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 A B S T R A C T

We propose a method to learn the nonlinear impulse responses to structural shocks using neural networks, and 
apply it to uncover the effects of US financial shocks. The results reveal substantial asymmetries with respect 
to the sign of the shock. Adverse financial shocks have powerful effects on the US economy, while benign 
shocks trigger much smaller reactions. Instead, with respect to the size of the shocks, we find no discernible 
asymmetries.
1. Introduction

Extreme financial shocks such as the bankruptcy of Lehman Brothers 
in September 2008 have the potential to trigger substantial nonlin-
ear reactions on the real side of the economy. These nonlinearities 
appear in terms of size, sign and state dependence (Brunnermeier 
and Sannikov, 2014). These asymmetric effects, however, often arise 
from assuming particular functional relations for the conditional mean 
part of the model and are thus inherently model-dependent. In this 
note, we solve this issue by ‘‘machine learning’’ the nonlinear effects 
of financial shocks on US macroeconomic aggregates using Bayesian 
neural networks.

Existing studies learn the domestic effects of financial shocks ei-
ther through flexible nonlinear parametric models (Barnichon et al., 
2022) or through nonparametric techniques (Mumtaz and Piffer, 2022). 
In this note, we propose using Bayesian Neural Networks (BNNs), 
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a model that has, so far, demonstrated its effectiveness in forecast-
ing (Hauzenberger et al., 2024). By basing local projections on BNNs, 
we gain additional flexibility in modeling nonlinearities and address 
the common criticism of black-box models as being unsuitable for struc-
tural economic analysis, demonstrating that BNNs can offer meaningful 
insights into economic dynamics.

We use BNNs as developed in Hauzenberger et al. (2024) to investi-
gate how key US macroeconomic quantities react to a financial shock, 
and assess whether the reactions are non-proportional with respect 
to the size and asymmetric with respect to the sign of the shock. 
Specifically, we develop BNN-based nonlinear local projections (NLPs, 
see Jordà, 2005) and investigate how financial shocks – measured with 
the excess bond premium (EBP, Gilchrist and Zakrajšek, 2012) – impact 
US inflation, industrial production, and employment. We find substan-
tial asymmetries with respect to sign, with negative shocks exerting 
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stronger effects than positive ones, but substantial proportionality with 
respect to the size of the shock.

2. Bayesian Neural Networks (BNNs)

We follow Hauzenberger et al. (2024) and use Bayesian Neural Net-
works (BNNs) to model a macroeconomic response 𝑦𝑡 as an unknown 
function of 𝐾 covariates 𝒙𝑡 for 𝑡 = 1,… , 𝑇 . The model is given by:

𝑦𝑡 = 𝒙′𝑡𝜸 + 𝑓 (𝒙𝑡) + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜎2𝑡 ), (1)

𝑓 (𝒙𝑡) ≈ 𝑓𝐿(𝒙𝑡) = 𝑾 𝐿+1𝒉𝐿
(

𝑾 𝐿𝒉𝐿−1(⋯𝑾 2𝒉1(𝑾 1𝒙𝑡))
)

, (2)

where 𝜸 denotes linear coefficients of dimension 𝐾, and 𝜀𝑡 is a Gaussian 
shock with zero mean and time-varying variance 𝜎2𝑡 .1 We allow for 
𝐿 hidden layers and 𝑄𝓁 (𝓁 = 1,… , 𝐿) neurons in each layer. By 
recursively applying nonlinear transformations to the neurons of the 
previous layer, we move from covariates 𝒙𝑡 to 𝑓 (𝒙𝑡), the output of 
the final layer. These transformations are implemented via activation 
function ℎ𝓁,𝑞 (𝑞 = 1,… , 𝑄𝓁), which in the case of Hauzenberger et al. 
(2024) can be layer and neuron-specific (i.e., 𝒉𝓁 = (ℎ𝓁,1,… , ℎ𝓁,𝑄𝓁

)′).2 
The network coefficients are stored in 𝑾 𝓁 for 𝓁 = 2,… , 𝐿 with 
dimension 𝑄𝓁 ×𝑄𝓁−1, in 𝑾 𝐿+1 as a 1 ×𝑄𝐿 vector and 𝑾 1 as a 𝑄1 ×𝐾
matrix.

