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We consider the coupled system of the Landau–Lifshitz--Gilbert equation and the conservation 
of linear momentum law to describe magnetic processes in ferromagnetic materials including 
magnetoelastic effects in the small-strain regime. For this nonlinear system of time-dependent 
partial differential equations, we present a decoupled integrator based on first-order finite 
elements in space and an implicit one-step method in time. We prove unconditional convergence 
of the sequence of discrete approximations towards a weak solution of the system as the mesh size 
and the time-step size go to zero. Compared to previous numerical works on this problem, for our 
method, we prove a discrete energy law that mimics that of the continuous problem and, passing to 
the limit, yields an energy inequality satisfied by weak solutions. Moreover, our method does not 
employ a nodal projection to impose the unit length constraint on the discrete magnetisation, so 
that the stability of the method does not require weakly acute meshes. Furthermore, our integrator 
and its analysis hold for a more general setting, including body forces and traction, as well as a 
more general representation of the magnetostrain. Numerical experiments underpin the theory and 
showcase the applicability of the scheme for the simulation of the dynamical processes involving 
magnetoelastic materials at submicrometer length scales.

1. Introduction

Magnetoelastic (or magnetostrictive) materials are smart materials characterised by a strong interplay between their mechanical 
and magnetic properties [20]. On the one hand, they change shape when subject to applied magnetic fields (direct magnetostrictive 
effect), and on the other, they undergo a change in their magnetic state when subject to externally applied mechanical stresses (inverse 
magnetostrictive effect). Because of these properties, magnetoelastic materials currently find use in many technological applications 
requiring a magnetomechanical transducer, e.g. actuators or sensors [39].

In this work, we design and analyse a fully discrete numerical scheme for a coupled nonlinear system of partial differential 
equations (PDEs) modelling the dynamics of magnetisation and displacement in magnetoelastic materials in the small-strain regime. 
The small-strain assumption is well justified for many ferromagnetic materials, a variety of which experience strains on the order 
of 10−5; see Table 1 for an example of such a material, and Fig. 1 for an illustration of a ferromagnetic cube with those material 
parameters.

The code (and data) in this article has been certified as Reproducible by Code Ocean: https://codeocean.com/.
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Table 1
Estimated material parameters for FeCoSiB taken from [26,33,30].

Symbol Name Value 
𝐴 Exchange constant 1.5 ⋅ 10−11 Jm−1

𝛼 Gilbert damping parameter 0.005
𝛾 Gyromagnetic ratio 1.761 ⋅ 1011 rads−1T−1

𝜇0 Permeability of free space 1.25663706 ⋅ 10−6
𝑀𝑠 Saturation magnetisation 1.5 ⋅ 106 Am−1

𝜆100 Saturation magnetostrain 30 ⋅ 10−6
𝜌 Density 7900 kgm−3

𝑔 Gravitational acceleration 9.81 ms−2
𝜇 First Lamé constant 172 GPa
𝜆 Second Lamé constant 54 GPa

Fig. 1. Illustration of isotropic, isochoric magnetostriction of a cube shaped ferromagnetic material. The ferromagnetic unit cube is initially uniformly magnetised 
along the 𝑥-direction in the undeformed state the edges of which are shown by the black square. The final state shows the body elongated in the 𝑥-direction, and 
contracted in the 𝑦 and 𝑧 directions. The colour indicates the strength of the displacement in the 𝑦 coordinate. The mesh displacement scaled by a factor of 104.

The validity of the small-strain regime for general magnetostrictive materials is the subject of the seminal work [20]. The proposed 
system consists of the Landau–Lifshitz--Gilbert (LLG) equation for the magnetisation and the conservation of linear momentum law 
for the displacement (see (4)--(5) below). The two equations are nonlinearly coupled to each other: One of the contributions to the 
effective field appearing in the LLG equation depends on the mechanical stress in the body (and thus on the displacement) and there 
is a magnetisation-dependent contribution to the strain (usually referred to as the magnetostrain) in the conservation of momentum 
law. One additional difficulty is represented by a nonconvex pointwise constraint on the magnetisation, which is a vector field of 
constant unit length.

Several versions of this PDE system have been used for physical investigations of magnetoelastic materials; see e.g. [46,36,17, 
40,43,42,25]. As far as the mathematical literature is concerned, we refer to [50,22], in which existence of weak solutions has been 
established, and to a series of works by L. Baňas and coauthors [8,6,9,7,15] in numerical analysis. In [8,6,9,7], the focus is on 
finite element methods for the approximation of strong solutions. More recently, [15] extended the tangent plane scheme proposed 
in [2] for the LLG equation to this PDE system. The integrator, based on first-order finite elements in space and on an implicit first
order time-stepping method in time, decouples the system and only requires the solution of two linear systems per time-step. Under 
the assumption that all meshes used for the spatial discretisation are weakly acute (needed to guarantee the stability of the nodal 
projection used to impose the unit length constraint on the magnetisation [10,2]), the authors proved unconditional convergence of 
the finite element approximations towards a weak solution of the problem.

In this work, we generalise the PDE system considered in [50,22,15] by including volume and surfaces forces, as well as a more 
general expression for the magnetostrain [28], which allows the description of a larger class of magnetoelastic materials. For this 
generalised system, we propose an integrator which resembles the one in [15] (same finite element approximation spaces, same 
time discretisation method, same decoupled approach). However, following [12,1] (and differently from [15]), we remove the nodal 
projection from the update of the magnetisation (but we keep it in the discretisation of the elastic contributions). By doing this, we can 
avoid the requirement of weakly acute meshes at the expense of not maintaining the unit length constraint on the magnetisation at the 
vertices of the meshes. However, like in [12,1], we can uniformly control the violation of the constraint by the time-step size. Despite 
the strong nonlinearity of the problem, the resulting integrator is fully linear (in the sense that it involves only linear operations like 
solving linear systems and updating the approximations using a linear time-stepping). For this generalised and modified integrator, we 
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show unconditional well-posedness, a discrete energy law satisfied by the approximations, unconditional stability, and unconditional 
convergence of the approximations towards a weak solution of the problem (here, the adjective ‘unconditional’ refers to the fact that 
the analysis does not require any restrictive coupling condition between the time and spatial discretisation parameters). Moreover, 
assuming a (very restrictive, but artificial) Courant–Friedrichs--Lewy (CFL) condition on the time-step size and the spatial mesh size, 
we can pass the discrete energy law to the limit and show that the weak solution towards which our finite element approximation is 
converging satisfies an energy inequality.

Summarising, the contribution of the present paper over the existing literature (and, in particular, over [50,22,15]) is threefold:

• We consider a more general setting than in [50,22,15] including volume/surface forces and a more general magnetoelastic 
contribution based upon the magnetostriction tensor ℤ (see equation (1) below), which allows for more general crystal classes 
to be considered. In particular, previous papers have described this tensor as fully symmetric and positive definite, e.g. [50,15, 
6,7,22], which is not true in general (such as in nickel, which has negative magnetostriction). Since our convergence proof is 
constructive, a byproduct of our analysis is a proof of existence of weak solutions for a more general model of magnetoelastic 
materials in the small-strain regime.

• Our integrator is energetically ‘mindful’, in the sense that our approximations satisfy a discrete energy law which resembles 
the one satisfied by solutions of the continuous problem (cf. Proposition 4.4 below). Under a restrictive CFL condition on the 
discretisation parameters, specifically 𝑘 = 𝑜(ℎ9), we can pass the result to the limit and obtain an energy inequality for weak 
solutions. This aspect was not considered in [15], where only boundedness of energy was proven.

• The spatial meshes used by our integrator are assumed to be only shape-regular (and do not need to be weakly acute as in [15]). 
This allows for the use of general mesh generators. This is especially useful in three dimensions, as weakly acute meshes are 
difficult to generate for arbitrary shapes [18]. Following [12,1], the assumption on the meshes is removed by omitting the 
nodal projection from the magnetisation update. However, the nodal projection is kept for the magnetisation appearing in the 
magnetoelastic terms for the sake of unconditional stability. These modifications of the original algorithm of [15] give rise to 
additional errors that need to be controlled, which makes the analysis more involved (e.g. a more accurate estimate of the 
projection error is needed; see Lemma 6.6 below). Finally, the discrete variational problems appearing in our integrator are 
standard and therefore easy to implement in standard finite element packages. For example, in the numerical experiments 
included in this work, we use Netgen/NGSolve [45].

The remainder of this work is organised as follows: In Section 2, we present the PDE system we are interested in; In Section 3, we 
introduce the ‘ingredients’ that are necessary for the definition of our numerical scheme and for its analysis; In Section 4, we present 
our numerical integrator (Algorithm 4.1) and state the main results of the work; Section 5 is devoted to numerical experiments. 
In Section 6, we collect the proofs of all results. For the convenience of the reader, we conclude the paper with two appendices, 
Appendix A, in which we collect several linear algebra definitions and results used throughout the work, and Appendix B, in which 
we show how to pass from the fully dimensional model considered in the physics literature to the dimensionless setting we study.

