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Abstract: This paper addresses the critical challenges of inadequate localization and low
quantification precision in structural damage identification by introducing a novel approach
that integrates Dempster-Shafer (D-S) evidence theory with the Self-Adaptive Differential
Evolution (SDE) algorithm. First, modal parameters are extracted from a simply supported
beam using the finite element (FE) method, and the corresponding index values are com-
puted based on the formulated damage identification index equations. Next, these indices
are applied to analyze damage localization in both single-position and multi-position
scenarios within the simply supported beam. The SDE algorithm is then employed to
dynamically optimize the initial weights and thresholds of various algorithms, ensuring
the assignment of optimal values. Finally, the resulting data are input into the model for
training, yielding a prediction model with enhanced accuracy that can precisely estimate
the damage severity of the simply supported beam. The findings demonstrate that the three
proposed damage identification indices—DIy ; 5, DI, ; j, and DSDI; j—not only achieve high
accuracy in damage localization but also significantly improve the precision of algorithms
optimized by the SDE. These methods exhibit strong accuracy and robustness, providing a
valuable reference for damage identification in small-to-medium-span simply supported
beam bridges.

Keywords: bridge engineering; damage identification; curvature mode shape; Dempster—
Shafer evidence theory; self-adaptive differential evolution algorithm

1. Introduction

Inevitably, various factors can significantly impact small and medium-span simply
supported bridges. These factors include natural environmental erosion, traffic load effects,
and material aging during continuous service, all of which gradually lead to varying levels
of damage. The damage is typically distributed across different locations of the bridge
and can range in severity and form, from minor cracks to severe structural deformations.
However, traditional bridge inspection methods face significant challenges, including
limited accuracy, insufficient global and real-time capabilities, and substantial human
subjectivity, which often lead to delayed damage detection. If not addressed in a timely
manner, undetected damage can pose serious risks to the safety and functionality of the
bridge. Therefore, research on accurate damage identification for small and medium-span
simply supported beam bridges holds considerable practical importance.
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Among the existing damage identification methods, those based on dynamic fin-
gerprints are the most widely used. These methods include those that utilize natural
frequencies, flexibility matrices, modal strain energy, and curvature modes, among oth-
ers [1-4]. Among these, methods based on curvature mode indicators have garnered
significant attention from both domestic and international scholars. Since the proposal
of the curvature mode-based structural damage identification method by Pandey A.K.
et al. [5] in 1991, its effectiveness and practicality have been widely promoted and applied.
Although Ren X. et al. [6] introduced a wavelet difference indicator based on curvature
modes, which improves sensitivity to small structural damages, curvature mode-based
indicators still face issues such as large errors near displacement mode inflection points and
reduced stability in higher-order curvature modes. These higher-order modes, although
more sensitive to small damages, offer lower stability in damage identification.

To address these challenges and ensure comprehensive and accurate judgments, many
researchers have introduced data fusion techniques to develop novel approaches for struc-
tural damage identification. For example, Huang T. et al. [7] proposed a structural damage
identification method based on convolutional neural networks (CNNs) and data fusion to
overcome the low accuracy in damage identification for complex frame structures. Jaramillo
V.H. et al. [8] proposed a two-stage Bayesian inference data fusion method for structural
damage identification to address the difficulty of diagnosing the health status of compo-
nents in rotating machinery. Despite these advances, data fusion still faces limitations in
quantifying damage levels.

In recent years, artificial intelligence (Al) algorithms have been widely adopted for the
quantitative prediction of structural damage. For instance, Sadeghi E. et al. [9] proposed a
damage quantification method by combining modal strain energy change ratios (MSECRs)
with a general regression neural network (GRNN). Addressing the challenge of limited
data availability, Li M. et al. [10] proposed a damage identification method using strain
mode differences as input for CNNs. To enhance algorithm iteration speed and accuracy in
structural damage quantification, Miao B. et al. [11] proposed a method using multi-scale
wavelet coefficient modulus maxima as input for BP neural networks. To improve structural
damage detection accuracy from sensor-collected data, Ghiasi R. et al. [12] proposed an
optimized method using a social harmony search algorithm for the parameters of the least
squares support vector machine and thin-plate spline wavelet kernels. Yan B. et al. [13]
proposed a combined structural damage identification method based on support vector
machines (SVMs) and BP neural networks to address the challenge of manually detecting
early cracks in offshore platform support beams.

While the aforementioned algorithms have shown strong performance in structural
damage quantification, BP and SVM algorithms still face challenges such as local optima,
low diagnostic accuracy, and slow convergence in structural damage analysis. Although D-
S evidence theory has been preliminarily applied to structural damage identification, extant
methodologies exhibit two shortcomings: (1) Current D-S evidence theory implementations
treat modal features as equally reliable inputs, overlooking their potential for conflict,
which leads to an increase in error rates; and (2) many studies use D-S evidence theory as a
post-processing fusion layer, lacking bidirectional interaction with upstream Al models,
resulting in suboptimal noise immunity. To overcome the limitations of curvature modes,
D-S evidence theory, BP, and SVM algorithms, this paper introduces three structural
damage identification indicators (DI ;;, DI, j, and data fusion indicator DSDI; ;) based on
curvature modes and D-S evidence theory. Additionally, the SDE-optimized BP and Support
Vector Regression (SVR) algorithms are applied. Finally, the method is validated through
numerical and experimental examples involving simply supported beams, demonstrating
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its effectiveness in location identification, damage quantification, and noise resistance under
various damage conditions.