To address the sharp increase in the number of coefficients with 
more complex network structures, we introduce regularization via a 
global local shrinkage prior in the form of the horseshoe prior (Carvalho 
et al., 2009; Ghosh et al., 2019; Bhadra et al., 2020). In this setup, each 
element of 𝒘𝓁,𝑖∙ = (𝑤𝓁,𝑖1,… , 𝑤𝓁,𝑖𝑄𝓁−1

)′, with 𝒘𝓁,𝑖∙ denoting the 𝑖th row 
of 𝑾 𝓁 (𝓁 = 1,… , 𝐿 + 1) follows:
𝑤𝓁,𝑖𝑗 ∼  (0, 𝜙𝓁,𝑖𝑗 ), 𝜙𝓁,𝑖𝑗 = 𝜆2𝓁,𝑖𝜑

2
𝓁,𝑖𝑗 , 𝜆𝓁,𝑖 ∼ +(0, 1), 𝜑𝓁,𝑖𝑗 ∼ +(0, 1).

The global (neuron-specific) shrinkage parameter 𝜆2𝓁,𝑖 forces all ele-
ments in 𝒘𝓁,𝑖∙ towards zero, while the local scaling parameter 𝜑𝓁,𝑖𝑗
allows for coefficient-specific shrinkage. Accordingly, we apply the 
horseshoe prior to the linear coefficients 𝜸.

One important specificity of the network structure is that it allows 
for a mixture specification, averaging over four different activation 
functions. We define ℎ(𝑚) as one out of 𝑚 ∈ {leakyReLU, sigmoid,ReLU,
tanh} activation functions and let each be given by: 

ℎ𝓁,𝑞(𝑧𝓁𝑞,𝑡) =
4
∑

𝑚=1
𝜔(𝑚)
𝓁,𝑞ℎ

(𝑚)(𝑧𝓁𝑞,𝑡), (3)

with 𝑧𝓁𝑞,𝑡 denoting the 𝑞th element in the recursively defined vector 
𝒛𝓁,𝑡 = 𝑾 𝓁𝒉𝓁−1(𝒛𝓁−1,𝑡) and 𝒛1,𝑡 = 𝑾 1𝒙𝑡. Weights 𝜔(𝑚)

𝓁,𝑞 are constrained 
to satisfy 𝜔(𝑚)

𝓁,𝑞 ≥ 0 and ∑𝑚 𝜔
(𝑚)
𝓁,𝑞 = 1. The prior on 𝜔(𝑚)

𝓁,𝑞 is set in an 
uninformative manner with a prior probability of Prob(𝛿𝑞 = 𝑚) = 1∕4.

For posterior inference, we use an MCMC algorithm structured into 
multiple blocks, iterated 20,000 times with the initial 10,000 draws 
discarded as burn-in. In brief, we start by drawing the linear coefficients 
𝜸 and the nonlinear coefficients of the last layer 𝑾 𝐿+1 jointly from 
a standard multivariate Gaussian posterior. The remaining coefficients 
𝑾 𝓁|∙, for 𝓁 = 1,… , 𝐿 are obtained via an HMC step (Neal, 2011). 
All shrinkage hyperparameters are updated by sampling from inverse 
Gamma distributions using the sampler as in Makalic and Schmidt 
(2015). Finally, to simulate the activation function ℎ𝓁,𝑞 , we draw 
the indicator 𝛿𝓁,𝑞 from a multinomial distribution. 𝛿𝓁,𝑞 takes integer 
values from one to four, each corresponding to a specific activation 
function selected from the predefined set. For technical details we refer 
to Hauzenberger et al. (2024).

1 The error variance is modeled via stochastic volatility, as in Kastner and 
Frühwirth-Schnatter (2014).

2 Note that this discussion abstracts from the bias term to simplify notation. 
In our empirical application, we include the bias term, which in a neural 
network, allows the activation function to be shifted towards positive and 
negative values.
2

3. Nonlinear local projections in BNNs

In the literature, there is substantial evidence of asymmetric ef-
fects of benign versus adverse financial shocks on the economy (see, 
e.g., Balke, 2000; Brunnermeier and Sannikov, 2014; Barnichon et al., 
2022). To shed light on this issue, we develop nonlinear local projec-
tions (NLPs; see, e.g., Mumtaz and Piffer, 2022; Gonçalves et al., 2024; 
Inoue et al., 2024) for BNNs.

