achieve steady-state solutions under quasi-static conditions

and accurately capture fracture propagation. However, small loading rates

are necessary to avoid nonphysical force fluctuations caused by dynamic ef-

fects.

On the other hand, the implicit PD schemes have been proposed for

static or quasi-static problems [37, 47–53], which allow larger loading steps,

faster convergence, and guaranteed equilibrium conditions. Among others,

Breitenfeld et al. [53] presented the development of a static implementation

for the non-ordinary state-based PD (NOSBPD) formulation, focusing on

small-strain linearly elastic problems. Ni et al. [50] proposed an implicit

form of the finite element method (FEM)-BBPD coupled model to address

static fracture problems and introduced three methods to compute crack

propagation, i.e., allowing only one bond to break per step, no control of

bond breakage, and limiting the maximum number of bonds that can break

at each step. It turned out that the third method significantly improved

the accuracy of numerical solution. The linearized equilibrium equation was

used in that model under the small displacement assumption [1, 54]. Gu

et al. [35] also applied such linearized equilibrium equation of BBPD within

their framework to study porous quasi-brittle materials . If the linearized PD

equation is used, small loading increments are required to ensure that the

displacements remain sufficiently small at each step to satisfy the prerequisite

for linearization, i.e., small deformation.

To remove the small deformation restriction, the full nonlinear form of

PD is favored in conjunction with iterative schemes such as the Newton-
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Raphson (NR). However, the three mainstream crack computation methods

discussed above are not suitable for the NR procedure due to the fact that,

when there are cracks, the force field becomes discontinuous, making it diffi-

cult to obtain the Jacobian matrix. Hashim et al. [48] proposed an implicit

NOSBPD framework using the NR scheme, where a degradation function is

introduced to describe damage evolution, i.e., the interaction degradation of

the bond as the bond stretch increases, which is different from immediate

disappearance of the bond influence. Yang et al. [47] improved the im-

plicit NOSBPD model by incorporating a stress-based criterion to evaluate

bond failure, which overcame the difficulties associated with obtaining frac-

ture properties in the previous critical stretch criterion. While the implicit

schemes for NOSBPD have been studied, the detailed implementation for

BBPD, which is equally crucial, has not garnered adequate attention yet.

Also, since implicit methods aim to reduce computational costs, it is neces-

sary to compare the computational efficiency between the explicit-ADR and

implicit schemes for quasi-static problems, which has not been systematically

examined.

Here, we first develop an implicit method based on the full nonlinear

equilibrium equation and the degenerate form of the bond failure function

of BBPD for quasi-static problems. The Jacobian matrix is obtained using

the NR scheme, which lays the foundation for the implicit scheme. We thor-

oughly compare the computational efficiency and accuracy of the explicit-

ADR method and the newly-developed implicit method. Leveraging the ad-

vantages of both methods, we propose an explicit-implicit adaptive method

that strikes a balance between accuracy and efficiency for quasi-static frac-
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ture problems. The performance of the adaptive method will be elaborated

for four quasi-static problems.

Note that although implicit schemes were reported in the literature [35,

47, 48, 50, 53], the novel contributions of this work lie in two key aspects.

First, the nonlinear form of the BBPD equation is retained to eliminate the

small-strain restriction often encountered in BBPD studies [1, 35, 36, 50, 51,

54]. More importantly, this study presents the first comprehensive compari-

son of two mainstream methods, i.e., the explicit ADR and implicit schemes,

for quasi-static problems. Based on this comparison, a new adaptive scheme

is proposed that effectively combines the advantages of both approaches. Ad-

ditionally, the current efficient adaptive scheme is also applicable to SBPD.

The rest of the paper is organized as follows. Section 2 introduces BBPD

and presents a new implicit model for quasi-static problems. Section 3 pro-

vides a comprehensive comparison between the explicit-ADR method and the

newly-developed implicit method. Section 4 details a novel explicit-implicit

adaptive method tailored for quasi-static fracture problems. Following this,

Section 5 highlights four typical case studies, revealing the computational

accuracy and efficiency of the explicit-implicit adaptive method. The con-

clusions and further discussion on the remaining issues are presented in the

last section.

2. Theoretical Model

In this section, we formulate a new implicit BBPD method for quasi-static

problems. The nonlinear equilibrium equation is analyzed by examining the

properties of the Jacobian matrix, and the degradation of bond damage is
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illustrated.

2.1. Implicit formulation of full nonlinear BBPD model

The equation of motion of BBPD is given by

ρ(x)ü(x, t) =

∫
H

f(u′ − u,x′ − x, t)dH + b(x, t), (1)

where H represents the horizon zone of the particle at the position x, f(u′ −

u,x′−x, t) is the force density vector between the particles at x′ and x, both

at the time t, (x′ − x) represents the initial relative position vector between

the particles at x′ and x in the horizon H, b is the body force density vector

at the time t, ρ(x) presents the mass density of the particle at x, and ü is

the second-order time derivative of displacement u.