2. Basic Concepts and Definition of Damage Indicators
2.1. Curvature Modal

According to the theory of material mechanics, the curvature function at any point on
a beam’s cross-section is given by the following:

az(Pj(x) . M,
9x2  El(x)

Qlx,y) = 1)
where Q(x,y) denote the curvature function at a point with coordinates (x,y) at a specific
instant, and let M, represent the bending moment at point x.

By combining Equation (1) and the small deflection theory, the structural curvature
function can be rewritten as follows:

Q) = gy = Lo (9m() @

where g;(t) refers to the modal coordinate as a function of time ¢, and 4)}' (x) denotes a
specific curvature mode of the structure at point x.

From Equations (1) and (2), it can be observed that the curvature modes change with
variations in the beam’s stiffness and are highly sensitive to structural damage. Addition-
ally, there is a one-to-one correspondence between curvature modes and displacement
modes [14].

2.2. Definition of Damage Indicators

Due to the absence of sensors capable of directly measuring the structural curvature
response and the relative ease of obtaining displacement modes, the central difference
method is employed to indirectly calculate the curvature modes before and after structural
damage. The expression is as follows:

" bij-1,d = 2Pija + Pijr1,d
Pa= 5 3)

" (Pi,j—l,u - Z(Pi,j,u + ¢i,j+1,u
‘Pz’,j,u = 2 (4)

where 4)1’ ;4 Tepresents the i-th curvature mode at point j when the structure is damaged,
4)1" ju Tepresents the i-th curvature mode at point j when the structure is undamaged, ¢; ;4
represents the i-th displacement mode at point j when the structure is damaged, ¢;;,
represents the i-th displacement mode at point j when the structure is undamaged, j
denotes the structural node number, and # represents the total number of structural nodes.

To avoid cancelation of the positive and negative curvature modes at each node during
summation, the absolute values of the curvature modes at each node are taken. The weights
of the modal curvature at the j-th node before and after damage, in the i-th mode, in the
overall structural modal curvature, are given by Equations (5) and (6), respectively. The
expression is as follows:

(5)
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(6)

n
where ) ‘(i);-' j d‘ represents the sum of the absolute values of the i-th curvature mode at
f=10e%

represents the sum of the absolute

1
¢i,j,u

values of the i-th curvature mode at point j of the structure in its undamaged state.

n
point j when the structure is damaged, and Y
j=1

Therefore, the sum of the overall structural damage index F;; ; and the undamaged
index F;;, equals 1, as expressed by the following:

Eija Z Fijd ?)
n

Eiju=Y Fju=1 (8)
=1

Dividing Equation (5) by Equation (6) results in Equation (9), where the value is less
than or equal to 1 when the structural element is undamaged and greater than 1 when the
structural element is damaged.

Fija
$Lij = F

i,j,u

©)

The strain energy U for a one-dimensional Euler—Bernoulli beam structure can be
expressed as U. If the beam is divided into n equal segments, the strain energy in the m-th
segment is expressed as U,;, with the following expression:

U =) (ED;()) (10)
i=1
Un = 2 (ED) ()’ )

Based on the assumptions of Euler-Bernoulli beam theory, including no torsion and
small deflection assumptions, the bending stiffness EI of the beam’s cross-section is approx-
imately constant along the length of the beam, thus,

um,u ((P;ﬂ 11)2

Fm,u = = - (12)
YL g
Y
um m
Fpa = u,d _ n(‘/’ ',‘,i) : (13)
X (Py,a)

i=1

Dividing Equation (13) by Equation (12) results in Equation (14), as expressed by
_ F m,d

$2ij =

mu

(14)

When using the two indicators ¢ ;; and ¢, ;; to identify structural damage, certain
limitations arise. First, significant errors may occur near the inflection points of the dis-
placement mode. Second, high-order curvature modes exhibit lower stability in damage
detection compared to low-order modes and are more sensitive to minor damages.



Symmetry 2025, 17, 465

50f20

To address the first limitation, the frequency w; ; during structural damage is intro-
duced as a weighting factor. This frequency-based weighting mechanism assigns higher
priority to low-order curvature modes and lower priority to high-order modes, reflecting
their distinct sensitivities to damage. Low-order modes dominate structural vibration
energy and exhibit greater stability in global damage detection, whereas high-order modes,
while sensitive to localized damage, are prone to noise amplification and numerical insta-
bility. The expression is the following:

P1,ij

Ul,;; = 52 (15)
Wi g
P2

UIZ,i,j = 21 / (16)
Wi g

Let w; ; denote the frequency of the i-th mode of the structure when damaged, where i
represents the 1st, 2nd, and 3rd modes.