Let 𝜁𝑡 denote an exogenous instrument for a shock of interest. 
Adding 𝜁𝑡 to our general nonlinear regression problem and iterating 𝑦𝑡
ℎ-periods forward (for ℎ = 0,… ,𝐻), yields: 

𝑦𝑡+ℎ = 𝜓ℎ𝜁𝑡 + 𝒙′𝑡𝜸ℎ + 𝝐′𝑡+ℎ�̃�ℎ + 𝑓ℎ(𝜁𝑡,𝒙𝑡, 𝝐𝑡+ℎ) + 𝜀𝑡+ℎ. (4)

Here, for ℎ ≥ 1 we let 𝝐𝑡+ℎ = (𝜀𝑡,… , 𝜀𝑡+ℎ−1)′ denote a ℎ-dimensional 
vector of shocks for periods 𝑡,… , 𝑡+ℎ−1, and �̃�ℎ a ℎ-dimensional vector 
of associated coefficients. For ℎ = 0, no shocks are included. Note that 
𝜓ℎ, 𝜸ℎ, �̃�ℎ and 𝑓ℎ are horizon-specific.

We obtain the nonlinear local projections in two steps (see, e.g., 
Kilian and Lütkepohl, 2017). First, we obtain the NLP conditional 
on the full history of the data 𝜴𝑡 up to time 𝑡 (which includes the 
instrument, past shocks and covariates) by computing the difference 
between the expectation of Eq. (4) given 𝜁𝑡 = 𝜏 and the expectation 
given 𝜁𝑡 = 0:

NLP(ℎ, 𝜏,𝜴𝑡) = E(𝑦𝑡+ℎ|𝜁𝑡 = 𝜏,𝜴𝑡) − E(𝑦𝑡+ℎ|𝜁𝑡 = 0,𝜴𝑡).

Second, this NLP depends on the observed data 𝜴𝑡. A more general way 
of representing the nonlinear response of the economy to a financial 
shock can be obtained by considering the unconditional NLP obtained 
as: 

NLP(ℎ, 𝜏) = ∫ NLP(ℎ, 𝜏,𝜴𝑟
𝑡 )𝑑𝜴

𝑟
𝑡 , (5)

where, as in Kilian and Lütkepohl (2017), 𝜴𝑟
𝑡  is a randomly selected 

path of observations.
This quantity can be computed for each MCMC draw of 𝜓ℎ, 𝜸ℎ, �̃�ℎ

and 𝑓ℎ (the trained BNN approximation to 𝑓ℎ), yielding a posterior 
distribution over impulse responses to financial shocks. Specifically, for 
each MCMC draw we compute NLP(ℎ, 𝜏,𝜴𝑡) for 𝑅 different realizations 
of 𝜴𝑟

𝑡  and take the mean: 

NLP(ℎ, 𝜏) ≈ 1
𝑅

𝑅
∑

𝑟=1
NLP(ℎ, 𝜏,𝜴𝑟

𝑡 ). (6)

Setting 𝑅 = 400, a large value, yields a precise approximation to the 
integral in Eq. (5).

An additional complication to compute NLP(ℎ, 𝜏) is that 𝝐𝑡+ℎ in 
Eq. (4) is latent.3 Within a linear framework, Lusompa (2023) proposes 
estimating 𝝐𝑡+ℎ using the estimated residuals and then treating them as 
fixed regressors.