2. Model problem

Let Ω ⊂ℝ3 be a bounded Lipschitz domain representing the volume occupied by a ferromagnetic body. We assume the boundary 
𝜕Ω is split into two disjoint relatively open parts Γ𝐷 (of positive measure) and Γ𝑁 , i.e. 𝜕Ω = Γ𝐷 ∪ Γ𝑁 and Γ𝐷 ∩ Γ𝑁 = ∅. Let 𝑇 > 0
denote some final time.

The magnetomechanical state of the material is described by two vector fields: the displacement 𝒖 ∶ Ω × (0, 𝑇 ) → ℝ3 and the 
magnetisation 𝒎 ∶ Ω × (0, 𝑇 )→ 𝕊2. The total strain 𝜺 is made up of the elastic strain 𝜺el and the magnetisation-dependent generally 
incompatible (in the sense that it does not satisfy the Saint-Venant compatibility conditions [5,36]) magnetostrain 𝜺m, i.e. 𝜺 = 𝜺el +𝜺m. 
The total strain is given by

𝜺(𝒖) = 1
2
(
𝛁𝒖+𝛁𝒖⊤

)
(strain-displacement relation). Following [28], we consider the expression

𝜺m(𝒎) =ℤ ∶ (𝒎⊗𝒎), (1)

where ℤ ∈ℝ34 is a fourth-order tensor, which we assume to be minorly symmetric (i.e. ℤ𝑖𝑗𝓁𝑚 =ℤ𝑗𝑖𝓁𝑚 =ℤ𝑖𝑗𝑚𝓁 for all 𝑖, 𝑗,𝓁,𝑚 = 1,2,3, 
cf. Appendix A). It follows that

𝜺el(𝒖,𝒎) = 𝜺(𝒖) − 𝜺m(𝒎).

The elastic part of the strain compensates for the magnetic part to make the total strain compatible [36]. The elastic strain is related 
to the stress tensor 𝝈 by Hooke’s law

𝝈(𝒖,𝒎) =ℂ ∶ 𝜺el(𝒖,𝒎),

where ℂ ∈ ℝ34 is the fourth-order, fully symmetric (i.e. ℂ𝑖𝑗𝓁𝑚 = ℂ𝓁𝑚𝑖𝑗 = ℂ𝑗𝑖𝓁𝑚 = ℂ𝑖𝑗𝑚𝓁 for all 𝑖, 𝑗,𝓁,𝑚 = 1,2,3, cf. Appendix A), 
positive definite stiffness tensor. The elastic energy reads as
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el[𝒖,𝒎] = 1
2 ∫

Ω 
[𝜺(𝒖) − 𝜺m(𝒎)] ∶ {ℂ ∶ [𝜺(𝒖) − 𝜺m(𝒎)]} − ∫

Ω 
𝒇 ⋅ 𝒖− ∫

Γ𝑁

𝒈 ⋅ 𝒖,

where the last two terms model the work done by a volume force 𝒇 ∶ Ω → ℝ3 and a surface force 𝒈 ∶ Γ𝑁 → ℝ3 (traction), both 
assumed to be constant in time. The magnetic energy, for simplicity assumed to comprise only the Heisenberg exchange contribution, 
is given by

m[𝒎] = 1
2 ∫

Ω 
|𝛁𝒎|2. (2)

The total free energy of the system is defined as the sum of the magnetic and elastic energies, i.e.

[𝒖,𝒎] = m[𝒎] + el[𝒖,𝒎] = 1
2 ∫

Ω 
|𝛁𝒎|2 + 1

2 ∫
Ω 

[𝜺(𝒖) − 𝜺m(𝒎)] ∶ {ℂ ∶ [𝜺(𝒖) − 𝜺m(𝒎)]} − ∫
Ω 
𝒇 ⋅ 𝒖− ∫

Γ𝑁

𝒈 ⋅ 𝒖. (3)

The dynamics of 𝒖 and 𝒎 is governed by the coupled system of the conservation of (linear) momentum law and the LLG equation

𝜕𝑡𝑡𝒖 =∇ ⋅ 𝝈(𝒖,𝒎) + 𝒇 in Ω× (0, 𝑇 ), (4)

𝜕𝑡𝒎 = −𝒎 × 𝒉eff [𝒖,𝒎] + 𝛼 𝒎 × 𝜕𝑡𝒎 in Ω× (0, 𝑇 ), (5)

supplemented with the initial and boundary conditions

𝒖(0) = 𝒖0 in Ω, (6a)

𝜕𝑡𝒖(0) = 𝒖̇0 in Ω, (6b)

𝒎(0) =𝒎0 in Ω, (6c)

𝒖 = 𝟎 on Γ𝐷 × (0, 𝑇 ), (6d)

𝝈𝒏 = 𝒈 on Γ𝑁 × (0, 𝑇 ), (6e)

𝜕𝒏𝒎 = 𝟎 on 𝜕Ω× (0, 𝑇 ), (6f)

where 𝒖0, 𝒖̇0 ∶ Ω→ℝ3 and 𝒎0 ∶ Ω→ 𝕊2 are suitable initial data, while 𝒏 ∶ 𝜕Ω→ 𝕊2 denotes the outward-pointing unit normal vector 
to 𝜕Ω. In (5), 𝛼 > 0 denotes the Gilbert damping parameter, whereas the effective field 𝒉eff [𝒖,𝒎] is the variational derivative of the 
free energy with respect to the magnetisation, i.e.

𝒉eff [𝒖,𝒎] = − 𝛿[𝒖,𝒎]
𝛿𝒎

= 𝚫𝒎+ 𝒉m[𝒖,𝒎],

where the elastic field reads as

𝒉m[𝒖,𝒎] = 2 [ℤ⊤ ∶ 𝝈(𝒖,𝒎)]𝒎 = 2 (ℤ⊤ ∶ {ℂ ∶ [𝜺(𝒖) − 𝜺m(𝒎)]})𝒎, (7)

with ℤ⊤ being the transpose of ℤ (cf. Appendix A). Note that (4) can be rewritten as

𝜕𝑡𝑡𝒖 = − 𝛿[𝒖,𝒎]
𝛿𝒖

.

A simple formal calculation reveals that sufficiently smooth solutions to (4)--(6) satisfy the energy law

d 
d𝑡

([𝒖(𝑡),𝒎(𝑡)] + 1
2
‖‖𝜕𝑡𝒖(𝑡)‖‖2) = −𝛼 ‖‖𝜕𝑡𝒎(𝑡)‖‖2 ≤ 0, (8)

i.e. the sum of the total energy (3) (which can be understood as a potential energy) and the kinetic energy ‖‖𝜕𝑡𝒖‖‖2 ∕2 decays over 
time, with the decay being modulated by 𝛼.

For the data of the problem, we assume that ℂ ∈𝑳∞(Ω) is uniformly positive definite, i.e. there exists 𝐶0 > 0 such that

𝑨 ∶ (ℂ ∶𝑨) ≥ 𝐶0 ‖𝑨‖2 for all 𝑨 ∈ℝ3×3, (9)

ℤ ∈𝑳∞(Ω), 𝒇 ∈𝑳2(Ω), 𝒈 ∈𝑳2(Γ𝑁 ), 𝒖0 ∈𝑯1(Ω), 𝒖̇0 ∈𝑳2(Ω), and 𝒎0 ∈𝑯1(Ω;𝕊2). In the following definition, we state the notion 
of a weak solution of the initial boundary value problem (4)--(6); see [22]. Hereafter, we shall denote 𝐿2-integrals in space over some 
domain 𝐷 with ⟨⋅, ⋅⟩𝐷 , omitting the subscript if 𝐷 =Ω. Moreover, we denote by Ω𝑇 the space-time cylinder Ω× (0, 𝑇 ).