The initial relative position vector ξ and relative displacement vector η

are denoted by ξ = x′ − x and η = u′ − u, where u′ and u are, respectively,

the displacement of the particles at x′ and x. After the configuration defor-

mation, the new positions of the particles at x′ and x are represented by y′

and y, where y′ = x′+u′ and y = x+u. The relative positional relationship

between the particles x and x′ is depicted in Figure 1. The PD integral-form

equation can be discretized for numerical implementation as

ρ(xi)ü(xi, t) =

Ni∑
j=1

[fi,j(uj − ui,xj − xi, t)µi,jνi,jVj] + b(xi, t), (2)

where Ni represents the number of particles within the horizon of the particle

located at xi. The subscript j denotes an arbitrary particle positioned at xj

within the horizon of the particle at xi. Vj is the volume of the particle

at xj within the horizon of the particle at xi, given by Vj = (∆x)3 for a
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Figure 1: Illustration of BBPD and pairwise interaction between PD points. The horizon

of the particle at the position x encompasses all the PD particles interacting with it, and

remains unchanged throughout deformation.

uniform discretization. Here, νi,j and µi,j are the volume and surface effect

correction factors for the particle at xj within the horizon of the particle at

xi, respectively, and ∆x represents the particle spacing.

Based on the BBPD theory, the force density vector of each bond fi,j

satisfies

fi,j(uj − ui,xj − xi, t) =
1

2
cs

ξij + ηij
|ξij + ηij|

=
1

2
c
|ξij + ηij| − |ξij|

|ξij|
ξij + ηij
|ξij + ηij|

=
1

2
c
|yj − yi| − |xj − xi|

|xj − xi|
yj − yi

|yj − yi|
,

(3)
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where c is bond constant,

c =



2E
πδ2A

for 1D,

9E
πδ3h

for plane stress,

48E
5πδ3h

for plane strain,

12E
πδ4

for 3D,

and s is the bond stretch, which is s = (|ξij + ηij| − |ξij|)/|ξij|.

For the quasi-static deformation, the second-order time derivative of dis-

placement can be ignored, the governing equation of BB-PD is given below,

Ni∑
j=1

c
|ξij + ηij| − |ξij|

|ξij|
ξij + ηij
|ξij + ηij|

µi,jνi,jVj + b (xi, t) = 0. (4)

We propose an implicit algorithm to solve the quasi-static motion equa-

tion, thereby avoiding the significant computational cost associated with ex-

cessively small time steps required in the explicit time integration. Moreover,

the NR scheme is applied to iteratively solve the aforementioned full nonlin-

ear equation.

The function E(u) is defined as E(u) = F(ξ,u)+b(x), where the function

F represents the set of the total interaction force density vectors acting on

each PD point in the entire material. For the PD point located at xi, one

element of F, the total interaction force density vector at xi, can be expressed

as:

Fi(ξ,u) =

Ni∑
j=1

c
|ξij + ηij| − |ξij|

|ξij|
ξij + ηij
|ξij + ηij|

µi,jνi,jVj.

The system reaches equilibrium when the value of E(u) approaches zero.

According to the NR iteration scheme shown in figure 2, expand the

function E(u) at um using the Taylor series and retain the linear yields
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E (u) ≈ E (um)+
∂E
∂u

(um) (u− um), where um represents the displacement of

the current m iteration step. The solution to the nonlinear system E(u) = 0

can be transformed into solving the following linear equation at each iteration

step,

Km (∆um) = −E (um) ,Km =
∂E

∂u
(um), (5)

where Km is the Jacobian matrix (or tangent stiffness matrix) at the mth

iteration, and ∆um = um+1 − um is the unknown displacement increment.

Once ∆um is determined, the next displacement um+1 is updated as um+1 =

um + ∆um. This iterative process continues until um+1 converges to the

required accuracy.

AlthoughKm can be determined numerically [52], the calculation involves

finite differencing of the whole-field function E(u) with respect to the dis-

placements of all PD points (as shown in Eq.(5)), resulting in significant

computational and memory costs. Furthermore, Km changes with each iter-

ation, solving it numerically becomes increasingly expensive. To reduce the

computational cost, the analytical expression of K can be obtained as,

K =
∂E

∂u
=

∂F (ξ,u)

∂u
=



∂F1(ξ,u)
∂u1

∂F1(ξ,u)
∂u2

· · · ∂F1(ξ,u)
∂un

∂F2(ξ,u)
∂u1

∂F2(ξ,u)
∂u2

· · · ∂F2(ξ,u)
∂uN

...
...

. . .
...

∂FN (ξ,u)
∂u1

∂FN (ξ,u)
∂u2

· · · ∂FN (ξ,u)
∂uN


N×N

, (6)

where K represents the Jacobian matrix function at arbitrary time and N

represents the total number of particles of the material. For three dimensions,
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Figure 2: Illustration of the NR procedure: the solution of a nonlinear system equals the

zero point of the nonlinear function, and the numerical solution obtained through the NR

iteration gradually converges toward the accurate solution.

the 3×3 matrix is given by

∂Fi (ξ,u)

∂uj

=


∂Fix(ξ,u)

∂ujx

∂Fix(ξ,u)
∂ujy

∂Fix(ξ,u)
∂ujz

∂Fiy(ξ,u)

∂ujx

∂Fiy(ξ,u)

∂ujy

∂Fiy(ξ,u)

∂ujz

∂Fiz(ξ,u)
∂ujx

∂Fiz(ξ,u)
∂ujy

∂Fiz(ξ,u)
∂ujz


3×3

, (7)

where the subscript x, y, and z represent three mutually orthogonal Cartesian

coordinate components, respectively.