Yet, in a nonlinear framework, ignoring uncertainty surrounding 
𝝐𝑡+ℎ can generate bias. Hence, we follow an alternative, sequential 
approach which exploits the Bayesian nature of our method. More 
specifically, in a first step we estimate the regression in Eq. (4) for 
ℎ = 0, save the posterior distribution of the shock 𝜀𝑡. Second, we 
estimate the model for ℎ = 1, replacing 𝜖𝑡+1 in each draw of the Gibbs 
sampler by a draw 𝜖(𝑗)𝑡+1 = 𝜀(𝑗)𝑡  from 𝑝(𝜖𝑡+1|∙) for each 𝑡. This yields a 
shock distribution of 𝑝(𝜀𝑡+1|∙). Third, we estimate the model for ℎ = 2
replacing 𝝐𝑡+2 by 𝝐(𝑗)𝑡+2 = (𝜀(𝑗)𝑡 , 𝜀

(𝑗)
𝑡+1)

′ ∼ 𝑝(𝜀(𝑗)𝑡 , 𝜀
(𝑗)
𝑡+1|∙) for each 𝑡. This 

procedure is repeated until we end up estimating the regression for 
horizon 𝐻 .

3 In an extensive robustness check, Clark et al. (2024) show that 𝝐𝑡+ℎ only 
has a small impact on direct forecasts.
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Fig. 1. Nonlinear local projections to simulated data. 
Note: This figure shows asymmetries in local projections based on synthetic data simulated according to Eq. (7). The left-hand panel refers to asymmetries in the sign of the shock 
and the right-hand panel refers to asymmetries in the size of the shock. The solid lines indicate the posterior median, while the shaded areas refer to the 68% posterior credible 
interval. A positive one-unit shock is denoted in red, a negative one-unit shock is shown in green, and a positive three-unit shock is shown in gray. The dashed lines represent 
the associated true impulse responses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4. Simulation exercise

In this section we evaluate whether our approach is capable of 
recovering the true impulse responses to a particular shock using a 
highly nonlinear data generating process (DGP). Inspired by the re-
cent nonlinear local projections literature, our stylized DGP takes the 
following form (see Goncalves et al., 2024): 

𝑦𝑡 = 𝜙𝑦𝑡−1+𝛽1𝜁𝑡+𝛽2|𝜁𝑡|+𝛽3𝜁3𝑡 +𝜀𝑡, 𝜀𝑡 ∼  (0, 0.2), 𝑦0 = 0, 𝜁𝑡 ∼  (0, 0.5). (7)

Consistent with Goncalves et al. (2024), we set the autoregressive 
parameter to 𝜙 = 0.5. While the linear effect is 𝛽1 = 0.5, we discriminate 
between two main nonlinear effects, one capturing solely size asymme-
tries and the other capturing only sign asymmetries, by varying 𝛽2 and 
𝛽3. For the former DGP, we set 𝛽2 = 0 and 𝛽3 = 0.25; in the latter, we set 
𝛽2 = 0.25 and 𝛽3 = 0. Within this controlled environment, we therefore 
deliberately exclude 𝜁2𝑡 , as such a squared effect would capture a mix 
of both sign and size asymmetries. We set the number of observations 
to 𝑇 = 1, 000. For each DGP, we simulate 20 realizations and estimate 
our model on each. We then compute the posterior summary statistics, 
averaged across the 20 realizations for both DGPs.

Fig.  1 shows the 16th and 84th percentiles of the posterior distri-
bution of the LPs (shaded areas), the median (solid lines) and the true 
IRFs (dashed lines) for different shock signs and shock sizes. While the 
two panels along the main diagonal show two true impulse responses, 
the panels along the off-diagonal show a single true response. This 
captures the notion that we simulate one type of asymmetry at a time 
by assuming either sign asymmetries or size asymmetries, but never 
both. The main goal of this exercise is that, while in the diagonal 
panels we expect differences across the estimated impulse responses, 
we expect them to be identical in the off-diagonal panels. The figure 
3

suggests that our BNN does a good job in recovering the true IRFs. 
While there seems to be a small bias, the shapes of the responses are 
very close to the true ones. This bias arises from the fact that the 
model we estimate is mis-specified given that we do not know the true 
nonlinear form of the DGP. In terms of size and sign asymmetries we 
find that BNNs are capable of distinguishing between both.