Definition 2.1. We say that a pair (𝒖,𝒎) ∶ Ω𝑇 → ℝ3 × ℝ3 is a weak solution to the initial boundary value problem (4)--(6) if the 
following conditions hold:

(i) 𝒖 ∈𝐿∞(0, 𝑇 ;𝑯1
𝐷
(Ω)) with 𝜕𝑡𝒖 ∈𝐿∞(0, 𝑇 ;𝑳2(Ω)) and 𝒎∈𝐿∞(0, 𝑇 ;𝑯1(Ω;𝕊2)) with 𝜕𝑡𝒎 ∈𝐿2(0, 𝑇 ;𝑳2(Ω));
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(ii) for all 𝝃 ∈𝑪∞
𝑐
([0, 𝑇 );𝑪∞(Ω)) and 𝝋 ∈𝑪∞(Ω𝑇 ), we have

−

𝑇

∫
0 
⟨𝜕𝑡𝒖(𝑡), 𝜕𝑡𝝃(𝑡)⟩d𝑡+ 𝑇

∫
0 
⟨ℂ ∶ [𝜺(𝒖(𝑡)) − 𝜺m(𝒎(𝑡))],𝜺(𝝃(𝑡))⟩d𝑡 = 𝑇

∫
0 
⟨𝒇 ,𝝃(𝑡)⟩d𝑡+ 𝑇

∫
0 
⟨𝒈,𝝃(𝑡)⟩Γ𝑁

d𝑡+ ⟨𝒖̇0,𝝃(0)⟩, (10)

𝑇

∫
0 
⟨𝜕𝑡𝒎(𝑡),𝝋(𝑡)⟩d𝑡− 𝛼

𝑇

∫
0 
⟨𝒎(𝑡) × 𝜕𝑡𝒎(𝑡),𝝋(𝑡)⟩d𝑡 = 𝑇

∫
0 
⟨𝒎(𝑡) ×𝛁𝒎(𝑡),𝛁𝝋(𝑡)⟩d𝑡− 𝑇

∫
0 
⟨𝒎(𝑡) × 𝒉m[𝒖(𝑡),𝒎(𝑡)],𝝋(𝑡)⟩d𝑡; (11)

(iii) the initial conditions 𝒖(0) = 𝒖0 and 𝒎(0) =𝒎0 hold in the sense of traces;
(iv) for almost all 𝑡′ ∈ (0, 𝑇 ), it holds that

[𝒖(𝑡′),𝒎(𝑡′)] + 1
2
‖‖𝜕𝑡𝒖(𝑡′)‖‖2 + 𝛼

𝑡′

∫
0 

‖‖𝜕𝑡𝒎(𝑡)‖‖2 d𝑡 ≤ [𝒖0,𝒎0] + 1
2
‖‖‖𝒖̇0‖‖‖2 . (12)

Equations (10) and (11) are space-time variational formulations of (4) and (5), respectively. The initial condition (6b) and the 
boundary conditions (6e) and (6f) are imposed as natural boundary conditions in the variational formulations; The initial condi
tions (6a) and (6c) are imposed in the sense of traces in (iii); The Dirichlet boundary condition (6d) is imposed as essential boundary 
condition. Equation (12) is the weak counterpart of the energy law (8) satisfied by strong solutions.

Remark 2.2. Formula (1) is the general expression of the magnetostrain for anisotropic ferromagnets [28] and covers the typical 
forms of the magnetostrain found in literature. These usually assume that the magnetostrain is isochoric [31, Section 3.2.6] (i.e. it has 
zero trace). In an isochoric material, the magnetic body elongates (contracts) in the magnetisation direction, and contracts (elongates) 
in the other two for positive (negative) magnetostriction. An example of positive magnetostriction is shown in Fig. 1. Importantly, 
formula (1) covers the common cubic case, considered e.g. in [32,46,36,43,42] and given by

𝜺m(𝒎) =
3
2

{
𝜆100

(
𝒎⊗𝒎− 𝐼

3 

)
+ (𝜆111 − 𝜆100)

3 ∑
𝑖,𝑗=1
𝑖≠𝑗

(𝒎 ⋅ 𝒆c
𝑖
)(𝒎 ⋅ 𝒆c

𝑗
)(𝒆c

𝑖
⊗ 𝒆c

𝑗
)

}
,

where 𝐼 ∈ℝ3×3 denotes the 3-by-3 identity matrix, 𝜆100, 𝜆111 ∈ℝ are material constants, and {𝒆c1,𝒆
c
2,𝒆

c
3} denotes an orthonormal set 

yielding the crystal basis. When 𝜆100 = 𝜆111, the latter reduces to the so-called isotropic case

𝜺m(𝒎) =
3
2
𝜆100

(
𝒎⊗𝒎− 𝐼

3 

)
, (13)

considered e.g. in [17,40,25]. For further details regarding specific crystal classes and their magnetostrain representation, we refer 
to [28].

Remark 2.3. For the sake of simplicity (and since the focus of this work is on the design of a numerical method for the coupled sys
tem (4)--(5)), we neglect from the magnetic energy (2) all lower-order contributions (magnetocrystalline anisotropy, Zeeman energy, 
magnetostatic energy, Dzyaloshinskii—Moriya interaction). However, we note that their numerical integration is well understood; 
see e.g. [21,24,29].

3. Preliminaries

In this section, we collect some notation and preliminary results that will be necessary to introduce and analyse the fully discrete 
algorithm we propose to approximate solutions to the initial boundary value problem (4)--(6). Hereafter, as customary in numerical 
analysis, given 𝐴,𝐵 ∈ℝ, we shall write 𝐴 ≲ 𝐵 if there exists a constant 𝑐 > 0, clear from the context and always independent of the 
discretisation parameters, such that 𝐴 ≤ 𝑐 𝐵.

3.1. Time discretisation

Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 be a uniform partition of the time interval into 𝑁 uniform intervals with constant time-step size 
𝑘 = 𝑇 ∕𝑁 , i.e. 𝑡𝑖 = 𝑖𝑘 for all 𝑖 = 0,… ,𝑁 . Given values {𝜙𝑖}0≤𝑖≤𝑁 and 𝜙̇0, we define the discrete time derivatives by

d𝑡𝜙𝑖 ∶=
⎧⎪⎨⎪⎩
𝜙̇0, if 𝑖 = 0,
𝜙𝑖 −𝜙𝑖−1

𝑘 
, if 1 ≤ 𝑖 ≤𝑁,

(14)
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d2
𝑡
𝜙𝑖+1 ∶=

d𝑡𝜙𝑖+1 − d𝑡𝜙𝑖

𝑘 
=
⎧⎪⎨⎪⎩
𝜙1 − 𝜙0 − 𝑘𝜙̇0

𝑘2
, if 𝑖 = 0,

𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

𝑘2
, if 1 ≤ 𝑖 ≤𝑁 − 1.

(15)

Moreover, we define the time reconstructions 𝜙𝑘, 𝜙−
𝑘

, 𝜙+
𝑘

, 𝜙̇𝑘, 𝜙̇−
𝑘

, 𝜙̇+
𝑘

, defined, for all 0 ≤ 𝑖 ≤𝑁 − 1 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), by

𝜙𝑘(𝑡) ∶=
𝑡− 𝑡𝑖

𝑘 
𝜙𝑖+1 +

𝑡𝑖+1 − 𝑡

𝑘 
𝜙𝑖, 𝜙−

𝑘
(𝑡) ∶= 𝜙𝑖, 𝜙+

𝑘
(𝑡) ∶= 𝜙𝑖+1, (16a)

𝜙̇𝑘(𝑡) ∶= d𝑡𝜙𝑖 + (𝑡− 𝑡𝑖)d2𝑡 𝜙
𝑖+1, 𝜙̇−

𝑘
(𝑡) ∶= d𝑡𝜙𝑖, 𝜙̇+

𝑘
(𝑡) ∶= d𝑡𝜙𝑖+1. (16b)

Note that 𝜕𝑡𝜙𝑘(𝑡) = 𝜙̇+
𝑘
(𝑡) = 𝑑𝑡𝜙

𝑖+1 for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1).

3.2. Space discretisation

Let Ω be a polyhedral domain. Let {ℎ}ℎ>0 be a shape-regular family of meshes of Ω into tetrahedra, where ℎ = max𝐾∈ℎ ℎ𝐾

denotes the mesh size of ℎ and ℎ𝐾 = diam𝐾 for all 𝐾 ∈ ℎ. We denote by ℎ the set of nodes in the triangulation ℎ. For all 𝐾 ∈ ℎ, 
we denote by 1(𝐾) the space of polynomials of degree at most 1 over 𝐾 . We denote by 1(ℎ) the space of piecewise a˙ine and 
globally continuous functions from Ω to ℝ, i.e.

1(ℎ) = {𝜙ℎ ∈ 𝐶(Ω) ∶ 𝜙ℎ|𝐾 ∈ 1(𝐾) for all 𝐾 ∈ ℎ} ⊂ 𝐻1(Ω).