If we substitute Eq.(7) into Eq.(6) for j ̸= i, and the particle at the

position xj belongs to the horizon of the particle at the position xi, i.e.,
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xj ∈ Hi, we obtain

∂Fip (ξ,u)

∂ujq
= cµi,jνi,jVj

[
δpq

|xj − xi|
− δpq

|yj − yi|
+

(yjp − yip) (yjq − yiq)

|yj − yi|3

]
, (8)

where the subscripts i and j represent the coordinate indices (i, j = 1, 2, ...N),

and p and q denote the indices for the orthogonal component directions of

the position vectors (p, q = x, y, z). For example, yjp represents the position

coordinate component of particle j in the p direction after deformation. δpq =

1 when p = q, and δpq = 0 otherwise.

If j ̸= i and the particle at the position xj does not belong to the horizon

of the particle at the position xi,i.e., xj /∈ Hi, we can obtain

∂Fi (ξ,u)

∂uj

= 0. (9)

If j = i, similarly, we obtain

∂Fip (ξ,u)

∂uiq
= c

∑
xk∈Hi

[
δpq

|yk − yi|
− δpq

|xk − xi|
−

(ykp − yip) (ykq − yiq)

|yk − yi|3

]
µi,kνi,kVk,

(10)

where the subscript k represents the coordinate indices, and k = 1, 2, ...N .

In summary, the dimension of Jacobian matrix K is mN × mN , where

m represents the dimension of the system ranging from 1 to 3. Each element

of the Jacobian matrix K can be calculated by Eqs.(6)-(10).

In the same manner, the right-hand side of Eq.(5), which is a mN × 1

vector, can be calculated by

−E (uip) = c
∑

xk∈Hi

[
(ykp − yip)

|yk − yi|
− (ykp − yip)

|xk − xi|

]
µi,kνi,kVk − bip,

(i, k = 1, 2 . . . N ; p, q = x, y, z) .

(11)
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By solving the linear system, ∆um can be obtained, and the displacement

of the next step is um+1 = um +∆um. The convergence criterion of the NR

procedure is set as
∥E(um+1)∥2

∥b(ξ)∥2
≤ e, where e stands for the relative error

tolerance.

2.2. Properties of Jacobian matrix for implicit BBPD model

The typical Jacobian matrix of BBPD for quasi-static problems exhibits

the following properties.

(1) Sparsity: the number of non-zero elements in K is associated with

the total number of particles in a horizon. The sparsity index S can be cal-

culated as S =
N∑
i=1

(Ni + 1)

/
N2, where (Ni+1) represents the total number

of particles in the horizon of particle i, including itself. Furthermore, not all

horizons contain the same number of particles due to the presence of surfaces,

so S < Nm+1
N

, where Nm is the maximum number of localized particles, which

is typically constant in PD simulations. As the horizon size is commonly set

to be 3∆x, the value of Nm is typically equal to 3 for 1-dimensional (1D)

problems, 28 for 2D problems, and 122 for 3D problems. Therefore, K is

sparse as N ≫ Nm.

(2) Symmetry: if we take the 3D Jacobian matrix K as an example, each

element of K3N×3N can be expressed as [Ki,j]p,q, where i and j represent the

index numbers of all the particles, and p and q represent the axis components

of the Cartesian coordinate.

15



If j ̸= i, from Eq.(8), we obtain

[Ki,j]p,q = cµi,jνi,jVj

[
δpq

|xj − xi|
− δpq

|yj − yi|
+

(yjp − yip) (yjq − yiq)

|yj − yi|3

]
,

[Kj,i]q,p = cµi,jνi,jVi

[
δpq

|xi − xj|
− δpq

|yi − yj|
+

(yiq − yjq) (yip − yjp)

|yi − yj|3

]
.

In PD simulations, the grids are usually uniform, which mean Vj = Vi, so

that, [Ki,j]p,q = [Kj,i]q,p. If j = i, the elements are on the diagonal of a square

matrix, so [Ki,i]p,q = [Ki,i]q,p. Therefore, K is a symmetric matrix.

(3) Other important property: as for the diagonal elements of the particle

index matrix [Ki,i], the arbitrary Cartesian coordinate components [Ki,i]p,q

can be expressed as Eq.(10), and we get [Ki,i]p,q = −
Ni∑
j=1

[Ki,j]p,q. This implies

that K is a matrix with the row sum equal to 0. Therefore, K is singular

and requires the introduction of boundary condition to eliminate singularity.

To be more illustrative, we compute a specific Jacobian matrix for a

particular quasi-static case before applying boundary conditions. This case

involves a 2D bar subjected to a transverse loading, which will be discussed

in Section 3.1. Figure 3 displays the distribution of non-zero elements in this

Jacobian matrix. As for the positive definiteness of the Jacobian matrix,

the theoretical proof is yet to be found while the numerical verification has

accomplished.

