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Abstract

Processing and extracting actionable information, such as fault or anomaly indicators originating from vibration
telemetry, is both challenging and critical for an accurate assessment of mechanical system health and subsequent
predictive maintenance. In the setting of predictive maintenance for populations of similar assets, the knowledge
gained from any single asset should be leveraged to provide improved predictions across the entire population. In this
paper, a novel approach to population-level health monitoring is presented adopting a transfer learning approach. The
new methodology is applied to monitor multiple rotating plant assets in a power generation scenario. The focus is on
the detection of statistical anomalies as a means of identifying deviations from the typical operating regime from a
time series of telemetry data. This is a challenging task because the machine is observed under different operating
regimes. The proposed methodology can effectively transfer information across different assets, automatically
identifying segments with common statistical characteristics and using them to enrich the training of the local
supervised learning models. The proposed solution leads to a substantial reduction in mean square error relative to a
baseline model.

Impact Statement

Predictive maintenance analytics can provide operators and decision makers with crucial insight to support
lifetime extension decisions. Machine learning models have been shown to be effective tools for predictive
conditionmonitoring; however, their quality is hampered by the scarcity of data, particularly in unusual operating
regimes. This work demonstrates a method by which a machine learning algorithm can leverage sensor
information from other similar assets through an approach called transfer learning, thus enriching the training
dataset and ultimately increasing the effectiveness of the predictive model.

1. Introduction

For power plant generation, conditionmonitoring sensors can provide operators and decisionmakers with
real-time indicators of asset health, thus playing a fundamental role in supporting lifetime extension
decisions (Coble et al., 2015). It is standard practice for engineers to manually analyze condition
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monitoring data using predefined diagnostic techniques (Young et al., 2022); however, this is a time-
consuming operation requiring significant specialized expertise (Deng et al., 2020). The application of
data-driven machine learning methods to asset monitoring data can deliver prognostic and diagnostic
outcomes that are comparable to what engineers achieve but in a fraction of time (Deng et al., 2020).
However, most of these data-driven techniques are based on supervised learning methods, which require
large volumes of labeled training data to produce an accurate result (Surucu et al., 2023).

This paper demonstrates how predictive health monitoring for an individual asset within a population
can be made more effective through the transfer of information from similar assets that have been used
under similar operational conditions. This enables our data-driven model to generalize far beyond the set
of operating regimes to which the asset has been subjected. The efficacy of the proposed methodology is
demonstrated in a case study application using real conditionmonitoring data from a rotating plant asset in
a power generation scenario.

The methodology proposed is based on partitioning time series into a series of segments using a
change-point detection approach. Each segment captures the behavior of the asset under a single
operational regime and is assumed to be statistically stationary. Segments that represent the same
operating characteristics are identified by statistical tests for the equality of statistical distributions based
on some notion of statistical divergence. Statistically similar segments are combined into an enriched
training dataset on which a deep neural network model can be trained. The weights of the resulting deep
neural network are transferred to the target domain, whereby any time series data in the target domain is
used to further refine the model. This approach is shown to produce an order of magnitude reduction in
mean square error with respect to the baseline control model.

The key contribution of this paper is the application of transfer learning to train predictive learners across
a heterogeneous set of time series. This methodology has the ability to significantly improve the perform-
ance of individual predictive learners while remaining robust to missing, noisy, and erroneous data.

The paper is organized as follows. In Section 2, the research methodology is presented that includes
notation, time series partitioning through change-point detection, domain similarity and subset pairs
selection, two-sample hypothesis testing, and statistical distances as a measure of mismatch in probabil-
istic distributions. A real-world application problem related to telemetry monitoring of a roto-dynamic
pump within a power plant is presented in Section 3.2. A discussion of the results obtained and
conclusions is provided in Section 5.

1.1. Transfer learning and domain adaptation

Traditional predictive modeling approaches assume that training and prediction data have very similar
distributions. In practice, thismeans thatmodels are trained on a set of datawith certain characteristics (the
source domain) and are expected to generalize well on new scenarios which have similar characteristics
(the target domain). This assumption can be a limitationwhen the data-generating process shifts over time,
due to different operating conditions, and there is only a little training data available for each operating
regime. To address this limitation, approaches like domain adaptation and transfer learning aim to adapt
models trained on a source domain to perform well on a different, but related, domain (target), especially
when the two domains do not share the same distribution.