We denote by ℎ ∶ 𝐶(Ω)→ 1(ℎ) the nodal interpolant satisfying ℎ[𝜙](𝑧) = 𝜙(𝑧) for each 𝑧 ∈ℎ, where 𝜙 is a continuous function. 
Moreover, we consider the space 1

𝐷
(ℎ) = 1(ℎ) ∩𝐻1

𝐷
(Ω), where homogeneous Dirichlet boundary conditions on Γ𝐷 are imposed 

explicitly.
Since the unknowns of the problem in which we are interested are vector fields, we consider the vector-valued finite element space 

1(ℎ)3 and use the same notation adopted in the scalar case to denote the vector-valued nodal interpolant ℎ ∶ 𝑪(Ω)→ 1(ℎ)3. 
For all 0 ≤ 𝑖 ≤ 𝑁 , the approximate displacement at time 𝑡𝑖 , 𝒖𝑖ℎ ≈ 𝒖(𝑡𝑖), will be sought in the finite element space 1

𝐷
(ℎ)3, whereas 

the approximate magnetisation, 𝒎𝑖
ℎ
≈𝒎(𝑡𝑖), will be sought in the set

ℎ,𝛿 =
{
𝝓ℎ ∈ 1(ℎ)3 ∶ ||𝝓ℎ(𝑧)|| ≥ 1 for all 𝑧 ∈ℎ and ‖‖‖ℎ

[|𝝓ℎ|2]− 1‖‖‖𝐿1(Ω)
≤ 𝛿
}

(17)

for some 𝛿 > 0. Note that discrete magnetisations in ℎ,𝛿 generally do not satisfy the unit length constraint, not even at the vertices 
of the mesh, but the error is controlled in the 𝐿1-sense by 𝛿. For the case 𝛿 = 0, we obtain the set

ℎ,0 = {𝝓ℎ ∈ 1(ℎ)3 ∶ ||𝝓ℎ(𝑧)|| = 1 for all 𝑧 ∈ℎ},

in which the constraint holds at the vertices of the mesh. We define the nodal projection operator Πℎ ∶ℎ,𝛿 →ℎ,0 by Πℎ𝝓ℎ(𝑧) =
𝝓ℎ(𝑧)∕|𝝓ℎ(𝑧)| for all 𝑧 ∈ℎ and 𝝓ℎ ∈ℎ,𝛿 .

Another important property of solutions to the LLG equation is the orthogonality 𝜕𝑡𝒎 ⋅𝒎 = 0. To realise it at the discrete level, 
given an approximation 𝒎𝑖

ℎ
≈𝒎(𝑡𝑖) in ℎ,𝛿 , we consider the discrete tangent space

ℎ[𝒎𝑖
ℎ
] = {𝝍ℎ ∈ 1(ℎ)3 ∶𝒎𝑖

ℎ
(𝑧) ⋅𝝍ℎ(𝑧) = 0 for all 𝑧 ∈ℎ},

where approximations 𝒗𝑖
ℎ
≈ 𝜕𝑡𝒎(𝑡𝑖) will be sought. Note that the desired orthogonality property is imposed only at the vertices of the 

mesh.
To conclude, we recall the definition of mass-lumped 𝐿2-product ⟨⋅, ⋅⟩ℎ, i.e.

⟨𝝍 ,𝝓⟩ℎ = ∫
Ω 

ℎ[𝝍 ⋅𝝓] for all 𝝍 ,𝝓 ∈𝑪0(Ω), (18)

which is a scalar product on 1(ℎ)3.

4. Algorithm and main results

In the following algorithm, we state the fully discrete numerical scheme we propose to approximate solutions to the initial 
boundary value problem (4)--(6).

Algorithm 4.1 (decoupled algorithm for the LLG equation with magnetostriction). Discretisation parameters: Mesh size ℎ > 0, time-step size 
𝑘 > 0, 𝜃 ∈ (1∕2,1]. 
Input: Approximate initial conditions 𝒎0

ℎ
∈ℎ,0, 𝒖0

ℎ
∈ 1

𝐷
(ℎ)3, 𝒖̇0

ℎ
∈ 1(ℎ)3. 

Loop: For all integers 0≤ 𝑖 ≤𝑁 − 1, iterate (i)--(iii):
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(i) Compute 𝒗𝑖
ℎ
∈ℎ[𝒎𝑖

ℎ
] such that, for all 𝝓ℎ ∈ℎ[𝒎𝑖

ℎ
], it holds that

𝛼⟨𝒗𝑖
ℎ
,𝝓ℎ⟩ℎ + ⟨𝒎𝑖

ℎ
× 𝒗𝑖

ℎ
,𝝓ℎ⟩ℎ + 𝜃𝑘⟨𝛁𝒗𝑖

ℎ
,𝛁𝝓ℎ⟩ = −⟨𝛁𝒎𝑖

ℎ
,𝛁𝝓ℎ⟩ + ⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
],𝝓ℎ⟩. (19)

(ii) Define

𝒎𝑖+1
ℎ

∶=𝒎𝑖
ℎ
+ 𝑘𝒗𝑖

ℎ
∈ 1(ℎ)3. (20)

(iii) Compute 𝒖𝑖+1
ℎ

∈ 1
𝐷
(ℎ)3 such that, for all 𝝍ℎ ∈ 1

𝐷
(ℎ)3, it holds that

⟨d2
𝑡
𝒖𝑖+1
ℎ

,𝝍ℎ⟩ + ⟨ℂ ∶ 𝜺(𝒖𝑖+1
ℎ

),𝜺(𝝍ℎ)⟩ = ⟨ℂ ∶ 𝜺m(Πℎ𝒎
𝑖+1
ℎ

),𝜺(𝝍ℎ)⟩ + ⟨𝒇 ,𝝍ℎ⟩ + ⟨𝒈,𝝍ℎ⟩Γ𝑁
. (21)

Output: Approximations {(𝒖𝑖
ℎ
,𝒎𝑖

ℎ
)}0≤𝑖≤𝑁 .

Algorithm 4.1 resembles the decoupled algorithm proposed in [15]. The discrete initial data 𝒎0
ℎ
∈ ℎ,0, 𝒖0

ℎ
∈ 1

𝐷
(ℎ)3 and 

𝒖̇0
ℎ
∈ 1(ℎ)3 denote suitable approximations of the initial conditions 𝒎0, 𝒖0 and 𝒖̇0, respectively. For every time-step, given cur

rent approximations of the magnetisation and the displacement, we compute the new magnetisation first, and then the updated 
displacement using this.

Specifically, to compute the new magnetisation, we use the tangent plane scheme [3,13,2]: In step (i), given 𝒖𝑖
ℎ

and 𝒎𝑖
ℎ
, we 

compute an approximation 𝒗𝑖
ℎ
≈ 𝜕𝑡𝒎(𝑡𝑖) residing in the discrete tangent space ℎ[𝒎𝑖

ℎ
]. The variational problem (19) solved by 𝒗𝑖

ℎ
is 

a discretisation of the equivalent formulation of the LLG equation

𝛼 𝜕𝑡𝒎+𝒎 × 𝜕𝑡𝒎 = 𝒉eff [𝒖,𝒎] − (𝒉eff [𝒖,𝒎] ⋅𝒎)𝒎, (22)

which can be obtained from (5) via simple algebraic manipulations; cf. [3]. Looking at (19), we note that the discrete variational 
formulation of the left-hand side of (22) makes use of the mass-lumped 𝐿2-product (18). The two terms constituting the effective 
field 𝒉eff [𝒖,𝒎] are treated differently: The exchange contribution is treated implicitly and therefore contributes to the left-hand side 
of (19). The ‘degree of implicitness’ is modulated by the parameter 𝜃 ∈ (1∕2,1]. The elastic field is treated explicitly. In step (ii), with 
𝒗𝑖
ℎ

at hand, we compute the new magnetisation 𝒎𝑖+1
ℎ

using a first-order time-stepping; cf. (20). Differently from the seminal papers 
on the tangent plane schemes [3,13,2] and from [15], we follow the approach of [12,1] and in our update we do not use the nodal 
projection. In particular, it holds that d𝑡𝒎𝑖+1

ℎ
= 𝒗𝑖

ℎ
. Finally, in step (iii), we compute the new displacement 𝒖𝑖+1

ℎ
using a standard finite 

element discretisation of (4). We use the backward Euler method in time (the second time derivative in (4) is approximated using the 
different quotient (15)).

In Algorithm 4.1, we apply the nodal projection to all approximate magnetisations arising from the elastic energy, i.e. in the elastic 
field on the right-hand side of (19) and in the magnetostrain term on the right-hand side of (21), whereas the nodal projection is 
omitted from the magnetisation in the exchange field on the right-hand side of (19), the cross product on the left hand side of (19), 
and from the update (20).

Notably, despite the nonlinearity of the LLG equation and its nonlinear coupling with the conservation of momentum law, Algo
rithm 4.1 is fully linear and only requires the solution of two linear systems per time-step.