2.3. Boundary condition

The Jacobian matrix K may become singular due to the presence of rigid

body displacement. In order to address this singularity, displacement con-

straints need to be applied. In PD simulations, a displacement boundary
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Figure 3: Distribution of non-zero elements in the stiffness matrix shows the unique sparse

band-like characteristics.

condition is enforced by imposing constraints on the displacement or veloc-

ity field within a fictitious material layer along the boundary of a non-zero

volume. As the displacement of the materials points in the fictitious layer

is known, the rows and columns corresponding to the material points in the

fictitious layer should be removed from the Jacobian matrix. Therefore, the

row sums are no longer zero, and the singularity of K is eliminated, which is

shown in Figure 4.

2.4. Damage evolution

A critical bond stretch is used to describe the damage evolution in the

material. When the bond stretch exceeds this critical value, bonds begin to

17



Figure 4: Illustration of applying the boundary condition for a 2D bar under a transverse

loading, similar to the scenario depicted in Figure 3. The boundary condition involves

fixing the left side of bar.

break, cracks start to form, and the interaction forces between the bonds

are then set to zero. However, it is important to note that directly setting

the forces to zero may adversely affect numerical convergence in the present

implicit procedure. The current implicit format is based on the NR scheme,

and the differentiation of forces with respect to displacement necessitates the

continuity of forces. Hence, the continuous degradation function Ts is utilized

to depict the deterioration of bond interaction as the bond stretch increases,
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which is shown below:

Ts =


1 (s ≤ sm)

1
2

[
1− tanh β(sm+sc−2s)

sm−sc

]
(sm < s < sc)

0 (s ≥ sc),

(12)

where sm is the minimum bond stretch at which the degradation of bond

interaction begins, sc is the critical bond stretch, and β is a non-negative

value that controls the rate of degradation[48].

The new total interaction force density vector of the particle at xi, taking

into account the damage, is given by the following equation:

Fi (ξij,uij) =

Ni∑
j=1

cs
ξij + ηij
|ξij + ηij|

Tsµi,jνi,jVj. (13)

By conducting the NR procedure, the elements of new Jacobian matrix

K can be calculated by

∂Fip(ξ,u)

∂ujq

= TsPi,jAijpq + Pi,j (TsCij + LijBijAijpq)Dijpq,

(i, j = 1, 2, . . . , N, i ̸= j; p, q = x, y, z) ,

(14)

and

∂Fip (ξ,u)

∂uiq

= −
∑
xj∈Hi

[TsPi,jAijpq + Pi,j (TsCij + LijBijAij)Dijpq] ,

(i, j = 1, 2, . . . , N ; p, q = x, y, z) ,

(15)

where Pi,j = cµi,jνi,jVj, Aijpq = δpq
|xj−xi| −

δpq
|yj−yi| , Bij = 1

|xj−xi||yj−yi| , Cij =

1
|yj−yi|3

andDijpq = (yjp − yip) (yjq − yiq) , Lij =
β

sm−sc

(
1− tanh2 β(sm+sc−2s)

sm−sc

)
.

The properties of Jacobian matrix are not affected by the degradation

function Ts and remain unchanged.
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In summary, by introducing the degradation damage function and apply-

ing the boundary condition, the Jacobian matrix holds its sparse, symmetric,

positive definite, and non-singular properties, indicating good solvability of

the system.

3. Comparison of explicit-ADR and implicit BBPD method

The implicit scheme is often designed to reduce computational costs of PD

for quasi-static problems. With the deploy of BBPD, which represents the

simplest form of PD theory, and the implementation of conjugate gradient

(CG) method, known as one of the simplest and most efficient iterative meth-

ods for solving linear equations, our implicit scheme is a promising method.

Therefore, it would be persuasive to evaluate the efficiency of our implicit

scheme by comparing to the explicit-ADR method.

For consistency, the whole-field displacement convergence is maintained

for both the explicit-ADR and implicit schemes, as described below:

eu = (∥un − un−1∥2)/∥un−1∥2, eu < e0, (16)

where eu is the defined relative error of whole-field displacement at the step n,

e0 is the converge criterion, un and un−1 are the displacement at the steps (n-

1) and n, respectively. The same material properties, geometric information,

discretization length, boundary conditions, initial loading conditions, and

displacement convergence criteria are used. Additionally, the degradation

function with the same fracture criterion is applied to describe the bond

failure in both simulations. All the calculations are conducted using Julia[55]

programming within the same computational environment, utilizing a single
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core of the AMD EPYC 7763 64-Core Processor. Subsequently, the results

of damage, displacement, and CPU time for computations are compared.

3.1. Deformation of undamaged 2D bar

The 2D bar has the initial length l of 0.5m, and the width w of 0.05m.

It is uniformly discretized into 1030 particles using the regular grid 100 ×

10, with a layer of fictitious thickness 3∆x at the fixed boundary on the left

side of the bar. The horizon size is 3.015∆x. The material is assumed to be

isotropic and linear elastic with the Young’s modulus E of 200GPa and the

density of 7850 kg/m3. The boundary and loading conditions are depicted

in Figure 5. The left end of the bar is fixed, while the right end is subjected

to a downward vertical loading of 125 N. The loading boundary is located on

the outermost layer of the right end of the bar, with a boundary layer volume

of 10×1×(∆x)3. The loading is applied from the beginning as a body force

density vector to the PD points within the loading boundary layer, with a

magnitude of 1×108 N/m3.