Both transfer learning and domain adaptation are aimed atmaximizing the available training datawhile
mitigating mismatch in distributions between the source and target domains. In practical settings, this
corresponds to training a predictive learner on the source domain and performing a subsequent evaluation
on a target domain under limited to no availability of labeled data. Transfer learning and domain
adaptation methods differ in one central aspect—domain adaptation approaches are centered on modi-
fying at least one source domain in such a way as to minimize the mismatch in probabilistic distributions
between the source and target domains, in transfer learning the source domain is unaltered (Weiss et al.,
2016).

There are two general approaches to transfer learning. In parameter-based transfer learning, amodel is
trained in the source domain and then the associated model parameters are adapted to the target domain
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(Chattopadhyay et al., 2012; Duan et al., 2012b; Tommasi et al., 2010; Yao andDoretto, 2010). In feature-
based transfer learning, the goal is to optimally transfer a selection of features from the source to the target
domain (Daumé, 2007; Duan et al., 2012a; Glorot et al., 2011; Long et al., 2014; Pan et al., 2011). Daumé
(2007) provided a simple approach of combining the feature spaces of the source and target domains and
using the combined augmented feature space to train any predictive model. MaximumMean Discrepancy
(MMD) is a commonly used method to learn a good feature mapping between the source and target
domains, for example, Pan et al. (2011). The idea of leveraging statistical discrepancies will be central to
our approach.

Transfer learning has been extensively utilized in fields like computer vision and natural language
processing. Recently, there has been a significant push to apply these techniques to sequentially structured
data, including time series (Gupta et al., 2020; He et al., 2020; Ismail Fawaz et al., 2018; Laptev et al.,
2018; Matias et al., 2021; Sagheer et al., 2021; Ye and Dai, 2018, 2021; Zellinger et al., 2020). For
example, Ismail Fawaz et al. (2018) used transfer learning to improve a classificationmodel by leveraging
a public dataset archive as the source domain. This study highlighted that transfer learning could either
improve or worsen the performance of model predictions, which depends on the public datasets selected
for pretraining the network model in the source domain. Laptev et al. (2018) proposed a transfer learning
approach for time series prediction using a Convolutional Neural Network (CNN) model, demonstrating
superior performance over the baseline deep learning models, especially in small to medium-sized
datasets. He et al. (2020) adopted a multi-source transfer learning strategy for financial time series
forecasting, introducing various ensemble methods for information transfer across multiple domains and
considering various predictive models. In another context, Matias et al. (2021) explored optimal time
series segmentation and pattern identification, employing an Hourglass deep CNN model coupled with
transfer learning.

A naive application of transfer learning across two domains will not always lead to better
performance. If the source and target tasks are structurally different, the predictive performance of
a model may be negatively impacted, a phenomenon known as negative transfer. The level
of predictive performance degradation associated with transfer learning is dependent on the level
of mismatch between the source and target domains. With a mismatch in feature space distributions
between the source and target domains, negative transfer occurs when a transfer learning approach
from the source carries information that does not essentially generalize to the target domain. In a
practical setting, it is possible to identify negative transfer by comparing against a baseline model
which has been trained exclusively on the target domain. Within the scope of this paper, the effects of
negative transfer are mitigated by carefully selecting the source data which is best aligned with the
target domain, and filtering out instances where the source assets behave in a structurally different
manner to the target asset.

2. Proposed methodology

2.1. Overview

The proposed methodology can be outlined in the following steps:

1. Identification of distinct operational states: Initially, to tackle the non-stationarity arising from
different operational regimes in the time series data, a change-point detection algorithm is
employed to partition the source and target time series into segments, each consisting of sensor
data arising from a single operational regime.

2. Selection of transfer candidates: Next, a subset selection algorithm is applied with the objective
of finding pairs of segments across the source and target domains that are indicative of similar
operational regimes. This involves filtering pairs which exceed a degree of dissimilarity, ensuring
that only relevant data is transferred, to minimize negative transfer.

3. Training the deep neural network: In the third phase, focus is placed on the pairs that exhibit the
least dissimilarity. These matched pairs are amalgamated into a unified training dataset. A deep
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neural network model is then trained on this consolidated dataset, optimizing it to capture the
underlying patterns across these operational regimes.