Remark 4.2. In Algorithm 4.1, the magnesation update is based on the projection-free tangent plane scheme [12,1]. As our analysis 
below will show, the unit length constraint is imposed inexactly, but the constraint violation error can be controlled by the time
step size. Moreover, passing the estimate to the limit, we can show that the constraint is satisfied by the weak solution towards 
which the finite element approximations are converging. Other approaches in the literature aim to impose the constraint exactly (at 
least at the vertices of the underlying finite element mesh). This can be achieved by projecting the magnetisation onto the sphere 
after each update [3,13,2], using constraint-preserving variational formulation [14] or designing magnetisation updates based on 
exponential map [35]. In Algorithm 4.1, we refrain from these approaches as they lead to geometric restrictions on the finite element 
meshes [3,13,2] or lead to the solution of nonlinear systems of equations at each time-step [35,14].

In the following proposition, we show the well-posedness of Algorithm 4.1. The proof, based on standard arguments, is postponed 
to Section 6.1.

Proposition 4.3. Algorithm 4.1 is well defined for every 𝜃 ∈ (1∕2,1], i.e. for every integer 0 ≤ 𝑖 ≤ 𝑁 − 1, there exists a unique 
(𝒗𝑖

ℎ
,𝒎𝑖+1

ℎ
,𝒖𝑖+1

ℎ
) ∈ℎ[𝒎𝑖

ℎ
] × 1(ℎ)3 × 1

𝐷
(ℎ)3 satisfying (19)--(21).

In the following proposition, we establish a discrete counterpart of the energy law (8) satisfied by smooth solutions of the contin
uous problem (see also (12) for the corresponding property for weak solutions). Its proof is postponed to Section 6.2.

Proposition 4.4. For every integer 0≤ 𝑖 ≤𝑁 − 1, the iterates of Algorithm 4.1 satisfy the discrete energy law

[𝒖𝑖+1
ℎ

,𝒎𝑖+1
ℎ

] + 1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − [𝒖𝑖
ℎ
,𝒎𝑖

ℎ
] − 1

2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2 = −𝛼𝑘

‖‖‖𝒗𝑖ℎ‖‖‖2ℎ −𝐷𝑖
ℎ,𝑘

−𝐸𝑖
ℎ,𝑘

, (23)
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where 𝐷𝑖
ℎ,𝑘

and 𝐸𝑖
ℎ,𝑘

are given by

𝐷𝑖
ℎ,𝑘

= 𝑘2(𝜃 − 1∕2)‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 + 1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 1

2
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]‖‖‖2ℂ ≥ 0 (24)

and

𝐸𝑖
ℎ,𝑘

= 𝑘2⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒗𝑖ℎ)⟩
+ 2𝑘⟨ℂ ∶ {[𝜺(𝒖𝑖+1

ℎ
) − 𝜺m(𝒎𝑖+1

ℎ
)] − [𝜺(𝒖𝑖

ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]},ℤ(𝒎𝑖

ℎ
⊗ 𝒗𝑖

ℎ
)⟩

+ 2𝑘⟨ℂ ∶ [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)],ℤ[(𝒎𝑖

ℎ
−Πℎ𝒎

𝑖
ℎ
)⊗ 𝒗𝑖

ℎ
]⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩.

(25)

respectively.

In (24), we use the norm ‖⋅‖2ℂ = ⟨ℂ ∶ (⋅), ⋅⟩ for matrix-valued functions in 𝐿2(Ω)3×3. Thanks to our assumptions on ℂ (cf. (9)), this 
norm is equivalent to the standard 𝐿2-norm.

Looking at the right-hand side of (23), we see that the inherent 𝛼-modulated energy dissipation of the model (cf. (8)) is spoiled 
by two terms:

• the artificial damping 𝐷𝑖
ℎ,𝑘

, arising from the implicit treatment of the exchange contribution of the effective field in (19) (the 
first term) and the use of the backward Euler method in (21) (the last two terms),

• the error 𝐸𝑖
ℎ,𝑘

due to linearisation (the first term) decoupling (the second term), and use of the nodal projection to impose the 
unit length constraint on the magnetisations appearing in the elasticity terms (the third and fourth terms).

Remark 4.5. Our argument to show Proposition 4.4 for Algorithm 4.1 can be transferred to the algorithm of [15], hence a by-product 
of our analysis is a discrete energy law for that algorithm. Due to the use of the nodal projection in [15], the counterpart of (23)
is only an inequality (not an identity), its proof requires to assume that the mesh is weakly acute, and the error term 𝐸𝑖

ℎ,𝑘
does not 

include the last two terms in (25).

Now, we discuss the stability and the convergence of Algorithm 4.1. To this end, we consider the following convergence assumption 
on the approximate initial conditions:

𝒖0
ℎ
→ 𝒖0 in 𝑯1(Ω), 𝒖̇0

ℎ
→ 𝒖̇0 in 𝑳2(Ω), and 𝒎0

ℎ
→𝒎0 in 𝑯1(Ω), as ℎ→ 0. (26)

Firstly, we can show that Algorithm 4.1 is unconditionally stable and that the error in the unit length constraint can be controlled by 
the time-step size.

Proposition 4.6. Suppose that assumption (26) is satisfied. There exists a threshold 𝑘0 > 0 such that, if 𝑘 < 𝑘0, for every integer 1 ≤ 𝑗 ≤𝑁 , 
the iterates of Algorithm 4.1 satisfy

‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2+‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2+ 𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2+ 𝑗−1 ∑

𝑖=0 
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺(𝒖𝑖
ℎ
)‖‖‖2+‖‖‖𝒎𝑗

ℎ

‖‖‖2𝑯1(Ω)
+𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2+(𝜃 − 1

2

)
𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 ≤ 𝐶 (27)

and ‖‖‖ℎ

[ |||𝒎𝑗

ℎ

|||2 ]− 1‖‖‖𝐿1(Ω)
≤ 𝐶𝑘. (28)

The threshold 𝑘0 > 0 and the constant 𝐶 > 0 depend only on the shape-regularity parameter of ℎ, the problem data 𝛼, 𝑇 , Ω, ℂ, ℤ, 𝒇 and 
𝒈, and the uniform bounds of the energy of the approximate initial data guaranteed by (26).

For the proof of the result, we refer to Section 6.3. Note that (28) implies that, if the time-step size is sufficiently small, the 
approximate magnetisations generated by the algorithm belong to the set ℎ,𝛿 from (17) with 𝛿 = 𝐶𝑘.

With the approximations generated by Algorithm 4.1, we can construct the piecewise a˙ine time reconstructions 𝒖ℎ𝑘 ∶ (0, 𝑇 )→1(ℎ)3 and 𝒎ℎ𝑘 ∶ (0, 𝑇 )→ 1(ℎ)3; see (16). In the following theorem, we show that the sequences {𝒖ℎ𝑘} and {𝒎ℎ𝑘} converge in 
a suitable sense towards a weak solution of the initial boundary value problem (4)--(6) as ℎ, 𝑘 go to 0. Its proof is postponed to 
Sections 6.4--6.5.

Theorem 4.7. Suppose that assumption (26) is satisfied.

(i) There exist a weak solution (𝒖,𝒎) of (4)--(6) in the sense of Definition 2.1(i)--(iii) and a (nonrelabeled) subsequence of {(𝒖ℎ𝑘,𝒎ℎ𝑘)}
which converges towards (𝒖,𝒎) as ℎ,𝑘 → 0. In particular, as ℎ,𝑘 → 0, it holds that 𝒖ℎ𝑘

∗ 
⇀ 𝒖 in 𝐿∞(0, 𝑇 ;𝑯1

𝐷
(Ω)), 𝜕𝑡𝒖ℎ𝑘

∗ 
⇀ 𝜕𝑡𝒖 in 

𝐿∞(0, 𝑇 ;𝑳2(Ω)), 𝒎ℎ𝑘

∗ 
⇀𝒎 in 𝐿∞(0, 𝑇 ;𝑯1(Ω;𝕊2)), and 𝜕𝑡𝒎ℎ𝑘 ⇀ 𝜕𝑡𝒎 in 𝑳2(Ω𝑇 ).
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(ii) If the discretisation parameters additionally satisfy the CFL condition 𝑘 = 𝑜(ℎ9), the weak solution from part (i) satisfies the energy 
inequality (12) from Definition 2.1(iv).

The proof of Theorem 4.7 is constructive and provides also a proof of existence of weak solutions. We recall that, due to the 
non-convex nature of the problem, uniqueness of weak solutions cannot be expected (cf. the explicit proof of non-uniqueness of 
weak solutions to the pure LLG equation in [4]). Moreover, if 𝜃 ∈ [0,1∕2], then Theorem 4.7 still holds, but with an additional CFL 
condition for part (i), i.e. 𝑘 = 𝑜(ℎ2) if 𝜃 ∈ [0,1∕2) and 𝑘 = 𝑜(ℎ) if 𝜃 = 1∕2; see [2].