Both the implicit and explicit schemes adhere to the same convergence

criterion as described in Eq.(16), and e0 is set to be 1×10−9. The implicit

simulation converges in only one step, while the explicit one requires approx-

imately 20000 steps. This is because small loading increment is required to

satisfy the small displacement assumption of the explicit-ADR method[9],

leading to a large number of steps, whereas it is not required for the present

implicit method.

No damage is allowed in this scenario. As depicted in Figure 5, the results

from the implicit simulation are identical to those obtained from the explicit

simulations. But the implicit scheme is approximately 290 times faster than
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Figure 5: This figure illustrates the vertical displacement distribution along the horizontal

central line of a 2D bar subjected to transverse loads. The results are obtained from the

explicit-ADR and implicit simulations, respectively. The loading position is marked in

red.

the explicit one.

3.2. Fracture of 2D plate with a hole

The 2D plate has the initial length l of 0.15m, and the width w of 0.05m.

It is uniformly discretized into 7800 PD particles using the regular grid of

150 × 50, with two layers of fictitious thickness 3∆x at the displacement

boundary on both the left and right sides of the plate. The radius of the

central hole is 0.005m. The horizon size is 3.015∆x. The material is assumed

to be isotropic and linear elastic with the Young’s modulus E of 192 GPa

and the density of 8000 kg/m3. The boundary and loading conditions are

depicted in Figure 6. The left and right ends are subjected to the outward

vertical displacement loadings with a total magnitude of 1.6mm.
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Figure 6: The damage and horizontal displacement distribution of a 2D plate under hor-

izontal tension are depicted. The left figure illustrates the results obtained from the

explicit-ADR scheme, while the right figure displays the outcomes of the implicit scheme

with different total loading steps. It is noteworthy that the right figure only represents

the portion enclosed within the dashed boxes of the left figure.

The convergence criterion remains the same as described in Section 3.1.

Fracture evolution is taken into consideration, and both the implicit and

explicit simulations employ the same degradation function to characterize

bond damage behavior, as outlined in Eq.(12), with sm = 0.033, sc = 0.066,

and β = 3.

It is worth noting that in this example, the implicit simulation does not

converge in one single step but requires multiple loading steps for conver-

gence. For the explicit-ADR, the total displacement loading is attained by

applying a small velocity at the boundary over an extended period. The

velocity should be small enough to avoid any dynamic effects[36]. Kilic and
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Madenci observed that compared to low loading rates, the results obtained

using the explicit-ADR method at high loading rates exhibit significant dif-

ferences and no longer adhere to the patterns observed at low loading rates.

The dynamic effects originate actually from the assumption of small dis-

placements in deriving the ADR formulation. If the loading rate is large,

this fundamental assumption of the ADR method is violated, leading to in-

correct results. In our case, the velocity magnitude is 1.6×10−7 m/iteration

and lasts for 10,000 loading steps.

Here, we can observe from Figure 6 that the results obtained from the

implicit schemes vary significantly with the total loading steps. The results

between the explicit and implicit simulations are only consistent when the

total loading steps is large enough in the implicit process, e.g., 500 and 1000.

To visually observe the differences in the simulation results more intuitively,

the damage distribution on the horizontal and vertical central lines are shown

in Figure 7.

24



Figure 7: This figure illustrates the distribution of damage and horizontal displacement

along the specific paths, which are marked as the dashed red lines in each sub-figure.

Different colors and markers indicate the change in total loading steps.

It is evident that both damage and displacement vary significantly with
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the total loading steps. Moreover, the results obtained from the implicit

simulation converge to those from the explicit simulation as the total loading

steps increases.

As this case involves fracture propagation, the computational costs of the

implicit scheme are at least 30 times larger than those of the explicit one.

This is attributed to the requirement for a large number of loading steps to

ensure computational accuracy.

3.3. Analysis of the implicit scheme for fracture evolution

Figure 7 illustrates that the total loading steps is crucial for computing

fracture propagation. In essence, a smaller total number of steps leads to

larger loading increments for each step, influencing the bond failure process

and consequently leading to different simulations results. Previous studies

have suggested that controlling the maximum number of failed bonds at each

step is essential for accurate implicit simulations[50]. In other words, the

smaller the loading increment, the less bond failure occurs at each step, and

the more accurate the implicit scheme is for fracture problems. Increasing

the total loading steps to reduce the loading increment at each step is one

of the most effective methods for controlling the maximum number of failed

bonds at each step, even though it may significantly decrease the efficiency of

the implicit scheme. It can be concluded that the implicit scheme is not an

efficient choice to simulate fracture problems compared to the explicit-ADR

method.

When a bond fails, the local forces applied to a PD point experience

significant variations in terms of both magnitude and direction, regardless of

the type of bond failure,i.e., whether it occurs as a sudden release or through a
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degradation model. The differentiation or finite difference in the forces acting

on each PD point constitutes the primary element of the Jacobian matrix

as depicted in Eq.(6). If the local forces exhibit pronounced fluctuations,

the elements of the Jacobian matrix are inevitably affected and undergo

significant variations. In the implicit format, the variations of PD forces are

reflected in the elements of the Jacobian matrix.