4. Transferring model weights to the target domain: The final step involves transferring the
weights of the deep neural network, which was trained in the previous stage, to the target domain.
This allows for the fine-tuning of the model using time series data specific to the target domain,
thereby aligning the model more closely with the characteristics of the target environment.

The entire process is delineated in Algorithm 1.

2.2. Transfer problem formulation and notation

Consider a source dataset DS comprising two components:

1. the time series xS1,…,xSnð Þ of p operational variables and
2. the time series of associated vibration sensor measurements yS1,…,ySnð Þ.

It is assumed that there exists a function f S :ℝ
p × I!ℝq such that

ySi¼ f S xSi,rSið Þ+ ξ i,
where ξ i are independent identically distributed samples from a mean zero distribution and ri denotes the
unobserved operational state indicator, assumed to take values in 1,…,Rf g, where R is the number of
operational states. The source task involves learning the function f S based on the observations inDS. Let
DT be a similarly defined target dataset, and suppose the target task involves learning the function
f T :ℝ

p × I!ℝq in an analogous manner. A transfer learning approach is leveraged to enhance the
approximation accuracy of the function f T by judiciously pooling information from DS and DT in a
strategic fashion.

2.3. Detecting changes in operational state

If the operational state indicator rSi was known, then pooling data from source to target domains would be
a relatively straightforward process. Without this variable, the transfer process becomes significantly
more challenging. This section focuses on an approach to mitigate this issue, specifically the use of
change-point detection to identify structural shifts, and partition the time series into a set of sub-series,
each of which is assumed to lie in a single operational regime.

Generally, methods for detecting change points fall into two broad categories: offline (Truong et al.,
2020) versus online (Aminikhanghahi and Cook, 2017) schemes. In offline settings, analysis is done after
the full time series data is available, while in online approaches anomalies and sudden changes are
detected as data is collected. This work focuses on offline detection methods, leveraging all data from the
source domain, whereby it is assumed that at the time of training a predictive learner on the target task, any
data in the corresponding source domain is fully available.

Offline change-point detection methods seek to partition a time series into segments, such that the
measurements within each partition are statistically homogeneous (Truong et al., 2020). The boundary
points between partitions correspond to times at which a significant shift in statistical behavior is
observed, known as change points. Given a time series x¼ x1,…,xN , a candidate partition
c¼ c1,…,cKð Þ of change points satisfies 1¼ c1 < c2 <⋯ < cK ¼N. The optimal partition of change points
is found by finding the partition c which minimizes the loss function of the form

L x,cð Þ≔
XK�1
i¼1

l xj : ci ≤ xj < ci+ 1
� �� �

+ f jcjð Þ, (1)

where l is a local loss function which measures the degree of statistical homogeneity within each segment
and f is a penalization term to encourage small numbers of change-points, mitigating overfitting.
A minimization of equation 1 leads to a partition c⋆ of the dataset. The local loss function will typically
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arise a log-likelihood of a model for the stationary behavior between change points. The stationary
behavior can be described by a Gaussian distribution. The minimization problem (1) can be solved
through direct minimization or (2) by reformulating it as a dynamical programming problem. In this work,
the PELT (Killick et al., 2012) algorithm is used, which is anO nð Þ offline change-point detection method
which is an approximate dynamical programming approach, which leverages pruning to reduce the
computational cost.

2.4. Identifying transfer candidates

The change-point partitioning scheme is applied above to both the source and target time series. Although
each segment will correspond to a single distinct regime, the process does not identify the specific
operating state. To achieve data transfer from source to target, a way of identifying source and target
segments that represent a similar operating state is needed. The assumption that such pairs would be
statistically similar and therefore can be identified through some notion of statistical distance or
discrepancy is adopted. Let uSi be a segment from the partitioned source dataset, comprising of both
the operational and monitoring variables, that is,

uSi¼
xS ci ,ci+ 1½ �
yS ci ,ci+ 1½ �

 !
,

for some change-point ci, and let uTj be defined analogously. The pair uSi,uTj
� �

is considered a valid
candidate for transfer if the statistical distance between the samples (treated as independent) in uSi and uTj
is less than some threshold. The challenge with this approach is that the number of samples within each
segment can vary significantly, so there is no obvious choice of threshold which would be appropriate for
all possible pairs. This problem is addressed by introducing a statistical testing framework, whereby a
two-sample test is performed for each pair, and rejection takes place at a pre-determined significance
level.More specifically, assume that the columns of uSi and uTj are distributed according to the probability
distributions pSi and pTj, respectively, both defined on ℝp ×ℝq. Then, the test hypothesis