Remark 4.8. The application of the nodal projection to all approximate magnetisations arising from the elastic energy is responsible 
for two of the error terms in (25) and for the severe CFL condition in Theorem 4.7(ii) (cf. the analysis in Section 6.5 below), so 
one would be tempted to completely remove it. However, we believe that a fully projection-free approach would not lead to an 
unconditionally stable method. In particular, the use of the nodal projection on the outermost magnetisation in the elastic field (cf. 
(7)) is non-negotiable as the total strain 𝜺(𝒖) is only in 𝑳2(Ω). For a stable method, it would be sufficient to take only one projection, 
not two, within the magnetostrain as this would yield the estimate ‖‖ℤ ∶ (Πℎ𝒎ℎ ⊗𝒎ℎ)‖‖ ≲ ‖‖𝒎ℎ

‖‖, which would allow for the stability 
estimate of Proposition 4.6. However, we prefer not to use this approach as it would introduce some ‘unnatural’ non-symmetry.

Remark 4.9. The proof of the energy inequality typically requires extra assumptions to be proven. In [21, Appendix A], in the case of 
the LLG equation (with full effective field), its proof requires higher regularity and stronger convergence assumptions on the applied 
field and general contribution terms. In [24, Theorem 3.2], in the case of the coupled system of the LLG equation and the eddy 
current equation, a similar situation arises with a CFL condition 𝑘 = 𝑜(ℎ3∕2). The very severe CFL condition in Theorem 4.7(ii) is an 
artifact of the analysis and is due to the nonlinearity of the coupling and the fact that our proof requires explicit estimates of the 
error associated with the use of the nodal projection in the elastic terms. In particular, we need to estimate this error in a norm that 
is stronger than the 𝐿1-norm, which leads to a reduced convergence rate with respect to the time-step size 𝑘 (see Lemma 6.6 below). 
This, combined with the fact that we need inverse estimates to obtain quantities we are able to control, leads to the CFL condition. 
For more details, we refer to the proof of the result in Section 6.5 below. However, we stress that this restriction does not show up 
within the numerics (see, in particular, the experiment Section 5.3.3).

5. Numerical experiments

In this section, to show the applicability of our algorithm, we present a collection of numerical experiments. The implementation 
of Algorithm 4.1 was written using the Netgen/NGSolve package [45] using version 6.2.2302. The solution of the constrained linear 
system (19) in Algorithm 4.1 is based on the null-space method given in [41,34]. The resulting system is solved using GMRES with 
an incomplete LU decomposition preconditioner, with the previous linear update 𝒗𝑖−1

ℎ
as a starting guess. The elastic equation (21)

is solved using a Jacobi preconditioned conjugate gradient method. All computations were made on an i5-9500 CPU with 16 GB of 
installed memory.

5.1. Material parameters

In the upcoming numerical experiments, we use material parameters estimated for (𝐹𝑒90𝐶𝑜10)78𝑆𝑖12𝐵10 (which we shall call 
FeCoSiB) from [26]. For the mass density and the Gilbert damping parameter (needed in our model, but not in [26]), we take the 
values used in [33] and [30], respectively. The resulting exchange length is 𝓁ex =

√
2𝐴∕(𝜇0𝑀

2
𝑠
) ≈ 3 ⋅ 10−9 m. The stiffness tensor ℂ

is assumed to be isotropic and acts on symmetric matrices 𝜺 (the only type required) as

ℂ ∶ 𝜺 = 2𝜇 𝜺+ 𝜆 tr(𝜺) 𝐼,

where 𝜇 and 𝜆 are referred to as Lamé constants (for FeCoSiB after non-dimensionalisation we have 𝜇 ≈ 6.89 and 𝜆 ≈ 21.96). For 
the magnetostrain, we consider the expression in (13). In some experiments, the magnetic energy (2) will be supplemented with the 
term −⟨𝒉ext ,𝒎⟩ (Zeeman energy), modelling the interaction of the magnetisation with an applied external field 𝒉ext . For the sake of 
reproducibility, the values used are reported in Table 1 (we refer to Appendix B for the relationship between the fully dimensional 
model and the dimensionless setting of this paper).

5.2. Magnetoelastic coupling

In this section, we present two numerical experiments aimed at showcasing the capability of Algorithm 4.1 to simulate physical 
processes involving magnetoelastic materials.

The simulation object is a bar of FeCoSiB, clamped at one end (𝑦 = 0 plane), shown in Fig. 2. The bar has a physical length of 20𝓁ex
and width/height of 6𝓁ex. The maximum mesh size is ℎmax ≈ 0.9𝓁ex (thereby being below the exchange length). The initial magneti
sation is uniformly in the 𝑥-direction 𝒎0

ℎ
= (1,0,0), whereas we set zero initial displacement 𝒖0

ℎ
= 𝟎 with zero initial velocity 𝒖̇0

ℎ
= 𝟎. 

Gravity is enabled and implemented as a volume force 𝒇 = (0,0,−𝑔), with a value of −𝑔 = −2.97 ⋅10−14 after non-dimensionalisation. 
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Fig. 2. Experiments of Section 5.2: View from above of the FeCoSiB bar of dimensions (20𝓁ex,6𝓁ex,6𝓁ex). 

Fig. 3. Experiment of Section 5.2.1: Time evolution of the average magnetisation and displacement components for varied applied magnetic fields. 

If enabled, tractions (represented by a surface force 𝒈 applied on Γ𝑁 ) and applied external fields 𝒉ext are applied along the +𝑦 direc
tion. Simulations are run for 1 ns, using time-steps of size 2 ⋅ 10−12 s. This corresponds to a non-dimensional time length of 𝑇 ≈ 330
and time-step 𝑘 ≈ 0.66.

5.2.1. Direct magnetostrictive effect

In this experiment, we show that changes in the magnetisation yield change in the mechanical state of the body. To this end, 
we neglect traction and apply a uniform applied external field 𝒉ext along the +𝑦 direction with low values of 0,1 ⋅ 10−4,3 ⋅ 10−4,5 ⋅
10−4,7 ⋅ 10−4, which corresponds to fields of strength 0, 0.2, 0.6, 0.9, 1.3 mT. The fields are weak so that the dynamics is not too fast.

We observe the magnetisation aligning with the applied external field as expected through a precession, yielding an effect on 
the displacement. The coupling is clearly visible in Fig. 3, where we plot the time evolution of the average magnetisation and 
displacement components, e.g. ⟨𝑢𝑥⟩ = (1∕|Ω|) ∫Ω 𝑢𝑥. The applied field is pointing in the 𝑦-direction, so the 𝑦 and 𝑧 components begin 
to increase in magnitude as seen in Figs. 3b and 3c, taking from the 𝑥 component. The displacement on the other hand mirrors the 
magnetisation in the 𝑦 and 𝑧 components, with the 𝑥 component increasing due to magnetostriction, and then changing slowly as the 
magnetisation changes. Moreover, we see that, with stronger applied magnetic fields, the average magnetisation in the 𝑦 direction 
increases, displacing the body in the same direction.

In Fig. 4, we plot the time evolution of the energy for all considered applied external fields. For greater strength applied fields, 
the energy reaches a lower value at later times. Importantly, we always see the energy decreasing.
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Fig. 4. Experiment of Section 5.2.1: Total energy over time for varied applied magnetic fields. 

Fig. 5. Experiment of Section 5.2.2: Time evolution of the average magnetisation and displacement components for varied traction strengths. 

5.2.2. Inverse magnetostrictive effect

In this experiment, we show that changes in the mechanical state of the body yield change in the magnetisation. To this end, we 
disable the Zeeman field and apply a traction on the 𝑥 = 20𝓁ex plane in the +𝑦 direction. Specifically, we consider a surface force of 
the form 𝒈 = (0, 𝑏,0) for 𝑏 ∈ {0,1.28 ⋅ 10−9,3.19 ⋅ 10−9,6.38 ⋅ 10−9,1.28 ⋅ 10−8}, which corresponds to forces of strength 0, 10, 25, 50, 
100 Nm−2.

The time evolution of the average displacement and magnetisation components is shown in Fig. 5. When more traction is applied, 
the average displacement in the 𝑦 direction increases. The 𝑧 component of the magnetisation in Fig. 5c is the most interesting, as it 
decreases more strongly due to stronger tractions.
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Fig. 6. Experiment of Section 5.2.3: Time evolution of the average ⟨𝒎𝑦⟩ for varying magnetostrain values 𝜆100 , compared with purely LLG without magnetoelastic 
effects.

Fig. 7. Experiment of Section 5.2.3. Average magnetisation ⟨𝒎𝑥⟩ of (a) reference LLG and iLLG, (b) magnetoelastic LLG with varying magnetostrain. 

