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Abstract

In this paper, we make use of backward Euler method to stuty the numercial approxi-
mation of random periodic solutions of semilinear SDE with additive noise. The existence
and uniqueness of the random periodic solution are discussed as the limit of the pull-back
flows of the SDE. We discretise the SDE using the backward Euler scheme which is proved
to be strongly convergent with order 1 in the mean square sense. Numerical examples are
presented to verify our theoretical analysis.
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1 Introduction

Many phenomena in the real world would have both periodic and random nature, e.g. daily
temperature, energy consumption, airline passenger volumes. Taking into account the influence
of random factors, these laws of motion can often be modeled by stochastic differential equations,
so it is crucial to study the periodic solution of stochastic differential equations. Although the
qualitative theory of stochastic differential equations has been extensively studied, we refer the
reader to [3,4,11]. For the deterministic case, the fixed point theorem is the most effective way
to prove the existence of periodic solutions. However, almost all efficient fixed point theorems are
not applicable to stochastic systems. Needless to say, for random dynamical systems, to study the
pathwise random periodic solutions is of great interest and challenge.

Periodic solution has been a central concept in the theory of the deterministic dynamical
systems since Poincaré’s seminal work [15]. Zhao and Zheng [21] started to study the problem
and gave a definition of the pathwise random periodic solutions for C'-cocycles. This pioneering
study boosts a series of work, including anticipating random solutions of SDEs with multiplicative
linear noise [6], the existence for semi-flows generated by non-autonomous SPDEs with additive
noise [7], periodic measures and ergodicity [8], etc.

As the random periodic solution is not explicitly constructible, it is useful to study the numer-
ical approximation. In recent years, the research on numerical solution of stochastic differential
equations has made rapid progress [2,12-14,16,18]. It is worth mentioning here that this is a
numericial approximamtion of an infinite time horizon problem. For a dissipative system with
global Lipschitz condition, [5] is the first paper to approximate the random period trajectory by
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Euler-Marymaya method and a modified Milstein method. Wei and Chen [19] generalized Euler
method to the stochastic theta method (STM) and proved that this approximated solution con-
verges to the exact one at the 1/4 order of the time step in L?*(Q) when initial time tends to —oc.
Wu [20] studied the existence and uniqueness of the random periodic solution for a stochastic
differential equation with a one-sided Lipschitz condition and the convergence of its numerical
approximation via the backward Euler method.

In this paper, we mainly consider the optimal convergence rate of the backward Euler method
for the random periodic solution of semilinear SDE compared to [20]. The outline of the paper is as
follows. In section 2, we persent some standard notation and assumptions that will be employed
in our proofs. In section 3, we focus on the existence and uniqueness of the random periodic
solution. Section 4 is about that the backward Euler method admits a unique random periodic
solution with a strong oeder 1. Some numerical experiments are finally presented in section 5.

2 Assumptions and preliminary results

Let us recall the definition of the random periodic solution for stochastic semi-flows given in [9].
Let X be a separable Banach space. Denote by {2, F,P, (6)scr} a metric dynamical system and
0, : 2 — Qis assumed to be a measurably invertible for all s € R. Denote A := {(t,s) € R? s < t}.
Consider a stochastic periodic semi-flow u : AxQx X — X of period 7, which satisfies the following
standard condition

u(t,r,w) = u(t,s,w) ou(s,r,w), (2.1)

and the periodic property
u(t+ 7,54+ 7,w) = u(t,s,0;w), (2.2)

forall r < s <t,rs,teR,forae wel

Definition 2.1. A random periodic solution of period T > 0 of a semi-flow u : A x Q x X — X
1s an F-measurable map Y : R x Q — X such that

Wt + 7,8,V (6,0),0) = Yt +7,w) = V{1, 0,). 23)
for any (t,s) € A, w € Q.