To address the second limitation, multiple modes (specifically, the first three modes) are
incorporated to enhance the indicators, thereby improving damage detection performance.
The expression is as follows:

n

Fhj=) Ul (17)
i=1
n

Fhj=) Ub;, (18)
i=1

Due to the lack of comparability between the indices derived from the above formulas,
normalization is applied to the data obtained from Equations (17) and (18) to express each
data point as a ratio relative to the total sum. The summation normalization method is
selected for this purpose [15]. Consequently, the expressions for the first two damage
identification indices (damage index, DI) are provided as follows:

Fly;;i
Dh;j = — (19)
FIl,i,j
j=1
Fly; ;i
Dh;j= (20)
Y. Fh;
j=1

The Dempster-Shafer (D-S) evidence theory, introduced in the 1960s, is a method used
to express and synthesize uncertain information for decision-level information fusion [16,17].
Let m;(A;) represent the basic probability distribution function used to determine the damage
of the i-th element based on the j-th damage index. The D-S evidence matrix fusion rule is

given by the following:
ﬁA'=A1<I/_'I<n mj(Ai)
D(A) = g A#D 1)
0 A=0

In the equation, K= Y [ m;(4)).
NA;=92 1§]§n
To enhance the accuracy of structural damage identification, data fusion is integrated
with damage identification indices, resulting in the proposed damage identification index
DSDI;; based on D-S evidence theory. The steps involved in the D-S evidence fusion

method are illustrated in Figure 1.
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Figure 1. Dempster—Shafer evidence fusion method.
2.3. Optimizing the BP and SVR Using a Self-Adaptive Differential Evolution Algorithm
2.3.1. Backpropagation Neural Network

A BP neural network generally consists of an input layer, an output layer, and one or
more hidden layers, and its expression is as follows:

m

y]-:(T(Zx,'Xwi,j+bj>,(j:1/2/"'/”) (22)
i=1
n

zk=o<2wij,k+bk>,<k:1,z,-~,p> @)
i=1

where m, n, and p represent the number of neurons in the input layer, hidden layer, and
output layer, respectively. o denotes the activation function, N represents the number of
training samples, x; stands for the input value, y; denotes the output value of the hidden
layer, z; is the output value, the weights are denoted as w;; and wj, and the biases as b;
and by.

2.3.2. Support Vector Regression Method

Support vector machine (SVM), grounded in statistical theory, is primarily used to
address binary and multi-class classification problems. Complementing SVM, Support
Vector Regression (SVR) is employed to solve regression problems. Within the SVM and
SVR frameworks, the selection of the kernel function is crucial, as it directly influences the
model’s predictive performance and generalization ability. In this study, the Radial Basis
Function (RBF) kernel is selected as the core kernel function, and its expression is given
as follows:

Krpr(xi, x) = eXP(—’YHxi - tz) (24)

1
ﬁ .
The kernel function in the original space is utilized to perform calculations in the high-

where 7 is the kernel parameter, v =

dimensional feature space, which subsequently leads to the decision regression equation of
the SVM.

(af —aj)K(xj,x)+Db (25)

™=

y=fx)=

1

where bi =VYi— i (Dci - a?)K(Xi,X]‘) +e, B = %i bi-
i=1 i=1
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2.3.3. The Differential Evolution Algorithm

Differential Evolution (DE) is a heuristic optimization algorithm based on real-valued
encoding and elitist principles. Initially introduced by Storn and Price in 1997, DE has
evolved into one of the most widely used methods for solving complex optimization
problems [18]. Compared to other algorithms, DE offers several advantages, including
high optimization efficiency, fast convergence, fewer control variables, and robust perfor-
mance [19]. The main components of the DE algorithm include mutation, crossover, and
selection operations.

2.3.4. The SDE-BP and SDE-SVR Algorithms

In traditional Differential Evolution (DE) algorithms, the mutation factor controls the
amplification ratio of the deviation vector. A mutation factor that is too large can negatively
impact the global optimum, while a factor that is too small may reduce population diversity,
leading to “premature convergence” [20]. In contrast to traditional methods, the SDE
algorithm dynamically adjusts mutation factors to balance exploration and exploitation.
Early iterations use larger mutation factors to enhance population diversity, reducing the
risk of converging to local minima. Later iterations adopt smaller factors to refine solutions.
To address these issues, this paper introduces an adaptive mutation factor. The adaptive
mutation factor is determined by Equations (26) and (27) [21].

F:Fmin+(Fmax_Fmin) X A (26)

1—_Gm
A=e CmflC (27)

where F,;, represents the minimum value of the mutation factor, Fj;,, represents the
maximum value of the mutation factor, G, represents the maximum number of iterations,
and G represents the current generation of evolution.