Hij : d pSi,pTj
� �¼ 0,

is tested based on the sample approximation of the discrepancy bd uSi,uSj
� �

. For a general discrepancy d,
the null distribution will not have a closed form, and so a permutation resampling is used to estimate it
empirically, rejecting the hypothesis if the test statistic bd uSi,uSj

� �
lies outside the α= KTKSð Þ-quantile of

the null distribution, where α∈ 0,1½ � and KS and KT are the number of source and target segments,
respectively. The family-wise significance level α determines the sensitivity of the test, with the test being
more likely to reject pairs uSi,uTj

� �
as α is decreased. Scaling with KSKT is a Bonferroni correction,

applied to maintain a family error rate of α on all tests. Performing these tests on all possible source–target
pairs results in the construction of a setΦ ofm pairs for which the joint operational monitoring distribution
is statistically similar.

The choice of discrepancy will have a strong influence on which source–target pairs are selected in this
similarity assessment. As it was not a priori clear which discrepancy would yield the best predictive
performance after the transfer, a range of different statistical distances (and their estimators) are considered
and empirically assessed. In this work, Total Variation distance, Bhattacharyya distance (Bhattacharyya,
1943), Kullback–Leibler (Kullback and Leiber, 1951) and Jensen-–Shannon divergences (Endres and
Schindelin, 2003),Renyi divergences (Rényi, 1960), Energydistance (Székely, 2002),Wasserstein distance
(Vaserstein 1969), and MMD (Gretton et al., 2012) are considered. Definitions and further details can be
found in the Supplementary Information.

2.5. Early stopping

A direct implementation of the above matching process would require performing P¼KS ×KT two-
sample tests, each of which requires substantial computational effort due to the resampling process.
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To reduce the cost of this step, an adaptivematching process is performed, where pairs are prioritized over
others for testing. Let z1,…,zP represent the pairs P to be compared, where each zk is of the form uSi,uTj

� �
for some 1≤ i≤KS and 1≤ j≤KT . The pairs are sorted in ascending order in discrepancy bd uSi,uTj

� �
.

Starting from z1 each pair is considered sequentially, applying the two-sample test described in
Section 2.4. At each step, the relative increase in the discrepancy from the previous step is computed.
If it exceeds a threshold β (set at 10%), the transfer process is prematurely terminated. Although this
potentially misses good transfer candidate pairs which score a high discrepancy due to noise, the
termination process can drastically reduce the computational burden of this selection process. The
sensitivity can be adjusted by increasing β. At the end of this process, all source terms selected by this
scheme are combined into a training set ΦS.

2.6. Predictive modeling

Previous studies (Deng et al., 2020; Idowu et al., 2022; Liao andAhn, 2016) have demonstrated that deep-
learning-based approaches can capture complex relationships between data-streams, as is typical of
sensor data arising from engineering assets. In this case study, a basic feedforward deep multilayer
perceptron (MLP) model is adopted. Although this is only a basic architecture, it performs sufficiently
well for this demonstration. A detailed exploration of the capabilities of different deep learning archi-
tectures in this setting will be left for future work. A model is initially trained on the datasetΦS generated
during the previous step. It is subsequently fine-tuned to the target domain, by freezing the lower hidden
layers of the model and retraining the remaining layers on the target dataset. This is motivated by the fact
that it is expected that the source and target domains behave quite similarly at a coarse level (captured by
the lower layers of the network), in which higher layers are focused on finer-scale structure. Later, a
parametric study is presented to explore this in more detail.

Algorithm 1 Overview of transfer learning methodology

Input:
source domain DS xSi,ySið Þ;1≤ i≤ nð Þ.
target domain DT xTj,yTj

� �
;1≤ j≤m

� �
α significance level of two-sample test

Stage 1: Source and target partitioning
cS PELT DSð Þ,
cT PELT DTð Þ
KS ∣cS∣
KT ∣cT ∣.
uS1,…,uSKSð Þ partition of DS into segments.
uT1,…,uTKTð Þ partition of DT into segments.