Throughout this paper the following notation is frequently used. For notational simplicity,
the letter C' is used to denote a generic positive constant independent of time step size and may
vary for each appearance. Let |- | and (-,-) be the Euclidean norm and the inner product of
vectors in RY, respectively. On a probability space (2, F,P), we use E to mean expectation
and LP(Q; R¥™) r € N, to denote the family of R¥*™-valued variables with the norm defined by

1€l Loy = (IE[H&HP])% < o0o. Let W : RxQ — R? be a standard two-sided Wiener process on the
probability space (€, F,P). The filtration is defined as follows: F! := o{W,—W, : s <v < u < t},
Fr=F o=V Fs

In this paper we consider the following stochastic differential equation with additive noise

{dxgo = [—AXP + f(t, X[0) |t + g(t) AW (t), t € (to, T, 2.4)

Xig =&,
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where f : R x R — R? ¢g: R — R, A is a symmetric and positive-definite d x d matrix, the
random initial conditon £ is F'- measurable. By the variation of constant formula, the solution
of (2.4) is determined by

t t
Xlo(g) = e Mt-to)g 4 / M=) £ (5, X10) ds + / e=2=2) g (5) W, (2.5)

to to

Denote the standard P-preserving ergodic Wiener shift by 6 : R x Q — Q, 6,(w)(s) := Wy s — W,
s,t € R. We will show that when k — oo, the pull-back X, *7(¢) has a limit X; in L?(Q) and X}
is the random perdioc solution of (2.4), satisfying

t t
X; = / e M9 £, XX ) ds + / e M=) g(s) dW. (2.6)

—00 —00

We assume the following conditions.

Assumption 2.2. A is self-adjoint and positive definite operator. There exists a non-decreasing
sequence (/\Z-)ie[d] C R of positive real numbers and an orthonormal basis (ei),-e[d}, such that

for every i € [d], where [d] := {1, ...,d}.

Assumption 2.3. The drift coefficient functions f is continuous and f(t,z) = f(t+7,z). There
exists a constant Cy > 0 such that for any z,y € R* and t € [0,7)

(v =y, f(t,x) = f(t,y)) < Crle —yP, 28)
(z, f(t,2)) < Cp(1+ |zf),

where Cy < Ay

Assumption 2.4. The diffusion coefficient functions g is continuous and g(t) = g(t + 7) and
there exists a constant Cy > 0 such that

9(t1) — g(t2)] < Cylta — 1],
sup g(s)| < G, (29)
s€[0,7)
for all ty,ts € [0,7)
Assumption 2.5. There exists a constant C* > 0 such that E|£]* < C*.
Assumption 2.6. There exists a constant C’f such that
t7 ) ~
) - oDl < €4 o), (2.10)

forz e R4t €[0,7).
Assumption 2.7. There exists a constant v € (1,00) and a positive L such that
F(t1,2) = Flta )] < L(L+ 2 + [Pl — ol (2.11)
for z,y € R and ty,t, € [0, 7).
Under Assumption 2.2-2.4 and Assumption 2.6 following a similar argument as in [17, Propo-

sition 7.1], we get that SDE (2.4) admits a global semiflow.
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3 Existence and uniqueness of random periodic solutions

In this section, we want to ensure the existence and uniqueness of random periodic solutions.
Although [20] provided the uniform boundedness for the p-th moment of the SDE solution, our
contribution is to overcome the restriction on «, in Asumption 13. To achieve this goal, we first
get a generalized lemma based on [10, Lemma 8.1].

Lemma 3.1. Let m : [a,00) — [0,00), ¢ : [a,00) = R be continuous functions for a € R. If

m(t) —m(s) < —5/ m(u) du+/ C(u) du (a <s<t<o0), (3.1)

there exists a positive constant §, then
t
m(t) < m(a) —|—/ e ¢ (u) du. (3.2)
Proof of Lemma 3.1. Denote m4(t) := m(a) + fj e~ ¢ (u) du,

my(t) = —5/ e 0= (u) du + (1)
= —d(mu(t) —m(a)) + ((t).

(3.3)

So we get
my(t) —my(s) = —5/ (m1(u) —m(a))du —I—/ C(u) du. (3.4)
Set ma(t) = m(t) — mqy(t),

ma(t) — ma(s) = m(t) — m(s) — (mi(t) — ma(s))
<=4 [ (m(u) —mq(u) +m(a))du

s

< —5/ (m(u) —my(u)) du (3:5)

S / t ma(u) du.

To prove (3.2), it is enough to prove that mso(t) < 0 for any ¢ € R. If my(t) > 0, for some t,
ma(a) = 0 implies that there exists an interval [s1, 1] C [a, 00|, ma(t1) > ma(s;) and my > 0 on
[s1,t1], which contradict (3.5).

We consider the boundedness of the exact solution in LP(€2).

Theorem 3.2. Let Assumptions 2.2 to 2.5 be sastisfied, there exists a positive constant C, one
has

E[|X;7*[*] < CE[(1+ [¢*)], (3.6)

where £ is the initial value when t = —kT.