Therefore, this paper proposes a method for predicting structural damage severity
based on SDE-optimized BP and SVR algorithms. The optimization process of the SDE
algorithm for BP and SVR is illustrated in Figures 2 and 3.
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Figure 2. SDE-BP flowchart.
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Figure 3. SDE-SVR flowchart.

3. Surrogate Model of a Simply Supported Beam

As illustrated in Figure 4, a rectangular-section simply supported beam is modeled
using the finite element method (FEM) for numerical simulation analysis. The beam has
a length of L = 20.00 m and section dimensions of b x h = 0.20 x 0.30 m?. The material
properties are as follows: Young’s modulus E = 210 GPa, Poisson’s ratio v= 0.30, and density
of p = 8000 kg/m?>. Beam188 elements are employed, and the beam structure is discretized
into 25 elements and 26 nodes with equal intervals of 0.8 m. Due to the challenges in
extracting higher-order modes in practical engineering, this study focuses on the first three
modes of the structure.

1 2 3
[1f2]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

23145678 ]9lio]i1]i2]i3]14f15]16]17]18]19[20]21]22]23]24]25]

i)

Figure 4. Finite element model of simply supported beam.

Damage to the beam is simulated by reducing the stiffness of selected elements. This
study investigates beam damage under various scenarios, including single-location, two-
location, and multi-location damage conditions. The specific damage scenarios are detailed
in Table 1. Conditions 1-10 represent different levels of single damage, with damage levels
of 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%. Conditions 11-15 represent combinations
of two damages with varying levels of 10%, 15%, 25%, 30%, 35%, and 40%. Conditions
16-20 represent combinations of multiple damages with levels of 10%, 15%, 20%, 25%, 30%,
35%, and 40%.
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Table 1. The criteria for detecting damage in simply supported beams.

Damage Condition

Damage Element No.

Damage Index

Damage Degree (%)

1,2,3,4,5
6,7,8,9,10
11,12
13,14, 15
16,17

18,19, 20

5
9
5-17
13-17
9-13-17

9-13-21

DIU,]' , DIZ,i,j , DSDIL]'
DIy ;j, Dl;j, DSDI;
DILL]' , DI2,i,j , DSDIL]'
DIU,]' , DIZ,i,j , DSDIL]'
DIy ;j, Dl;j, DSDI;

DIl,i,j , DIZ,i,j p DSDIL]'

10, 15, 20, 30, 40
5,10, 25, 35, 40
10-30, 4040
15-15, 25-35, 30-30
10-20-30, 15-25-35
15-15-15, 25-25-25,
40-40-40

Table 2 presents the first three modal frequencies for selected undamaged and dam-

aged conditions. Figure 5 shows the first three mode shapes of the undamaged simply

supported beam.

Table 2. Frequency of some cases.

Damage Condition

Frequency

1st-Order Frequency

2nd-Order Frequency

3rd-Order Frequency

Non-DC
DC1
DC2
DC3

1.7468
1.7428
1.7415
1.7400

7.0401
6.9855
6.9707
6.9543

16.0408
15.8230
15.7840
15.7410
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Figure 5. Modal shape cloud diagram. Non—damage case: (a) 1st order mode; (b) 2nd order mode; and (c) 3rd order mode. Damage case: (d) 1st order mode;
(e) 2nd order mode; and (f) 3rd order mode.
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4. Damage Identification of a Simply Supported Beam
4.1. Damage Localization of a Simply Supported Beam

Existing studies have demonstrated that data fusion, as an advanced technique for
processing multi-source information, plays a crucial role in structural damage identification.
Specifically, in damage diagnosis, integrating multiple local diagnostic results using D-S
evidence theory enhances the credibility of true faults, reduces the credibility of false faults,
decreases uncertainty, and improves diagnostic accuracy, thereby providing strong support
for structural health monitoring [22]. Therefore, this section presents numerical simulations
of a simply supported beam under various damage scenarios. The indicators DIy ;;, DI, ;,
and DSDJ;; are then calculated for damage localization analysis, with the results shown
in Figures 6-9. In practical engineering applications, due to the greater contribution of
low-order modes to structural vibration and the challenges in obtaining high-order modes,
this study focuses on the first three modal data of the simply supported beam structure.

—e—DC5

o x N x o x10°
. $7.2 £90
5. X ° E6a Egﬁs
3 72
3 44 > 556 B66
; 7\ z 260
£4 . Eas 54
ettt 2 248
Y a0 242
Saeb v 0 Faolo o o o ] R
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Node No. Node No. Node No.

(a) DIui; (b) DIz (c) DSDIj

Figure 6. Damage identification under operating Conditions 1—5.
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Figure 7. Damage identification under operating Conditions 6—10.
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Figure 8. Damage identification under operating Conditions 11-15.
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Figure 9. Damage identification under operating Conditions 16—20.
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From Figures 6-9, the following observations can be made:

(1) Single Damage Scenarios: The indicators DI, ;j, DI, ; j, and DSDI;; accurately identify
the damage location, with the peak value occurring at the damage site. As the damage
increases, the severity also rises proportionally. All three indicators effectively reflect
the severity of the damage qualitatively.