Stage 2: Transfer candidate selection
P KSKT .
Φ¼fg.
z¼ z1,…,zPð Þ uSi,uTj

� �
;1≤ i≤KS,1≤ j≤KT

� �
Sort z in order of increasing discrepancy.
for us,ut in z: ⊳ two-sample test with significance α
pdr evaluate two-sample test p-value
if pdr ≤ α:
Φ¼Φ[ usf g

Stage 3: Create optimized training set
SΦ concatenate subsets in Φ to a training set
M define predictive model
MSΦ train model M on source dataSΦ
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Stage 4: Transfer weights to target domain
WSΦ extract parameters of predictive model MSΦ
MS0Φ transfer model parameters WSΦ to target domain
MS0ΦT retrain MS0Φ on target data xTj,yTj

� �
m
j¼1

n
Return: MS0ΦT predictive model after transfer learning

3. Method demonstration: Power plant case study

A nuclear power plant is a complex system of systems made up of interdependent, interconnected
subsystems such as the reactor core and primary and secondary cooling systems. Each of these subsystems
comprises different components; the latter are integral to the safe operation of the plant. The integrity of
the entire nuclear power plant facility could be compromised if any of these components fails. A thorough
understanding of each component of the nuclear power plant is required in order for the plant to operate
safely. To do this, in the context of condition monitoring and risk mitigation, having a real-time warning
system is crucial. A real-time warning system provides plant operators with support for decision-making
in complex environments (Mumaw et al., 2000).

Condition monitoring is used primarily to differentiate between normal and abnormal states. During
the operation of a nuclear power plant, it remains in a normal state most of the time. The occurrence of an
abnormal state is infrequent and brief, resulting in data from these periods being sparse and of low density.
Anomalies are essentially characterized by a sparse distribution and low density. Prevalent methods for
anomaly monitoring include distance-based, density-based, neighboring-based, and model-based.

Prediction methods in nuclear power plants consist of physical or data-based approaches. Physical
modeling is commonly used at different stages within the nuclear sector. On the other hand, for data-based
methods, following the remarkable achievements of neural networks in various industrial domains,
extensive research has been undertaken to employ neural networks in nuclear power plants. Applications
include passive system response surface modeling Solanki et al. (2020), evaluating the reliability of
instrumentation and control cables Santhosh et al. (2018), monitoring pipe thinning (Chae et al., 2020),
detecting component cracks (Chen and Jahanshahi, 2018), and diagnosing accidents and abnormal states
(Kim et al., 2020).

3.1. Rotating plant case study

In the context of asset management and condition monitoring within power generation environments,
sensor-derived data provides decision makers with timely insights into the health of their assets. The
availability of such health metrics allows those responsible for asset operations to consider extending the
lifespan of these assets, as suggested by Coble et al. (2015). This case study, which employs the
methodology suggested, utilizes time series data from a civil nuclear power plant. The plant design
features a secondary loop in which turbines generate power and water pumps facilitate the circulation of
the working fluid, as outlined by Dragunov et al. (2015). An illustrative diagram of the power plant is
presented in Figure 1. Sensors are strategically placed at various points on the pump casings to track
vibration levels, a critical factor in monitoring pump health. The deployment of these sensors, which are
relatively expensive, is intentionally focused on areas of the pump that are expected to be prone to
different failure modes (Coble et al., 2015). Keeping in mind industry standards, these vibration sensors
are designed to detect a frequency range from 0:2 times the lowest rotational frequency to approximately
3:5 times the highest frequency, according to the guidelines outlined in the study by ISO (2002).

In this paper, the focus is placed on a specific case study of rotating plant assets, specificallymain boiler
feed pumps, operating within a power generation scenario. The system under consideration consists of
two identical feed pumps denotedU1 andU2, which are operated independently on a rotational basis. The
state of the system is monitored through four vibration sensors, denoted S ið Þ� �4

i¼1, in addition to five other

Data-Centric Engineering e21-7

https://doi.org/10.1017/dce.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.3


sensor measurements directly related to pump operation: flow Q, velocity v, feed water inlet pressure Pin,
feed water outlet pressure Pout, and power station load lp. The vibration sensors are installed at four pump
casing locations along the drive chain shaft: turbine, gearbox, pressure stage drive end, and pressure stage
nondrive end. Vibration measurements across sensors capture any anomalies in the pump, including
mechanical looseness, rotational shaft distortion, andmachine unbalance. Sensor vibrationmeasurements
and the corresponding operational variables were recorded at 10-min intervals.