Order-one convergence of the backward Euler method for random periodic solutions of semilinear SDEs

Proof of Theorem 3.2. Applying the 1t6 formula to (1 -+ |Xt_1”|2)p,

t
(L IXP) =1+ 1) + 2p/k (14 X7 7) 7 X, —AX ) ds

t
2 [ X G (s, X)) ds
—kT

+m/<u¢t%%*wﬁm@aw (3.7)

—kTt

t
+p/ (1+ X5y g(s) P ds
—kT
t

+%@—n/ (14 X4 22 (X 47T g(s) 2 ds,
—kT

which straightforwardly gives

t

(L+ | X7HPP <@+ 1€P) +2p / (14 [ X7F )P h —AXSR) ds
—kT

t
+2p / (14 X PPyt fls, X)) ds

o 2 (3.8)
s [ @G gl i)

—kT
t

+p@p—1[/ (141X 2 g(s) s

—kT

Combining with Assumptions 2.2 to 2.4, we can get

t

(H¢ﬁWW§O+mW+%/ (14 1XF 2P = (14 X)) ds
—kT

t
+ 2pcf/ (1+ | X712 ds
ha 2 (3.9)
+%/(H¢EWVW&WAQM@

—kT
t

+ p[(2p — 1)03 + 2] / (1+ \X;"ffﬁ)f’—l ds.

—kT

Then

t

(1+ ]X[’”\Q)p <(1+ ]5\2)” —2p(\ — Cf)/ (1+ ]X;kT\z)p ds
—kT

t
w2 [ @ IXPPG gl ai) (3.10
—kT
t

+p[(2p — 1)092 + 2] / (14 |X;’”|2)p*1 ds.
—kT
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By the Young inequality, a?~'b < ’%ap + %bp, we get

1+ X792 <(1+ €2 — p(Ay — cf)/ (14| X7 H)P ds

—kT

t
((2p—1)C2+42)1))?
—F/_k st (311)

t
w2 [ @ IXPPTG g(s) W),

kT
For every intertal n > 1, define the stopping time

T, = inf{s € [—k7,t] : |z(s)| > n}. (3.12)
Clearly, 7, 1t a.s.. Moreover, it follows from (3.11) and the property of the It6 integral that

BI(1+ DA P) < B+ 0] - pOn - CoE[ [ (1 Py as)
. T (3.13)
((2p—1)C2+2X1)P
+ E |: /;kT (Al_cf)p_l d8:| .
Letting n — oo and by the Fatou lemma, we have
t

BI(1+ XY < B+HEE - pn - Cp) [ B[+ X as

. kT (3.14)
((2p—1)C742X1)P
—i—/_kT —(/\lfci)p_l ds.
(2p—1)C2+2X1)P

Similiarly, according to Lemma 3.1, we take § = p(A; — Cf) >0, ( = (

tATh

, 1t is easy to

(Al—Cf)pfl
have
! _ 2
E[(1+ |X7*)7] < E[(1+ [¢[*)7] + /k e—p(h—@)@—m%du
2p—1)C2+2)1 )P —p(h— T 3.15
<E[(1+ ’£|2)p] + %(1 _ e P=Cyp)(t+k )) ( )
< CE[(1 + [¢].

In the next lemma, we consider the difference of the solutions under various initial values.

Lemma 3.3. Let Assumptions 2.2 to 2.4 be satisfied, set by X;*™ and Y, two solutions of SDE
(2.4) with initial values & and n, respectively. Then for every € > 0, there exists a t > —kT such
that

E[X; " Y P < e (3.16)

With the help of Theorem 3.2, Lemma 3.3 and Assumptions 2.6, we can identify the existence
and uniqueness of the random periodic solution to (2.4). Then we get the following theorem.

Theorem 3.4. Let Assumptions 2.2 to 2.7 be hold, there exists a unique random periodic solution
X7 (-) € L3(2) such that the solution of (2.4) satisfies

lim B[|X;7(€) — X; ] =0 (3.17)

The proof of this theorem is essentially the same as that of [5, Theorem 2.4]. It is easy to show
that the sequence X;*" is a Cauchy sequence and therefore has a limit.
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4 Strong convergence rate of the backward Euler method

In this section, we analyze the strong convergence rate of the backward Euler approximation.
Take an equidistant partition 7" := {jh, j € Z}, such that h € (0,1). Note that 7" stretch along
the real line because we are dealing with an infinite time horizon problem. The backward Euler
method applied to SDE (2.4) takes the following form:

v —kT kT kT . kT .
X7k7+(j+1) =X~ —kr+jh — ARXZ —kr+G4)h T hf«] + 1)h, X —kr+(j+1)h ) + 9GP AW irijn - (41)

for all j € N, where AW_j- 10 = W_pri+n — Woprgjn, and the initial value X”” = &.
According to the periodicity of f and g, we have that f(—kr + jh, X ,Wﬂh) = f(jh, X_,Wﬂh)
g(—=kT + jh) = g(jh).