(2) Comparing Damage Locations: When the same level of damage occurs at different
locations, the peak values at each damage site are nearly identical. The DSDI;;
indicator exhibits the largest peak, followed by DI ; ;, with DI ; showing the smallest
peak. All indicators provide an initial assessment of the relative damage levels at the
affected elements.

(3) Multiple Damage Scenarios: In cases of multiple damage scenarios, when different
elements undergo varying or identical levels of damage, the damage indicators remain
unaffected by the different damage levels or units.

(4) Comparison with Curvature Mode Indicators: When comparing the damage identifi-
cation results, DI ;5, DI ; ;, and DSDJ; ; all outperform the curvature mode indicators.
They effectively address the large errors near displacement mode inflection points
and the lower stability of higher-order curvature modes compared to lower-order
modes, demonstrating superior performance in damage identification.

(5) Integration Using D-S Evidence Theory: After integrating multi-source information
with D-S evidence theory, the peak values of the damage locations are significantly
enhanced, and interference from non-damaged locations is effectively suppressed.
This integration substantially improves the accuracy of damage identification. It
overcomes the limited sensitivity of the first two indicators in detecting minor damage
and constructs the high-accuracy DSDJ; ; indicator, providing a more reliable reference
for structural damage identification.

In conclusion, the structural damage identification indicators DIy ;;, DI, ; j, and DSDI;
can accurately locate damage within the structure. The latter indicator (DSD]; ;) shows more
pronounced peak values at damage sites compared to the former, and all three indicators
can preliminarily assess the severity of damage at the affected nodes.

4.2. Influence of Measurement Noise

Structural damage identification in practical engineering is often influenced by various
sources of noise, such as environmental factors and measurement errors. To align closely
with real-world engineering scenarios, a noise robustness analysis is performed on the
simply supported beam to assess the resilience of the proposed method. Given that noise
levels in most engineering projects, particularly in controlled structural health monitoring
systems, typically range between 1% and 2% due to sensor precision and environmental
interference, this study examines noise robustness by adding 1% and 2% Gaussian white
noise to the modal data [10,22]. Due to space limitations, this paper focuses on analyzing
the two-position damage scenarios (Conditions 11-15) of the simply supported beam. The
damage identification results under different noise levels are presented in Figure 10.

From the results in Figure 10, the following observations can be made:

(1) Noise Impact on Damage Indicators: As shown in Figures 8c and 10a, after intro-
ducing noise to nodes 5 and 6 in Condition 11, the peak probabilities of the damage
identification indicators (DI ;, DI, ; 5, and DSDJ; ;) at the damage locations slightly de-
crease, while the peak probabilities at non-damaged locations increase. This suggests
that noise negatively affects the performance of the indicators in damage recognition.

(2) Comparison of Indicators’ Noise Robustness: As depicted in Figure 10a,b, for indicator
DI, ;j, the peak values at nodes 5 and 6 in Condition 11 before noise introduction are
0.039805 and 0.039625, respectively. After adding 1% noise, these values decrease to
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0.039284 and 0.039427, respectively. For indicator DI, ;;, under the same condition,
the peak values before noise addition are 0.041058 and 0.040685, respectively, and,
after adding noise, the values become 0.040687 and 0.040517. Therefore, the noise
robustness of DI ;; is stronger than that of DIy ;, although both indicators exhibit
consistent damage recognition performance.

(38) Impact of D-S Data Fusion: As shown in Figure 10c,d, compared to before fusion,
the DSDI;; indicator after D-S data fusion exhibits a higher peak probability at the
damage location under the same damage and noise conditions, with less sensitivity to

noise interference.
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Figure 10. Noise damage identification of indicators for simple supported beam bridge under
Conditions 11-15: (a) identification of indicator DIy ;; under 1% Noise Conditions 11-15 damage
identification; (b) identification of indicator DI, ;; under 1% Noise Conditions 11-15 damage identifi-
cation; (c) identification of indicator DI ;; under 2% Noise Conditions 11-15 damage identification;
and (d) identification of indicator DSDJ;; under 2% Noise Conditions 11-15 damage identification.

4.3. Damage Quantification of a Simply Supported Beam

From the above analysis, it can be seen that the damage identification indicators
constructed in this paper can preliminarily determine the damage location and its severity,
but it is difficult to accurately predict the exact level of damage at the corresponding
locations. Regarding the prediction of damage severity, this paper proposes to optimize the
damage identification methods of BP and SVR algorithms by introducing SDE.