To address the significant variations in local forces during fracturing pro-

cess, it’s necessary to use sufficiently small loading increments, resulting in

a large yet essential total loading steps. Figure 8 presents the scaled forces

of the first-damaged PD point (marked point) during the loading process of

the case discussed in Section 3.2.
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Figure 8: Figures (a) and (b) illustrate the variation of horizontal and vertical forces at

the marked points as the total loading steps changes, while the total displacement remains

constant. The local force density is obtained during the implicit simulation procedure.

Different colors and markers indicate changes in the total loading steps. The scaling

factor is denoted as Q (Q = ∆x3). The total displacements remain constant at 1.6mm,

while the total loading steps vary, ranging from 10 to 2000.

It is evident that a small total loading steps smooth out the fluctuations

in the local forces and significantly under-predict the variation of local forces

once the fractures occur, which fails to describe the interaction forces between
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the PD points, leading to inaccurate results. Only with a sufficiently large

total loading steps, the variation of local PD forces during fracturing process

can be accurately described, making the total loading steps critical for the

implicit simulation to calculate fracture evolution.

It can be concluded that the implicit scheme is more suitable and effec-

tive compared to the explicit-ADR scheme for quasi-static problems without

fractures. This is due to its very fast convergence speed and very few loading

steps. However, when fracture evolution is considered, the implicit scheme

may require significantly more computational time than the explicit-ADR

scheme due to the need for a sufficiently large total loading steps to ensure

accuracy.

To utilize the efficiency of the implicit scheme for quasi-static problems

without fracture and mitigate its disadvantages in simulating fracture for-

mation problems, we propose an adaptive strategy for quasi-static fracture

formation problems, which will be presented in Section 4.
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4. Adaptive strategy for quasi-static fracture problems

Figure 9: The adaptive process flowchart is depicted here. Ni and Ne are the total loading

steps of the implicit and explicit processes, respectively, to reach the total displacement

load.

The proposed adaptive scheme is illustrated in Figure 9. The entire pro-

cess for solving quasi-static fracture problems is divided into three steps. The

first step involves the implicit process for deformation computation, extend-

ing from the onset of deformation to crack initiation. The second step com-
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prises the explicit-ADR process for damage computation, continuing from

the implicit step with inherited displacement and loading information, which

proceeds until bond failure ceases. The final step switches back to the implicit

process until completion.

When the tensile stretch of any bond exceeds a certain threshold, denoted

as sm, the implicit process terminates and switches to the explicit ADR pro-

cess. Once the displacement reaches a final state, where no more bonds fail

over an extended period, the explicit ADR process terminates, and the final

implicit process resumes. Figure 10 illustrates the displacement increments

for both the implicit and explicit schemes.

Figure 10: The schematic diagram of displacement loading throughout the entire computa-

tion process, where ∆ui,∆ue denote the displacement loading increments for the implicit

and explicit simulations, respectively, and utotal is the total displacement loading. The

initial implicit process consists of n steps, while the explicit process consists of m steps,

with Ne steps to reach the total displacement load. The relationship between the displace-

ment increments and the total displacement is utotal = n×∆ui +Ne ×∆ue.

It’s worth noting that n in Figure 10 represents the actual number of
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computational steps executed in the initial implicit simulation of a general

case, while Ni in Figure 9 is the number of steps set before calculation to

generate an implicit loading increment ∆ui , ∆ui = utotal/Ni. In all the

simulations, n is not larger than Ni.

5. Numerical validation

We apply the present adaptive and explicit-ADR method to solve four dif-

ferent quasi-static problems. All the calculations are conducted using Julia

programming utilizing a single core of the AMD EPYC 7763 64-Core Pro-

cessor. The results and the processing times are compared using the same

converge criterion.

5.1. Deformation of undamaged 3D bar under a transverse loading

In this benchmark case [9], the 3D bar has the initial length l of 1m,

the width w of 1m, and the height h of 0.1m. The domain is uniformly

discretized into 10,300 particles using the regular grid of 100 × 10 × 10, with

an additional layer of fictitious thickness 3∆x at the fixed boundary on the

left side of the bar. The horizon size is 3.015∆x. The material is assumed

to be isotropic and linear elastic with the Young’s modulus E of 200 GPa

and the density ρ of 7850 kg/m3. The boundary and loading conditions are

depicted in Figure 11(b). The left end of the bar is fixed, while the right end

is subjected to a downward vertical loading of 5000 N. The loading boundary

is located on the outermost layer of the right end of the bar, with a boundary

layer volume of 10×10×(∆x)3. The loading is applied from the beginning as

a body force density vector to the PD points within the loading boundary

layer, with a value of 5×107 N/m3.
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Figure 11: Figure (a) shows the contour diagrams of horizontal and vertical displace-

ment obtained by the explicit-ADR and adaptive methods. Figure (b) shows the vertical

displacement distribution along the horizontal central line of the bar, and the schematic

diagram of geometry, boundary and loading. The loading position is marked in red.
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In this case, both the adaptive and explicit-ADR methods directly utilize

the total pressure loading as the boundary condition and adhere to the same

convergence criterion, as described in Eq.(16), where e0 is set to be 1×10−9.

The adaptive method achieves convergence in just one step, while the explicit

one requires approximately 20,000 steps.