First of all, we provide uniform bounds for the second moment of the numerical approximation,
already established in [20, Lemma 17].

Proposition 4.1. Let Assumptions 2.2 to Assumptions 2.6 be satisfied. Then there exists C' > 0
such that .
sup EHX kT-‘r]h‘ ] S C? (42)
k,jeN
where {)N(:,]j;jh}k,jeN is given by (4.1).

The next lemma is the discrete analogue of Lemma 3.3. It shows the numercial solution
dependence on different conditions.

Lemma 4.2. Let Assumptions 2.2 to 2.5 be satisfied. Denote by X} “hrign ond Y[k Ty jn two ap-
proximations of (4.1) with different initial values & and n. Then, for any positive €, there ezists a
7% such that for any j > 7%,

EUX II::Jrgh Y kli-T+]h| ] < e (4.3)

Theorem 4.3. Let Assumptions 2.2 to 2.5 be satisfied, for h € (0,1), the time domain is divided
as T = jh. The backward Euler method (4.1) admits a random period solution X* € L*()) such
that 3

Jim E[\X =X =0 (4.4)

With Proposition 4.1 and Lemma 4.2, the proof is similar to the proof of Theorem 3.4 in [5].
In order to establish a strong convergence rate of backward Euler method, we need the following
conditions. Considering (2.4), we denote F'(X) := —AX + f(t, X).

Assumption 4.4. Suppose F': R — R is twice differentiable, satisfying

(x —y, F(x) = F(y))
|F ()]

L’l’—y’Q, Vx,ye]R

<
- . , (4.5)
<C+|z|"), VeeR, iel,2

where F i € N stands for the i-th derivative of the function F.

Following a similar argument as in Proposition 5.4 and Lemma 5.5 [1], we can easily have the
following bounds for analysis later.
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Proposition 4.5. Let Assumptions 2.2 to 2.7 be satisfied. Then there exists a positive constant
C which depends on q,d, A, Cy only, such that

—kt —kT —kT 1
”thk - thk ||L2(Q;Rd) < C(1+sup sup || X; g H%QQ(Q;Rd)”tQ — ]2, (4.6)
keN t>—kr

for all t1,ty > —k1. Moreover

to
/ HA<XS_I€T - thkT) + f(87 Xs_kT) - f(t37 thkT)HLz(Q;Rd) ds ( )
t1 47

—kT(129—1 - 3
<L+ sup sup XTI s =

fOT’ all tg, t4 € [tl, tg]

In the following, we will prove the approximate solution converges to the exact solution in an
infinite horizon.

Theorem 4.6. Under Assumptions 2.2 to 2.5 and 2.7, for any h € (0,1), with 7 = nh,j €
N. If X:,’j;jh and X:,]j;jh are the exact and the numercial solutions given by (2.4) and (4.1),
respectively, then there exists a constant C' that depends on the A, f,g and d such that

sup 1X 7y = X747l sy < O (4.8)
7‘7

Proof of Theorem 4.6. First note that

. . —kT+(j+1)h . —kT+(+1)h . —kr+(j+1)h
X oo = X iljn — / 4 AX"ds + / ' f(s, X7")ds + / ' g(s)dWy
—kT+jh —kT+jh —kt+jh
= X:;:TTHh - AhX:]]:77—-+(j+1)h +hf((j+1)h, X:l]:77—-+(j+1)h) + g(Gh) AW oy jn + Rjya,
(4.9)
where:

—kT+(j+1)h
Rj_|_1 = —/ A(XS_IW — X_kT h)dS

br-tih —kT4+(j+1)
—kt+(j+1)h i .
+/‘ P, X7 = F(G+ Dby X5 (4.10)
—k7+jh

—kT+(j+1)h
+/' o(s) — g(jR)dW..

kT+jh

Substracting (4.1) from this yields

—kT v —kT _ v—kT v —kT —kT v —kT
X—k7+(j+1)h - X—kT+(j+1)h - ka‘rJrjh - ka7'+jh - Ah(X—kT+(j+1)h - X—k'r+(j+1)h)