A total of 36 x 25 data points are selected from the sample data as training data
and 10 x 25 data points as test data. In the Matlab R2021b environment, models for BP,
SVR, DE-BP, DE-SVR, SDE-BP, and SDE-SVR are established. The training data are input
into each respective model, which learns the relationship between the peak values of the
damaged elements and their corresponding damage degrees. The models for BP, SVR,
DE-BP, DE-SVR, SDE-BP, and SDE-SVR are trained to develop predictive models. The three
indicators, DI, j;, DIy ;;, and DSDJ; j, are validated for their quantitative performance in
identifying single-point, two-point, and multi-point damage in simply supported beams
across different algorithms. The training and test sets after partitioning are shown in
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Tables 3 and 4, while the detailed analysis results can be found in Figure 11 and Tables 5-7.
Due to space constraints, only the convergence curves of DE and SDE when optimizing
SVR for the DSDI;; indicator are analyzed, as shown in Figure 12. For the convenience of
model training, the central difference method is employed to convert the calculated node
values into element values [23].

Table 3. The condition for the quantitative training set of simply supported beam damage.

Damage Condition Damage Element No. Damage Degree (%)

1-8 5 5,10, 15, 20, 25, 30, 35, 40
9-16 9 5,10, 15, 20, 25, 30, 35, 40
1724 13 5,10, 15, 20, 25, 30, 35, 40
25-32 17 5,10, 15, 20, 25, 30, 35, 40

41 5-17 10-30

42 5-17 25-35

44 9-13-17 10-20-30

45 9-13-17 15-25-35

Table 4. The quantitative testing of damage for a simply supported beam under specified conditions.

Damage Condition Damaged Element No. Damage Degree (%)
33-40 21 5,10, 15, 20, 25, 30, 35, 40
43 9-13 30-30
46 9-13-21 35-35-35
0.5 0.5 0.5
- Actual - Actual - Actual
BP BP BP
04 F SDE-BP 0.4 SDE-BP 0.4 SDE-BP
SVR SVR SVR
8 I SDE-SVR 8 I SDE-SVR 8 I SDE-SVR
£00.3 £00.3 £00.3
cg‘}()l F cg‘}()l F Cg‘}O.Z F
e} e} e}
Ll Ll Lol
IV 1)) DA DACACA AR V1AL DLOLELDLL IR LA
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Element No. Element No. Element No.
(a) DILij (b) DL2ij (c) DSDIi;
Figure 11. Prediction diagram of damage degree.
Table 5. Damage prediction error of BP and SVR algorithms.
BP Algorithm SVR Algorithm
Damage Index
MAE RMSE Accuracy Rate MAE RMSE Accuracy Rate
DI ;i 0.08582 0.10536 63.55% 0.07004 0.09364 73.23%
DL 0.07013 0.09363 73.23% 0.06408 0.08763 74.69%
DSDI;; 0.03475 0.04545 81.82% 0.04293 0.05695 80.95%
Table 6. Damage prediction error of DE-BP and DE-SVR algorithms.
DE-BP Algorithm DE-SVR Algorithm
Damage Index
MAE RMSE Accuracy Rate MAE RMSE Accuracy Rate
DI 0.05901 0.07082 76.93% 0.06145 0.07217 75.26%
DL 0.04351 0.06867 81.34% 0.04496 0.06921 79.68%
DSDI;; 0.03982 0.04603 85.29% 0.04054 0.04958 83.55%
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Table 7. Damage prediction error of SDE-BP and SDE-SVR algorithms.
SDE-BP Algorithm SDE-SVR Algorithm
Damage Index
MAE RMSE Accuracy Rate MAE RMSE Accuracy Rate
DI 0.01926 0.02576 89.98% 0.04245 0.05176 82.56%
DL 0.01662 0.01815 92.26% 0.04081 0.04892 84.34%
DSDI;; 0.00628 0.00693 96.54% 0.02036 0.02685 88.57%
Ax107!
—— DE-SVR Algorithm
8.0 —— SDE-SVR Algorithm

Objective function MSE

6.0 1

4.0

T T T

T
0 4 8 12 16 20 24
Max FE

Figure 12. Convergence curve of SDE and original DE algorithms for tuning parameters of
SVR model.

To effectively assess the recognition performance of different algorithms under varying

damage conditions, this study selects the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) as evaluation metrics. The corresponding formulas are as follows:

@

@)

®)

1, .
MAE = ) | = yil (28)
i=1
1&, .,
RMSE = [~} (4; = vi)? (29)

i=1
In the equation, y; denotes the actual value, while 1j; represents the predicted value.
As shown in Figures 11 and 12 and Tables 5-7,

The performance of the BP and SDE-BP algorithms on the damage identification
indices DIy ;;, DI, ;;, and the data fusion index DSDI;; demonstrates that SDE-BP
significantly outperforms BP. Specifically, the accuracy of SDE-BP for DI, ;; increased
from 63.55% to 89.95%, with the MAE and RMSE reduced to 0.01926 and 0.02576,
respectively. For DI,;;, accuracy improved to 92.26%, with the MAE and RMSE
decreasing to 0.01662 and 0.01815. For DSDI;;, accuracy reached 96.54%, with the
MAE and RMSE reduced to 0.00628 and 0.00693. Similar enhancements were observed
in SVR neural networks following SDE optimization, confirming the generalized
efficacy of the SDE framework for algorithmic improvement.