We found that the results of the present adaptive method are consis-

tent with those of the explicit scheme reported in the literature[9], with an

acceleration ratio of approximately 141.7.

5.2. Damage evolution of a 2D square plate with a central hole under tensile

loadings

This case is similar to the benchmark example of the citation [48], the

2D square plate has the initial length l of 0.05m. It is uniformly discretized

into 2900 particles using the regular grid of 50 × 50, with two additional

layers of fictitious thickness 3∆x at the displacement boundaries on both the

top and bottom sides of the plate. The radius of the central hole is 0.005m.

The horizon size is 3.015∆x. The material is assumed to be isotropic and

linear elastic with the Young’s modulus E of 192 GPa and the density ρ of

8000 kg/m3. The bond failure criterion is based on the degradation form as

outlined in Eq.(12), with sm = 0.015, sc = 0.02, and β = 3. The boundary

and loading conditions are depicted in Figure 12(b). The upper and lower

ends of the plate are subjected to the outward vertical displacement loadings

with a magnitude of 0.275 mm.
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Figure 12: The schematic diagram of geometry, boundary and loading is shown in Figure

(b1). Figures (a1-a3) display the contour diagrams illustrating the distribution of damage,

horizontal displacement, and vertical displacement. Figures (b1-b3) show the distribution

of damage, horizontal displacement, and vertical displacement along the horizontal central

line of the bar, indicated by the red dash line in Figure (a1).

In this case, the total displacement loading is applied through both im-

plicit and explicit loading processes in the adaptive method. The maximum

number of steps for the implicit and explicit loading processes is set to be

3 and 180, respectively. This implies that the loading rate for deformation

computation is 2.75× 10−4/3 m/iteration, while the loading rate for damage
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evolution computation is (1 − n/3) × 2.75 × 10−4/180 m/iteration, where

n is the step at which damage initiation occurs, as depicted in Figure 10.

As for the explicit-ADR scheme, the loading rate is set to be 2.75×10−7

m/iteration. In addition, both the adaptive and explicit methods use the

same convergence criterion, as described in Eq.(16), where e0 is set to be

1×10−9.

The adaptive computation results are in excellent agreement with those

obtained by the explicit-ADR simulation, with an acceleration ratio of 10.7.

5.3. Damage evolution of a 2D plate subjected to three point bending

In this case, the 2D rectangular plate has the initial length l of 0.24

m, and the width w of 0.06 m. It is uniformly discretized into 10,048 PD

particles using the regular grid of 200× 50, with three additional areas of

fictitious thickness 3∆x, and the span 4∆x at the displacement boundary on

the three point for loading. The pre-existing notch is located at the center

of the lower end, oriented vertically, with the length of 0.3w and the span of

2∆x. The horizon size is 3.015∆x. The material is assumed to be isotropic

and linear elastic with the Young’s modulus E of 200 GPa and the density

ρ of 8000 kg/m3. The bond failure criterion is based on the degradation

form as described in Eq.(12), with sm = 0.016, sc = 0.02, and β = 3. The

boundary and loading conditions are depicted in Figure 13 (b1).
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Figure 13: The schematic diagram of geometry, boundary and loading is shown in Figure

(b1). Figures (a1-a3) display the contour diagrams for the distribution of damage, hor-

izontal displacement, and vertical displacement, respectively. Figures (b1-b3) show the

damage, horizontal displacement, and vertical displacement along the horizontal central

line of the plate, respectively.
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As for the three point bending test, two points at the lower end are

constrained from the vertical movement, each with a horizontal distance of

0.105 m from the center. Additionally, one last point located at the center

of the upper end is subjected to the downward vertical displacement loading

with a magnitude of 4 mm.

Here, the maximum number of steps for the implicit and explicit load-

ing processes is set to be 5 and 1000 for the adaptive method, respectively.

This implies that the loading rate for deformation computation is 4×10−3/5

m/iteration, and for damage evolution computation is (1 – n/5)×4×10−3/1000

m/iteration, where n is the step at which damage initiation occurs, as de-

picted in Figure 10. As for the explicit-ADR scheme, the loading rate is

set to be 1×10−7 m/iteration. In addition, both the adaptive and explicit

methods use the same convergence criterion, as described in Eq.(16), where

e0 is set to be 1×10−9.

The results of the current adaptive method are in excellent agreement

with those obtained by the explicit scheme, exhibiting an acceleration ratio

of around 6.4.

5.4. Damage evolution of a 2D plate with multiple holes under a concentrated

tensile loading

In this case, the 2D plate has the initial length l of 0.065 m, the width

w of 0.12 m, as described in [56]. It is uniformly discretized into about 7800

particles using the regular grid of 65 × 120. There are four holes in the plate.

The radius of the upper left and lower left holes for loading is 6.5 mm, while

the radius of the smaller hole in the middle is 6 mm, and the radius of the

larger one is 10 mm. The geometric layout is shown in Figure 14.
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Figure 14: The detailed geometric layout, where the values in parentheses represent the

coordinates of the hole centers.

Note, the horizon size is set to be 8.015∆x for fracture evolution cal-

culations to eliminate dependence on the regular distribution of PD points

during crack propagation[57]. For the adaptive method, a horizon size of

3.015∆x is used throughout the material during the implicit simulation of

the deformation stage.