+ g(GR)AW _krijn — g(GR)AW _kryjn + Rjy1.
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For brevity we write

- X~ kT X kT :
—]C’T+]h —kT+]h (412)

f = f(]h X kT+Jh) f(]h X k7-+_7h)

Using the short hand notation, we can rewrite (4.11) as

ejy1 =€ — Ahejy + hAfi + Rjqa, (4.13)
and thus
leji1 + Ahej — hA S ]? = |ej + Rjya|? (4.14)
LHS = |ej]* + 2h{eji1, Aejia) — 2h{ejpn, Afji) + BP[Aejin — Afjpa |
> leja|* + 2Mhlejn | — 2Crhlejn | (4.15)
= [1+2(\ — Op)hllej”.
Then,
RHS = |ej|* + 2(ej, Rj11) + |Rj|*. (4.16)
Since LHS=RHS, we get
[1+2(M = Cphllejal? < lejl* + 2{ej, Rjv) + | Ry [* (4.17)

We set v := A\; — Cy, and taking expectation,
(1+ 200)Elle;1%) < Elle; ) + 2E[(e;, Rys1)] + El| Ry (4.18)
Employing properties of the conditional expectation,
E[(ej, Rj1)] = E(E[(e, Rj11)|F,])- (4.19)
Now by the Cauchy-Schwarz inequality 2ab < vha?® + ﬁba

(1 + 20m)Elle i) < Elle; ] + 2E((Vohe;, ——E(Ry11l 7)) + El| Ry’

1
Vouh 1 j (4.20)
< (1+ 0h)E(|ej[’] + E[| Ry *] + EEUE(RJH\EJ-)\Q],

hence,

1+ vh 9 1 5 1 ,
j E[|R; — E[E(Ri4|F.
-1 2wh [|6J’]+1+2vh H ]+1| ]+(1+2Uh)1)h |:| ( ]Jrl‘ tj)|]
v ]_ 1
= (1-— MNE[le:?] + ————E[|R; 1P+ ——————
( 14 2vh JElle H1+2vh (17411 ]+(1+2vh)vh

Eflej1]*] <
(4.21)

E[|E(Rj41|F,)7]-

Therefore, we only need to estimate two error term E[|R;11[%] and E[|E(R;41|F;)|?]. It follows
from an elementary inequality that

kT+(j+1)h —k .
| R 41l 2 (s re) H/ X)) - F(X—k:+(;+1)h)d5
kT+jh L2(Q;R%) 4 22)
kr4( j+1)h (4.
H | — g(jh)
kT+jh L2(Q;R%)
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Next we estimate the first term in (4.22), using Proposition 4.5 shows

kr+(j+1) § N
H/ F(X) = F(X57, 4ayn)ds
—kT+jh

L2(QR4)

kt+(j+1)h . .
< / IF(XF) = X eqmands

T —kr+(j+1)h (4.23)
3
< C(1+ sup sup ||X ||4q 2)L2(91Rd)h2
kEN t>—kr
< Ch.

In view of the Ito isomery, by Assumption 2.4

ET+(j+1)h
H | _g(h)
kr+jh L2(Rd)

([ gt —g(jh)ﬂﬂdsf

—k7+jh

—kt+(j+1)h 1 4.94
< (/ E[C2]s — h’)ds)’ (4.24)

kT+jh

kt+(j+1)h 1
< ( / C2hds)

kT+jh
< Ch?

Thus we get
E[|R;j41]*] < CR®. (4.25)

Next, we need to estimate E[|E(R;41|F,)[?] < Ch*. Noting that the stochastic integral vanishes
under the conditional expection, we arrive at

E[[E(Rj1|F,)I*] < EIE(FXT) = F(X57, 1

)ds|F;)|%)- (4.26)
By means of the It6 formula we have, for s € [—k7 + jh, —kT + (j + 1)h],

i i kT+(j+1)h i i —kr+(j+1)h i
—kT T / —kT —kT / —kT
)= PO ) = | PO RO ar gr)F (X)W,

—kr+(j+1)h 2
+ / g ;T) F"(X7F)dr.