5.2.3. Nutation dynamics

It has been shown that at extremely short timescales, the LLG equation is inadequate for the ultrafast dynamics that occur [23,51]. 
At these timescales, the LLG equation (5) should then be replaced by the inertial LLG (iLLG) equation, given by

𝜕𝑡𝒎 = −𝒎 × 𝒉eff [𝒎] + 𝛼 𝒎 × 𝜕𝑡𝒎+ 𝜏 𝒎 × 𝜕𝑡𝑡𝒎, (29)

where the additional parameter 𝜏 > 0 is a relaxation time.
The main difference between iLLG and LLG dynamics is the inclusion of nutation, where the LLG path is not instantly followed 

due to the inertia of the magnetisation [37]. A preliminary form of the iLLG equation was initially derived using an expansion coming 
from the magnetoelastic coupling [47,48]. Here the momentum is stored by the displacement instead of the magnetisation. With the 
experiment in this section, we aim to demonstrate this effect.

We consider the same material parameters as in the previous experiments, except for the Gilbert damping parameter (for which 
we choose 𝛼 = 0.1). Moreover, as the nutation effects are small, we increase the magnetostriction constant 𝜆100 in Table 1. For the 
ferromagnetic body, we consider a hemisphere of radius 𝓁ex with a clamped planar face with outer normal (−1,0,0). We use the 
values {20𝜆100,50𝜆100,100𝜆100}, and compare this to a reference LLG simulation with no magnetoelastic coupling (computed by 
the same algorithm with 0𝜆100). The initial magnetisation is slightly perturbed from the 𝑥-direction, specifically 𝒎0 = (0.9,0.2,0)
(normalised), and subject to a strong Zeeman field 𝒉ext = (1,0,0) = (3𝜋∕5,0,0) T. The initial displacement and velocity are zero. We 
set 𝜃 = 0.50000005, and consider a non-dimensional time-step 𝑘 = 0.001 ≈ 3 ⋅ 10−15s, for time 𝑇 = 1 ⋅ 10−10s. The mesh is made of 
210 nodes, 672 elements, and satisfies ℎmax ≈ 0.6𝓁ex.

The results can be seen in Fig. 6. It is easily seen that as the magnetostrain parameter is increased, the dissipative effects decrease, 
seen as a stretching effect to the right. As expected, we see nutation effects perturbing the natural LLG precession behaviour, especially 
for 50𝜆100 and 100𝜆100.
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Fig. 8. Experiment of Section 5.3.1: Time evolution of the total energy for different values of 𝜃. 

For reference, we also consider this same system without magnetoelastic coupling for the iLLG equation. The modifications re
quired to extend the tangent plane scheme presented in [2] to the iLLG equation are described and analysed in [44]. For consistency, 
we apply the tangent plane scheme here with the nodal projection step removed. We choose the relaxation time arbitrarily to be 
𝜏 = 0.4 ≈ 1.21 ps. The average 𝑥 component of the magnetisation for iLLG is shown in Fig. 7a, and the average 𝑥 components of the 
magnetisation for the magnetoelastic LLG simulations are shown in Fig. 7b. The qualitative similarities are obvious, with additional 
oscillations not seen in the pure LLG case, along with lessened damping.

5.3. Properties of Algorithm 4.1

In this section, we present three experiments to numerically investigate the properties of Algorithm 4.1. For all of them, the 
computational domain will be a cube with edge length equal to 6𝓁ex.

5.3.1. 𝜃-dependence

In this experiment, we investigate the effect on numerical simulations of the parameter 𝜃 ∈ (1∕2,1], which controls the ‘degree of 
implicitness’ in the treatment of the exchange contribution in (19). We use material parameters for FeCoSiB (cf. Table 1) except for 
the Gilbert damping parameter, for which we use the smaller value 𝛼 = 0.001. The initial condition for the magnetisation is a ‘hot’ 
magnetic state, i.e. the values at the vertices of the mesh (which in this experiment has mesh size ℎmax ≈ 3𝓁ex) are assigned randomly 
to the magnetisation before being normalised. The displacement and its time derivative are initialised by zero.

We run the simulation for 1 ⋅10−11 s using a time step size of 1 ⋅10−15 s and different values of 𝜃 ∈ {0.50000005,0.505,0.6,0.7,0.8, 
0.9,1}.

The energy-decreasing behaviour can be seen in Fig. 8, with considerably more energy loss associated with greater 𝜃 values. So 
changing the 𝜃-implicitness parameter away from 1∕2 can yield considerable amounts of artificial numerical damping, which can be 
particularly bad in certain situations (e.g. in the case of long-time simulations).

5.3.2. Unit length constraint violation

An essential property of the LLG equation at constant temperature is the unit length constraint on the magnetisation. Hence, an 
essential feature of any approximation algorithm must be the capability to achieve the unit length constraint. For Algorithm 4.1, this 
property is the subject of Proposition 4.6, particularly (28), i.e.‖‖‖ℎ

[ |||𝒎𝑗

ℎ

|||2 ]− 1‖‖‖𝐿1(Ω)
≤ 𝐶𝑘,

which shows that the unit length constraint is violated at most linearly in time (if measured in the 𝐿1 -norm).
To see this numerically, we again consider a hot magnet as in Section 5.3.1, a particularly bad case with plenty of rotation by the 

magnetisation (note that the constant 𝐶 > 0 in (28) depends, among other things, upon the energy of the initial magnetisation and is 
large for a random configuration), and use various time-steps with 𝜃 = 0.50000005.

In Fig. 9a, we plot the constraint violation (measured as the left-hand side of (28)) at the finale iterate 𝒎𝑁
ℎ

of Algorithm 4.1 against 
the time-step size 𝑘. We observe that the error decays linearly in 𝑘 as predicted by (28). The constraint violation is of the order 102
for 𝑘 on the order of 10−3∕2 due to the hot initial state, as the magnetisation at a node may need to rotate several times. Note that 
these simulations are run for only 0.01 ns as we are only interested in verifying the constraint violation inequalities.

In Fig. 9b, we plot the 𝐿∞-norm of the magnetisation at the final iterate against the time-step size 𝑘. We note that while we can 
control the integral violation with (28), in our projection-free algorithm we cannot directly control the maximum norm ‖‖‖𝒎𝑗

ℎ

‖‖‖𝑳∞(Ω)
, 
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Fig. 9. Experiment of Section 5.3.2: (a) Constraint violation at the final iterate against the time-step size. (b) 𝐿∞-norm of the magnetisation at the final iterate against 
the time-step size.

which with a projection would be 1 for each 𝑗. We see that the nodal maximum numerically tends to 1 as desired, but the decay is 
not linear. Using similar methods to those to prove (28) (see Lemma 6.2 below) and classical inverse estimates [11, Lemma 3.5], one 
can show that

‖‖‖𝒎𝑗

ℎ

‖‖‖2𝑳∞ − 1 = max 
𝑧∈ℎ

|𝒎𝑗

ℎ
(𝑧)|2 − 1 ≤ 𝑘2

𝑗−1 ∑
𝑖=0 

max 
𝑧∈ℎ

|𝒗𝑖
ℎ
(𝑧)|2 = 𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2𝑳∞(Ω)

≲ ℎ−3
min𝑘

2
𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2𝑳2(Ω)

≲ ℎ−3
min𝑘,

thus the desired convergence ‖‖‖𝒎𝑗

ℎ

‖‖‖𝑳∞(Ω)
→ 1 as ℎ,𝑘→ 0 can be obtained assuming the CFL condition 𝑘 = 𝑜(ℎ3).

5.3.3. Energy law robustness

In this experiment, we investigate the robustness of the evolution of the energy of the approximations generated by Algorithm 4.1
with respect to the discretisation parameters.

We consider a similar setup to the one used in Section 5.3.1. Specifically, we keep 𝜃 = 0.50000005 and 𝛼 = 0.001, but we add a 
Zeeman field 𝒉ext = (0.001,0,0) ≈ (1.9,0,0)mT to encourage the system to approach the same final state. To give consistency between 
mesh refinements we change from a purely random initial state to the following initial condition for the magnetisation,

𝒎0(𝑥, 𝑦, 𝑧) = 1 √
5
(2, sin(𝑥+ 𝑦+ 𝑧), cos(𝑥+ 𝑦+ 𝑧)) for all (𝑥, 𝑦, 𝑧) ∈ Ω.