Our objective is to learn a predictive relationship between the operational features (Q, v, Pin, and Pout)
and the four vibration features. Given that the two pumps are operating in rotation, it is expected that they
encounter similar operational profiles, and so exhibit common performance characteristics. Discrepancies
in behavior will arise from wear, as well as past maintenance and part replacement. Figure 2 presents the
time series for a single vibration sensor for both the primary pump (U1) and the corresponding secondary
pump (U2). The objective is to apply transfer learning to leverage the information fromU1 to improve the
performance of a predictive model for the vibration profile of U2. Note that axis values have been
anonymized for sensitivity reasons.

Each pump operates in three distinct configurations: (1) normal state when the pump is online and
operating at normal capacity, (2) offline state when the pump is turned off for maintenance and
rehabilitation, and (3) in refueling mode where the pump operational speed is reduced (but still
operational) while fueling is performed (Costello et al., 2017). The key challenge related to this case
study is that there is no explicit indicator of operational state within the dataset. This is a common
challenge in prognostic health monitoring, where human-driven decisions and associated events are not
captured within the telemetry data used to provide decision support (Costello, 2019; Zio, 2022). Despite
the lack of an explicit state variable, the regime changes manifest in both the operational and vibration

Figure 1. Schematic of the nuclear power plant.

Figure 2. Time series for sensor s1 for primary (U1) and corresponding secondary pump (U2).
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measurements quite clearly, with periods of statistically stationary behavior punctuated by sudden shifts.
In particular, the evolution of operational states is tracked through structural shifts in (1) the mean of the
vibration measurements shifting between different states and (2) the variance of a given time series which
characterize the oscillations. As will be described in detail in later sections, change-point detection
methods are leveraged to automatically partition the telemetry data into distinct regimes.

3.2. Pre-processing of the dataset

The dataset consists of a multivariate time series with five operational variables and four vibration
monitoring variables. The operational variables are quite strongly correlated (see Figure 3), which
motivates the use of dimension reduction on these features. Principal component analysis is performed,
jointly on both the source and target datasets. Approximately 88% of the variance of the original input
feature space can be essentially captured by the first principal component. Hence, in subsequent analysis,
only the first principal component is used to represent operational features.

Figure 3. Correlation matrix of inputs (operational variables) and outputs (sensor vibration) for the
nuclear feed pump dataset.
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The raw time series vibration data is filtered in order to smooth the data and remove outliers to prepare
the data for the subsequent transfer methodology. This was done following the Savitzky–Golay
(SG) approach (Savitzky and Golay, 1964) as this approach was developed specifically for data related
to “continuous physical experiments.” Figure 4 shows example raw sensor data along with the best SG
filter. The best SG filter parameters in terms of window size and fitting polynomial order were selected
following a parametric study to best fit the multivariate time series.

4. Results

4.1. Implementation details

When applying the PELT change-point detection algorithm to the source (U1) time series, the scheme
identified KS¼ 95 segments. Figure 5(a) demonstrates the inferred partition of the source dataset.

After partitioning the source and target time series, an evaluation of pairwise discrepancies is
performed on every source–target pair. An illustration of the source–target distributions corresponding
to sensor S1 for the first eight source and target segments is shown in Figure 6. As expected, most pairs
exhibit significant differences between the source and target distributions, which can be observed visually.

A parametric study of statistical divergences was performed. Figure 7 shows a raster of the statistical
divergence between all source–target pairs for the first vibration sensor, with brighter (yellow) colors
denoting areas of greater dissimilarity (thus not likely candidates for transfer). In contrast, darker areas
(blue) denote pairs where a transfer is more appropriate. A shared characteristic pattern between the Total
Variation distance, Energy distance, Wasserstein metric and MMD distance is observed.

Figure 4. Filtering of raw time series from vibration sensor telemetry following the SG method.