F(X

S

(4.27)
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Since B[/~ U o(r) F/(XF7)AW, | F)] = 0,

S T

E“E(F(X;ICT) - F<X:1]::+(j+1)h)d3‘ftj>‘2]

—kt+(G+1)h  p—kr+(+1)h
<E E( / / FI(X*YF(X 7 )drds ﬂj.)
—k1+4jh s
kTHGHDR p—kTEGADR g2 () 2
+E / / =L F(X, M) drds | F,
—kT+jh s 2
—kt+(G+1)h  p—kT+(j+1)R 2
ng{ / / FI(X Y F(X, ) drds ]
—kT+jh s
105 —kt+(G+Dh  p—kT+(j+1)h 2
+—9E{ / / F'(X*)drds }
2 —kT+jh s

4

< (2 sw EIFCFCE+ S sup BFXR)Al

rel—kr,T] " 2 rel—ktT)

< C(l + sup ||Xt_kTH%4w—2(Q;Rd)>h4
re[—k7,T)

< Cht

and therefore
B[R, 1|, )12 < Ch*

Considering (4.21), define 0 := Toon» We easily get
. 1
Ellejal’) < (1= h)Elle) + 15— CI

IN

(1 —0h) ™ E[leo/’] + [1 + (1 — 9h) + ... + (1 — 9h)|CH?
1 —(1—0h)i!

Ch?
oh

= (1 — 0h)H'E]|e|?] +

By observing ey = 0,
Ellej1[’] < CR*

Then the assertion follows.

(4.28)

(4.29)

(4.30)

(4.31)

Corollary 4.7. Under Assumptions 2.2 to 2.7. Let X} be the random periodic solution of SDE
(2.4) and X[ be the random periodic solution of the backward Euler numerical approximation.

Then there exists a constant C' that depends on q, A, f, g and d such that
sup E([|X; — X;*])V? < Ch

teTh

Proof of Corollary 4.7. Due to

X7 = X0 P < imsup [1X7 = X797 4 X7 = X7V 41X - X,

(4.32)

(4.33)

thus the conclusion can be obtained by Theorem 3.4, Theorem 4.3 and Theorem 4.6. Corollary

4.7 implies that the optimal order of convergence can be achieved 1.
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5 Numercial experiments

Some numerical experiments are performed to illustrate the previous theoretical findings. In
this section, we consider a specific SDE [20)]

dX/° = —107X;°dt + sin(27t)dt + 0.05dW, (5.1)
that is
A = —10m,
f(t, X[°) = sin(27t), (5.2)
g(t) = 0.05.

It is easy to check that the associated period is 1 and Assumptions 2.2 to 2.4 are fulfilled with
A =10, Cp =2, C, = 0.05. According to Theorem 3.4, (5.1) has a random periodic solution. By
Theorem 4.3, its backward Euler simulation also has a random periodic path.

First of all, we want to show that the numerical approximation converges to its random periodic
path regardless its initial value. We select the time grid between ¢y, = —20 and ¢ = 0, and set
two initial values to be 0.5 and -0.3. Based on the above conditions, two simulated paths can be
depicted in Fig. 1 by applying the backward Euler method. From Fig. 1, one can clearly observe
that two paths coincide shortly after the start.

Path independent to initial value
T T T

0.5

0.4}

0.3

0.2

Random periodic solutions
=
o =

-0.1

-0.21

03 ) )
-20 -15 -10 -5 0
Time

Figure 1: Two paths by backward Euler method from different initial value.

Then, to see the "periodicity” numerically, we choose to simulate the process X w) = X7%(w,0.3),
—5<t< —1and X/ (0_yw) = X;%(0_1w,0.3),—5 < t <0 with the same w. We can observe that
the two segmented processes are identical in Fig. 2, thus illustrating the periodicity of path.
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0.3

. .
— X%(w,0.3)

0.25

0.2

Random periodic solutions

Time

0.3

.
— X;%(01w,0.3)

025

0.2

Random periodic solutions

Time

Figure 2: Simulations of the processse {X;(w), =5 <t < —1} and {X;(f_ w), —5 <t < 0}.

Finally, to test the optimal convergence rate of backward Euler method, we simulate the
random solution of (5.1) with 5000 different noise realisations. We plot in Fig. 3 for seven
different stepsizes h = 27% i = 0,2,3,4,5,6,7. From Fig 3, one can clearly observe that the
resulting error decrease at slope close to 1, which is consistent with the predicted convergence
order.
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The Strong Convergence Rate

102

—*— Backward Euler Method
— — — — Line with Slope 1

Strong error
=
-

\ \
103 102 107"
Stepsize

Figure 3: Numercial experiment for simulating the random periodic solution of SDE (5.1):Step
sizes versus L? error.
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