A comparison of predicted and actual damage severity values using BP and SVR
reveals significant fluctuations in relative error, indicating suboptimal prediction per-
formance. However, after SDE optimization, the relative error stabilizes considerably,
further validating the effectiveness of the SDE optimization algorithm.

A comprehensive comparative evaluation of six machine learning architectures (SDE-
BP, SDE-SVR, DE-BP, DE-SVR, BP, SVR) reveals that the proposed SDE-BP framework
demonstrates superior predictive capability across all evaluation metrics (DI ;;, DIy i,
DSDI;), achieving peak accuracy values of 89.98%, 92.26%, and 96.54%, respectively.
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Although optimization occasionally results in lower accuracy for different indicators,
the optimized algorithm generally outperforms the SDE pre-optimized version in
terms of accuracy when evaluated on the same indicator.

(4) The adaptive mutation operator in SDE enables dynamic balance between global
exploration and local exploitation. This contrasts with DE’s fixed mutation strategy,
which exhibits slower convergence and higher probability of premature convergence
to suboptimal solutions.

(5) SDE-SVR achieves convergence in 21 iterations (RMSE = 0.02685) compared to DE-
SVR’s 25 iterations (RMSE = 0.04958), representing 16.00% faster convergence rate and
5.67% higher final accuracy (88.57% vs. 83.55%). These metrics collectively demon-
strate significantly enhanced optimization efficiency through SDE implementation.

To comprehensively evaluate the robustness and efficiency of the SDE-optimized
models, this study compares their performance with XGBoost (XGB), convolutional neural
networks (CNN), and Long Short-Term Memory Networks (LSTMs). The evaluation con-
siders key metrics, including the MAE, RMSE, accuracy rate, training time, and prediction
time. The results are summarized in Table 8.

Table 8. Comparison of the performance of SDE-optimized models against other algorithms.

DSDI;
Algorithms . A .
MAE RMSE Accuracy Rate Training Time (s) Prediction Time (s)

XGBoost 0.02315 0.03041 86.92% 250.25 0.12
CNN 0.01987 0.02458 90.35% 480.73 0.22
LSTM 0.01894 0.02372 91.57% 520.89 0.35
SDE-SVR 0.02036 0.02685 88.57% 380.42 0.18
SDE-BP 0.00628 0.00693 96.54% 360.83 0.15

(1) The SDE-optimized models (SDE-BP and SDE-SVR) exhibit superior performance
in terms of the MAE and RMSE. Specifically, SDE-BP achieves an exceptionally low
MAE of 0.00628 and RMSE of 0.00693, whereas XGBoost yields significantly higher
errors (MAE = 0.03041, RMSE = 0.02315), indicating reduced accuracy in damage
identification. Regarding classification accuracy, SDE-BP attains 96.54%, outperform-
ing CNN (90.35%) and LSTM (91.57%). Although CNN and LSTM improve upon
XGBoost, their longer training times remain a drawback.

(2) In terms of training time, SDE-BP completes training in just 360.83 s, substantially
faster than LSTM (520.89 s) and the CNN (480.73 s). SDE-SVR also performs efficiently,
requiring 380.42 s for training and just 0.18 s for prediction, striking a favorable
balance between accuracy and computational cost. In contrast, the CNN and LSTM
demand significantly higher computational resources, with training times of 480.73 s
and 520.89 s, respectively.

4.4. Sensitivity Analysis and Computational Efficiency
4.4.1. Sensitivity Analysis

To evaluate the impact of different threshold values in the fusion process on the
accuracy of damage identification, a sensitivity analysis of the threshold values in the
fusion process was conducted. The threshold values were systematically varied within a
defined range, and the damage identification process was re-run for each value using the
same experimental data.

The results of the sensitivity analysis indicate that the accuracy of damage identifi-
cation is sensitive to the choice of threshold values. Specifically, lower threshold values
increased the sensitivity to minor damage but also increased the risk of false positives.
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Higher threshold values improved the robustness of the method by reducing false positives
but slightly decreased the sensitivity to minor damage. An optimal threshold value pro-
vided a good balance between sensitivity and robustness, achieving the highest accuracy in
damage identification.

4.4.2. Computational Efficiency and Accuracy

The SDE-optimized models (SDE-BP and SDE-SVR) exhibit significantly higher ac-
curacy in damage identification, as shown in Tables 5 and 7. However, this enhanced
accuracy comes at the expense of increased computational time. As illustrated in Table 9,
the SDE-optimized models require more time for training compared to the non-optimized
models. Specifically, the training time for SDE-BP and SDE-SVR is approximately three
times longer than that for BP and SVR, respectively. This additional computational time
primarily results from the iterative optimization process of the SDE algorithm, which
dynamically adjusts model weights and thresholds to optimize performance. In terms
of prediction time, the SDE-optimized models also show slightly longer prediction times
compared to the non-optimized models. However, the difference in prediction time is
relatively minor and may not pose a significant concern in many practical applications.
Therefore, the trade-offs between computational efficiency and accuracy must be carefully
considered when selecting the appropriate model for structural damage identification.