Figure 5. Partitioning of the source time series data based on a change-point detection scheme for
sensor U1.
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A quantification and comparison of the potential of the different statistical distances considered to
effectively transfer information from the source to the target domain was carried out. Table 1 shows the
MAE associated with vibration predictions using the transfer learning methodology for different statis-
tical distances in an example test set for three random segments on the target domain, denoted by uT ,15,
uT ,50, and uT ,92. Let MT denote the control model, which consists of a deep neural network model with
randomly initialized weights, trained over the target domain without transfer learning. SinceMT does not
involve any information transfer from the source to the target domain, identical error levels are observed
for all statistical distances considered. The corresponding model with transfer learning is indicated by
MS0ΦT . The following observations can be made: (1) in our setting, Bhattacharyya, Kullback–Leibler,
Jensen–Shannon, and Rényi divergences demonstrated poor transfer learning potential; (2) strong
performance in terms of positive transfer learning potential observed for Total Variation, Energy,
Wasserstein, and MMD measures. In fact, not only is positive learning identified, but there is an
approximately 19–27% reduction in error. This result highlights the potential for positive transfer in
the proposed methodology.

Figure 6. Pairwise comparison of segment distributions between source and target domains.
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We also note that among the discrepancies considered, MMD has the advantage of being a robust
metric on probability measures (Briol et al., 2019), which means that it is not overly sensitive to the
presence of outliers in the distributions. This is highly beneficial in this context where telemetry data can

Figure 7. Heatmap representing statistical distances as measures of dissimilarity between source and
target pairs. Darker (blue) areas denote pairs where transfer is more appropriate.

Table 1. Similarity metrics’ MAE comparisons for control model and model utilizing transfer learning
for three example source–target pairs

Distance

uT ,15 uT ,50 uT ,92

MT MS0ΦT % ch MT MS0ΦT % ch MT MS0ΦT % ch

Total Variation 0.0219 0.0162 �26.14 0.0417 0.0284 �32.02 0.226 0.1823 �19.36
Bhattacharyya 0.0219 0.0162 �25.97 0.0417 0.0384 �8.01 0.226 0.2414 6.8
Kullback–Leibler 0.0219 0.0158 �27.67 0.0417 0.0384 �7.98 0.226 0.2414 6.8
Jensen–Shannon 0.0219 0.0223 1.89 0.0417 0.0385 �7.74 0.226 0.2414 6.8
Rényi 0.0219 0.0158 �27.8 0.0417 0.0384 �8.01 0.226 0.2414 6.8
Energy 0.0219 0.0162 �26.14 0.0417 0.0284 �32.02 0.226 0.1823 �19.36
Wassestein 0.0219 0.0162 �26.14 0.0417 0.0284 �32.02 0.226 0.1823 �19.36
MMD 0.0219 0.0162 �26.14 0.0417 0.0284 �32.02 0.226 0.1823 �19.36
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often be polluted with spurious values which would other result in a rejection of similarity between two
candidate distributions. Based on the above results, the MMD is adopted as the measure to identify
source–target pairs. Two-sampleMMD-based tests were performed using permutation resampling, with a
total of 2000 permutations for each test. The null hypothesis (i.e. that the source–target distributions are
equal) was rejected with a significance level α¼ 95%.

Figure 8 shows the convergence results for the transfer learning problem, which provides a measure of
the weight of each selected matching subset pair in both the source and target domains, starting with the
most important pairs with the highest weight (that is, the lowest statistical dissimilarity measure ofMMD)
and proceeding further with source–target pairs of lower weights, until the stopping criterion is met.
Figure 8 shows the weight change during iterations, with a cutoff of 1% adopted to stop the pair matching
algorithm.

The specific architecture parameters and model training hyperparameters were tuned using a Bayesian
optimization scheme, using a look-back window of size 20 (10-min) increments and a forecasting horizon
of size 10 (10 min). The following hyperparameter values were adopted: the number of epochs of
20,500f g, the mini-batch size of 8,16,32,64,128,256f g, and a learning rate in the range 0:0,0:01½ �, using

the Stochastic Gradient Descent algorithm. The optimal hyperparameters are listed in Table 2.