In all the simulations, the linear isotropic elastic model is applied, with

the Young’s modulus E of 200 GPa and the density ρ of 8000 kg/m3. The

bond failure criterion follows Eq.(12), with sm = 0.016, sc = 0.02, and β = 3.

The boundary and loading conditions are shown in Figure 15(a1), where the

holes on the left side experience the outward vertical displacement loadings

of 8.0×10−4m.
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Figure 15: Comparison of the explicit and adaptive methods. Figures (a2-a3) show the

damage distribution, Figures (b1-b2) display the horizontal displacement, and Figures

(c1-c2) present the vertical displacement. Figures (b3) and (c3) illustrate the horizontal

and vertical displacement along Line 1 and Line 2, which are marked in Figure (a1) by

the white dashed lines. 41



Here, the maximum number of steps for the implicit and explicit load-

ing processes is set to be 5 and 1500 for the adaptive method, respectively.

This implies that the loading rate for deformation computation is 8.0×10−4/5

m/iteration, and for damage evolution computation is (1 –n/5)×8.0×10−4/1500

m/iteration, respectively, where n is the step at which damage initiation oc-

curs, as depicted in Figure 10. As for the explicit-ADR scheme, the loading

rate is set to be 1×10−8 m/iteration. Both the adaptive and explicit methods

use the same convergence criterion with e0 = 1×10−9 as described in Eq.(16).

The results of the current adaptive method are in excellent agreement

with those obtained by the explicit scheme, exhibiting an acceleration ratio

of around 46.4.

In summary, the table below lists the computational time consumed for

the above four test cases. All the calculations were conducted, using Julia

programming, on a single core of the AMD EPYC 7763 64-Core Processor.

Table 1: Summary of computational time

Case Number
explicit-ADR

method (s)

Adaptive

method (s)

Acceleration ratio of

adaptive to explicit-ADR method

1 4109 29 141.7

2 160 15 10.7

3 275 43 6.4

4 2368 51 46.4

It can be observed from the above simulations that the present adap-

tive method can efficiently solve quasi-static fracture problems, akin to the

explicit-ADR scheme, which reduces computational costs significantly com-
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pared to the explicit scheme. We observe that the acceleration ratio ra of the

adaptive method in comparison with the explicit-ADR scheme for the above

four cases ranging from 6.4 to 141.7. In the entire simulation process of the

4 cases, including deformation and fracture propagation, we calculate the

ratio rn of the number of steps from the beginning to fracture initiation to

the total number of steps required for convergence to the specified precision,

and reveal the relationship between acceleration ratios ra and rn as shown in

Figure 16.

Figure 16: The relationship between rn and ra for the four test cases.

It is evident that rn plays a significant role in the acceleration perfor-

mance of the adaptive method: the larger rn, the greater proportion of the

deformation process in the entire process, and the better acceleration ratio

due to more significant contribution of the implicit scheme. The result of

Case 4 is unexpected, as its acceleration ratio ra is much larger than antic-
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ipated. The reason for this discrepancy is that, in Case 4, the acceleration

effect stems not only from the greater proportion of the deformation process

but also from the much smaller horizon size of 3.015∆x for the deformation

stage of the adaptive method compared to 8.015∆x for the explicit scheme.

Furthermore, due to the larger horizon size, which would result in a sig-

nificant computational burden, the acceleration effect of the latter is more

pronounced.

6. Concluding Remarks

In this study, we have developed an efficient implicit BBPD model for

solving quasi-static problems based on the full nonlinear equilibrium equa-

tion with a degradation bond failure function. We compared the computa-

tional efficiency of the explicit-ADR method with the newly-developed im-

plicit method and further proposed an adaptive explicit-implicit method to

enhance computational efficiency for solving quasi-static problems with PD.

Three main conclusions drawn from this work:

(1) The Jacobian matrix based on the full nonlinear BBPD, derived from

the NR procedure, exhibits typical properties such as sparsity, symmetry,

and non-singularity, indicating good solvability.

(2) Regarding the computational efficiency of solving quasi-static prob-

lems using PD, the present implicit method performs well in computing

damage-free deformations but struggles with damage evolution. This is be-

cause a sufficiently large number of loading steps are required for the implicit

simulations to accurately compute damage evolution.

(3) The proposed adaptive method utilizes the advantages of the implicit
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and explicit methods to improve overall computational efficiency. The ac-

curacy and efficiency of our adaptive method are examined in the four test

cases, revealing that the greater the proportion of the deformation process

in the entire process, the more pronounced computational acceleration of the

adaptive method.

Meanwhile, three key points are worthwhile for in-depth research in the

future.

(1) No bonds fail during deformation, but the implicit simulation needs

to calculate bond stretch for all the PD points at each step to decide whether

to switch to the explicit scheme, which leads to substantial computational

burden. The switching criteria may therefore be refined to avoid calculating

bond stretch during the deformation stage, thus further reducing computa-

tional costs.

(2) The conjugate gradient method is used to solve the equations. Mul-

tiple numerical techniques, including preconditioning, may be exploited to

expedite computations for large linear systems and further optimize the adap-

tive method.

(3) While the present explicit-implicit adaptive scheme is demonstrated

for BBPD, it can be straightforwardly extended to SBPD.
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