Table 9. Computational time for different models.

Model Training Time (s)  Prediction Time (s) Accuracy Rate
BP 121.73 0.10 81.82%
SVR 135.26 0.11 80.95%
SDE-BP 360.83 0.15 96.54%
SDE-SVR 380.42 0.18 88.57%

5. Experimental Validation
5.1. Experimental Setup

To assess the applicability of the proposed method in engineering applications, this
study selected Q500 steel plate beams as the primary subject. Due to experimental con-
straints, the focus is on evaluating the damage location identification performance of the
indicators DIy jj, DI, ; j, and DSDI; j, rather than performing quantitative prediction analysis.
Experimental Parameters: The steel plate beam has a total length of L = 2350 mm and a
cross-sectional dimension of b x h =100 x 8 mm?. The beam is divided into 35 elements
and 36 nodes within a span of 1750 mm, using a reference length of 50 mm. The density is
p = 7698 kg/m?3, and the elastic modulus is E = 2.0795 x 10% KN/m?.

Experimental Setup: The experimental equipment includes NV9812 piezo-resistive
accelerometers, a YFF-1-64 impact hammer, a DLF-8 signal amplifier, Coinv DASP MAS
modal and dynamic analysis software, an INV360U data acquisition system, a 220 V
AC UPS voltage stabilizer, and a Dell laptop. The layout of the testing system and data
acquisition, along with the accelerometer placement, is illustrated in Figures 13 and 14.

The experimental damage was simulated by symmetrically cutting the steel beam to
represent various damage scenarios. The actual cutting configuration of the beam is shown
in Figure 15, with a cutting width of 10 mm. The corresponding damage locations are
provided in Table 10.
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Figure 14. Layout diagram of acceleration sensors.

Figure 15. Cutting method.

Table 10. Damage conditions of simply supported steel beams.

Damage Condition Location of Damage and Depth of Cut Damage Degree (%)
DC1 Non-Damage Condition 0
DC2 30 cm and cut 2.5 cm 50
DC3 50 cm and cut 2 cm, 125 cm and cut 2.5 cm 40, 50
DC4 45 cm, 87.5 cm, 130 cm and cut 2 cm 40, 40, 40

5.2. Experimental Results

As shown in Figure 16,

(1) The damage identification indicators DIy ; 5, DI, ;;, and DSDI;j can accurately detect
varying levels of damage at different locations on the experimental beam, including
single, two-point, and multi-point damage scenarios. Furthermore, the damage

severity is positively correlated with the peak value.

(2) After D-S data fusion, the peak value probability at the damage locations in-
creased, while the peak interference at non-damaged locations decreased. At non-



Symmetry 2025, 17, 465 19 of 20

damaged positions, fluctuations in the peak value were observed to varying ex-
tents, possibly due to environmental factors, measurement errors, or other influenc-
ing variables. However, these fluctuations did not significantly affect the damage
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Figure 16. Identification of test conditions for steel plate girder: (a) damage identification for
condition 2; (b) damage identification for condition 3; and (c) damage identification for condition 4.

6. Conclusions

This paper proposes a structural damage identification method based on data fusion
and SDE algorithm optimization, grounded in the fundamental concepts of curvature
mode, D-S evidence theory, and the Differential Evolution algorithm. Through numerical
simulations and experimental validation on a simply supported beam, the following
conclusions are drawn:

(1) The proposed indicators DIy ;;, DI, ;;, and DSDI;; accurately identify single-location
and multi-location damage on the simply supported beam. Compared to the first two
indicators, the fused indicator DSDI;; demonstrates superior recognition performance
and robustness.

(2) The accuracy of the damage identification improves, and the error rate decreases
with the use of SDE-optimized BP and SVR algorithms, enabling the high-precision
prediction of damage levels on the simply supported beam.

(3) The damage identification indicators DIy ;j, DI 15, and DSDJ; ; accurately detect vary-
ing damage levels under different conditions, with peak values positively correlated
to damage severity. The experimental results confirm that the proposed method
performs effectively in the engineering context of the simply supported beam.

However, this paper primarily focuses on simply supported beam structures. Future
research will

(1) Extend this method to truss and continuous beam bridges, focusing on optimizing
sensor networks for complex geometries, recalibrating modal weights for boundary
condition sensitivity, and improving computational efficiency for large-scale systems.

(2) Validate the adaptability of the proposed method. Although this study centers on steel
beams, its reliance on stiffness-dependent curvature modes and adaptive optimization
principles suggests broader applicability to concrete and composite structures.

(3) Validate the feasibility of implementing our method in real-time SHM systems.
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