4.2. Sensitivity analysis to network parameters

4.2.1. Hidden layers
To understand the effect of the architecture in the context of transfer learning, a series of parametric studies
are conducted. Figure 9 shows the convergence results in terms of MAE for different numbers of hidden

Figure 8. Transfer of matching segments (a) joint density over DS, (b) joint density over DT, and
(c) relative change in the discrepancy.
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layers following a deepMLPnetwork architectures. Figure 9 also shows the percentage change inMAEof
the model with transfer learning compared to the control case, whereby a negative percentage change
indicates a decrease in the error of the model with transfer learning compared to the control case. On the
vertical axis of Figure 9, different data scarcity levels over the target domain are considered by artificially
imposing scarcity on the target data. For example, for a target data scarcity level of 0.3, only 30% of the
target data is considered, while completely disregarding the remaining target time series data. The
following observations can be made: (1) the transfer learning accuracy heavily depends on the deep
network architecture, whereby at higher number of hidden layers, only negative transfer is observed, with
the optimal number of hidden layers bound at around 25; (2) at sub-optimal number of hidden layers
(i.e. above 25) the model with transfer learning performs worse than the control model at all target data
scarcity levels, suggesting that negative transfer is occurring at higher network depths (i.e. beyond
25 hidden layers); (3) below the threshold of 25 hidden layers, the model with transfer learning performs
better than the control model essentially across most target data scarcity levels, suggesting positive
transfer is taking place; (4) moreover, the expected pattern of drop in error with higher data availability on
the target domain only manifests itself for higher number of hidden layers; and (5) finally, similar results
are observed between MSE and MAE measures.

4.2.2. Transferable layers
The specific manner in which the weights in the trained model are transferred from the source domain
model to the target is explored. Figure 10 shows the results of the transfer learning error in terms of MAE
for different transferable layers, for a constant number of hidden layers set at 25. Error results are also
obtained for a range of data scarcity levels imposed on the target domain. Based on Figure 10, the
following observations can be put forward: (1) for a fixed number of hidden layers set at 25, transfer of
higher level hidden layers reduces the magnitude of positive transfer; a possible explanation is that lower-
level hidden layers carry information on low-level data structure, while higher-level hidden layers carry
information on high-level data structure; (2) best performance observed when the information carried
from the source to the target domain focuses on transfer of low-level data structure as captured by lower-
level hidden layers, suggesting that the source and target domain data might share low-level data structure
as opposed to higher-level structure; (3) for a fixed number of hidden layers set at 25, at the optimal
number of transferred layers at 3=25, transfer learning models tremendously outperform control cases,
highlighting that positive transfer learning occurs in such settings; (4) similarly, the expected drop in error
with more target data availability as shown on the vertical axis only manifests itself for higher number of
transferable layers (i.e. 23/25); and (5) similar performance is observed in terms of MAE and MSE
metrics.

Table 2. Optimal model hyperparameters

Parameter Optimal value

batch_size 32
learning_rate 0.0075
num_hidden_layers 50
num_units 32
activation_function ReLU
lookback_window 200 min
forecast_window 100 min
optimization Stochastic gradient descent
distance_metric MMD
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Figure 9. Transfer learning error (MAE) for different network architectures (number of hidden layers).
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Figure 10. Transfer learning error (MAE) for different transferable layers.
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5. Conclusions

This work addresses the issues associated with applying transfer learning in a real engineering scenario.
The time series data commonly arising from a complex engineering asset is challenging to analyze and
model due to the inherent non-stationarity caused by the presence of different operating states, which
might not be explicitly characterized in the data.

The methodology proposed in this work seeks to leverage any additional information that can be
obtained from adjacent assets running under similar operating conditions through a careful transfer
learning process. The efficacy of the proposed methodology is demonstrated in real condition monitoring
data which have been obtained from a boiler feed pump in a civil nuclear power station, where two similar
pumps with differing data characteristics form the basis of the transfer learning problem.

The results obtained provide a positive indication that transfer learning can be applied to this
challenging condition monitoring setting, as long as specific considerations are taken into account when
developing and applying the transfer learning methodology. When conducted correctly, an engineer can
expect to achieve a substantial improvement in the predictive accuracy of associated conditionmonitoring
models. The results also demonstrate the need for careful consideration of the statistical discrepancy used
to identify similar source and target distributions. We note that the robustness properties of MMD play a
crucial role in enabling effective positive transfer from source to target. Some limitations of the work
contained herein have been identified and could be the focus of future work: (1) for the MMD statistic,
which was the statistical distance used to generate the bulk of the results presented herein, the hyper-
parameters of the kernel function were not optimized; MMD hyper-parameter tuning is an active research
area and falls beyond the scope of the current work; moreover, (2) the transfer learning methodology
proposed herein was only tested on two pumps that operate jointly within the same power station—future
work could further generalize the proposed approach to transfer additional information across more assets
from a fleet of power stations.
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