5. The nonlinear effects of financial shocks

We focus on how financial shocks impact inflation, output and 
employment, and whether these effects are symmetric and propor-
tional. To answer these questions, we employ a BNN featuring one 
hidden layer and 𝑄 = 𝐾 neurons. Building on the existing litera-
ture (Gilchrist and Zakrajšek, 2012; Barnichon et al., 2022; Mumtaz 
and Piffer, 2022), we construct our dataset using variables from FRED-
MD (McCracken and Ng, 2016), including inflation (CPIAUCSL), em-
ployment (CE16OV), industrial production growth (INDPRO) as well as 
the federal funds rate (FEDFUNDS) and stock market returns (S.P.500). 
In addition, we also include a proxy of the financial shock. This proxy 
is obtained by including the excess bond premium (EBP, Gilchrist 
and Zakrajšek, 2012) in a structural VAR that uses the same five 
variables as well as the EBP. We order the EBP measure first and obtain 
the structural economic shock related to this variable, which can be 
interpreted as a financial shock. The sample ranges from January 1960 
to December 2020.

Fig.  2, again, depicts the 16th and 84th posterior percentiles of 
the LPs for different shock signs and shock sizes. Panel (a) shows the 
responses of inflation, IP and employment to a one unit contractionary 
financial shock (in red) and to a benign financial shock (in green). 
The benign shock is multiplied by −1 to simplify comparison. Panel 
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Fig. 2. Nonlinear local projections to financial shocks. 
Note: This figure shows asymmetries in local projection responses to shocks to the excess bond premium (EBP). The left-hand panel refers to asymmetries in the sign of the shock 
and the right-hand panel refers to asymmetries in the size of the shock. The solid lines indicate the posterior median, while the shaded areas refer to the 68% posterior credible 
interval. A positive one-unit shock is denoted in red, a negative one-unit shock is shown in green, and a positive three-unit shock is shown in gray. To ease comparability, we 
re-scale the responses associated with a negative shock and the responses associated with three-unit shock such that they represent a positive one-unit shock (multiplied by −1
and 1∕3, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(b) shows the responses to a contractionary financial shock to a one 
and three unit financial shock. The three unit shock is re-scaled by 1∕3
to ease comparison.

The figure reveals substantial asymmetries with respect to the sign 
of the shock. Consistent with the literature (see, e.g., Barnichon et al., 
2016, 2022; Forni et al., 2024), we find that contractionary shocks have 
much stronger effects on the macro aggregates than benign shocks. 
Starting with inflation reactions, we find that contractionary financial 
shocks exert downward pressure on prices. This effect is strong and 
peaks after around one month, with a peak median decline in inflation 
of around one percentage point. Notice that the reaction is also quite 
persistent and turns insignificant only after around 18 months. By 
contrast, a benign shock leads to a much weaker reaction of inflation. 
After around seven months (until around 1.5 years), there is some 
evidence that inflation picks up. But apart from this, the credible 
intervals mostly include zero.

We now turn to the reaction of IP growth. Output seems to react 
sluggishly with respect to financial shocks. The declines in output 
growth are much stronger if the shock is adverse, reaching almost two 
percentage points after around eleven months. For a benign shock, the 
effects are much more muted and (almost) never significant.

Similar to the inflation reaction, we find that employment growth 
strongly declines after a negative financial shock. This decline peters 
out after around two years, turning insignificant afterwards. The sharp 
drop in prices can be linked to the decline in employment and the 
associated downward pressure on wages. Again, we find no discernible 
reaction to a benign shock.

In terms of size asymmetries (panel (b) of Fig.  2), we find that 
contractionary financial shocks of different sizes (one and three units) 
trigger proportional reactions of all three focus variables under consid-
eration.

6. Conclusion

We exploit Bayesian neural networks to compute non-parametric 
impulse response functions, and applies the method to approximate the 
reaction of three key US macroeconomic variables to financial shocks. 
We find that asymmetries arise mostly with respect to the sign of 
the shocks. Adverse financial shocks have a tendency to trigger much 
stronger reactions of inflation, industrial production and employment 
than benign shocks. When it comes to asymmetries with respect to size, 
we instead find no differences, with small and large shocks resulting in 
almost exactly proportional impulse responses.
5

Data availability

Data will be made available on request.
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