It is easily shown that the initial condition satisfies ‖‖‖𝛁𝒎0‖‖‖2 ∕2 = 64.8 and |||𝒎0||| = 1 in Ω. NGSolve interpolates the initial condition 
onto the mesh via an Oswald-type interpolation [38], applying an 𝐿2-projection and then averaging for conformity, thus to enforce 
the condition 𝒎0

ℎ
∈ℎ,0 we apply the nodal projection to the result of this interpolation. We then ran the simulation for 𝑇 ≈ 3.32

with combinations of 𝑘 = 0.01, 0.005, 0.0025, 0.00125, 0.000625 as time-step size and ℎ = 1.59, 1.09, 0.84, 0.45 as mesh size.
As can be observed in Fig. 10, the energy decay (and thus stability of the algorithm) occurs for all mesh sizes and time-steps. The 

initial energy is different for each due to the differing underlying mesh, and the interpolation process mentioned above (which is also 
different for each mesh), however the initial energies approach the actual energy. The different energy progressions are clustered 
into the four groups with similar energy decay when the time-step is the same. When the time-step size is smaller, the energy decay is 
slower, likely due to the error term in the discrete energy law (cf. the term 𝐸𝑖

ℎ,𝑘
in (23)). With no error term present, the dissipation 

would always reduce with lower time-step sizes.
These results show that the algorithm behaves energetically well for all combinations of mesh and time-step size considered, 

including the worst case scenario for a CFL condition (when the finest mesh with ℎ = 0.45 and the largest time-step size 𝑘 = 0.01 are 
used). Clearly, this is not a mathematical proof that the restrictive CFL condition we need to show Theorem 4.7(ii) is not needed, 
however our numerical experiments seem to corroborate this claim.

6. Proofs

In this section, we collect the proofs of the results presented in Section 4. For the convenience of the reader, we start with recalling 
some well-known results that will be used multiple times throughout the upcoming analysis.

The norm ‖⋅‖ℎ induced by the mass-lumped 𝐿2-product (18) satisfies the norm equivalence

‖‖𝝓ℎ
‖‖ ≤ ‖‖𝝓ℎ

‖‖ℎ ≤√5 ‖‖𝝓ℎ
‖‖ for all 𝝓ℎ ∈ 1(ℎ)3, (30)
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Fig. 10. Time evolution of the total energy of different values of ℎ and 𝑘. 

and we have the error estimate

|⟨𝝓ℎ,𝝍ℎ⟩ − ⟨𝝓ℎ,𝝍ℎ⟩ℎ| ≤ 𝐶ℎ2 ‖‖𝛁𝝓ℎ
‖‖ ‖‖𝛁𝝍ℎ

‖‖ for all 𝝓ℎ,𝝍ℎ ∈ 1(ℎ)3, (31)

(cf. [11, Lemma 3.9]). For all 𝐾 ∈ ℎ and 1 ≤ 𝑟, 𝑝 ≤∞, we have the local inverse estimate

‖‖𝝓ℎ
‖‖𝑳𝑝(𝐾) ≤ 𝐶ℎ

3(𝑟−𝑝)∕(𝑝𝑟)
𝐾

‖‖𝝓ℎ
‖‖𝑳𝑟(𝐾) for all 𝝓ℎ ∈ 1(ℎ)3 (32)

(see, e.g. [11, Lemma 3.5]). For all 1 ≤ 𝑝 < ∞, the 𝐿𝑝-norm of functions in 1(ℎ)3 is equivalent with the 𝓁𝑝-norm of the vector 
collecting their nodal values, weighted by the local mesh size, i.e.

𝐶−1 ‖‖𝝓ℎ
‖‖𝑳𝑝(Ω) ≤

⎛⎜⎜⎝
∑

𝑧∈ℎ

ℎ3
𝑧
||𝝓ℎ(𝑧)||𝑝⎞⎟⎟⎠

1∕𝑝

≤ 𝐶 ‖‖𝝓ℎ
‖‖𝑳𝑝(Ω) for all 𝝓ℎ ∈ 1(ℎ)3, (33)

where ℎ𝑧 > 0 denotes the diameter of the node patch of 𝑧 ∈ℎ (cf. [11, Lemma 3.4]). If 𝑝 =∞, we have that

‖‖𝝓ℎ
‖‖𝑳∞(Ω) = max 

𝑧∈ℎ

||𝝓ℎ(𝑧)|| for all 𝝓ℎ ∈ 1(ℎ)3.
Finally, the nodal projection is 𝐻1-stable, i.e., it holds that

‖‖𝛁Πℎ𝜙ℎ
‖‖ ≤ 𝐶 ‖‖𝛁𝜙ℎ

‖‖ for all 𝝓 ∈ 1(ℎ)3 satisfying |𝝓(𝑧)| ≥ 1 for all 𝑧 ∈ℎ; (34)

see [12, Lemma 2.2]. We recall that (34) holds with 𝐶 = 1 if all non-diagonal entries of the stiffness matrix are non-positive (cf. [11, 
Proposition 3.2]). This assumption, which is satisfied under very restrictive geometric conditions on the mesh in three dimensions, is 
not required by the upcoming analysis. In all these inequalities, the constant 𝐶 > 0 (not the same at each occurrence) depends only 
on the shape-regularity of ℎ.

6.1. Well-posedness

We start by showing an estimate of the 𝐿2-norm of the discrete elastic field.

Lemma 6.1. For all 𝒖ℎ,𝒎ℎ ∈ 1(ℎ)3 with ||𝒎ℎ(𝑧)|| ≥ 1 for all 𝑧 ∈ℎ, it holds that

‖‖𝒉m[𝒖ℎ,Πℎ𝒎ℎ]‖‖2 ≤ 8‖ℤ‖2
𝑳∞(Ω) ‖ℂ‖2𝑳∞(Ω)

(‖‖𝜺(𝒖ℎ)‖‖2 + ‖ℤ‖2𝑳∞(Ω) |Ω|) . (35)
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Proof. Using the expression of the discrete elastic field, we have‖‖𝒉m[𝒖ℎ,Πℎ𝒎ℎ]‖‖2
(7)
= ‖‖‖2(ℤ⊤ ∶ {ℂ ∶ [𝜺(𝒖ℎ) − 𝜺m(Πℎ𝒎ℎ)]})Πℎ𝒎ℎ

‖‖‖2
≤ 4‖ℤ‖2

𝑳∞(Ω) ‖ℂ‖2𝑳∞(Ω)
‖‖𝜺(𝒖ℎ) −ℤ ∶ (Πℎ𝒎ℎ ⊗Πℎ𝒎ℎ)‖‖2 ‖‖Πℎ𝒎ℎ

‖‖2𝑳∞(Ω)

≤ 8‖ℤ‖2
𝑳∞(Ω) ‖ℂ‖2𝑳∞(Ω)

(‖‖𝜺(𝒖ℎ)‖‖2 + ‖ℤ‖2𝑳∞(Ω) |Ω|) ,

where we have used the boundedness of the fourth-order tensors and Πℎ𝒎ℎ. □

We can now show the well-posedness of Algorithm 4.1.

Proof of Proposition 4.3. The proof is basically identical to the one given in [15] for the algorithm proposed therein. We restate it 
here including other terms.

For the magnetisation term, define the family of bilinear form 𝑎𝑖
1(⋅, ⋅) ∶ℎ[𝒎𝑖

ℎ
] ×ℎ[𝒎𝑖

ℎ
]→ℝ for 𝑖 = 0,… ,𝑁 − 1, by

𝑎𝑖
1(𝝓ℎ,𝝍ℎ) ∶= 𝛼⟨𝝓ℎ,𝝍ℎ⟩ℎ + 𝜃𝑘⟨𝛁𝝓ℎ,𝛁𝝍ℎ⟩ + ⟨𝒎𝑖

ℎ
×𝝓ℎ,𝝍ℎ⟩

and the family of linear (and bounded by Lemma 6.1) functionals 𝐿𝑖
1 for 𝑖 = 0,… ,𝑁 − 1 by

𝐿𝑖
1(𝝓ℎ) ∶= −⟨𝛁𝒎𝑖

ℎ
,𝛁𝝓ℎ⟩ + ⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
],𝝓ℎ⟩.

Then (19) can be rewritten as 𝑎𝑖
1(𝒗

𝑖
ℎ
,𝝍ℎ) = 𝐿𝑖

1(𝝍ℎ) for all 𝝍ℎ ∈ℎ[𝒎𝑖
ℎ
]. We can see that 𝑎𝑖

1(⋅, ⋅) is positive definite (in 𝑳2(Ω) and 
𝑯1(Ω)), as letting 𝝓ℎ = 𝝍ℎ eliminates the final term, leaving a combination of the 𝐿2 -norm and 𝐻1-seminorm. It follows by the 
finite dimensionality that (19) has a unique solution 𝒗𝑖

ℎ
∈ℎ[𝒎𝑖

ℎ
].

For the displacement term, define the bilinear form 𝑎2 ∶ 1
𝐷
(ℎ)3 × 1

𝐷
(ℎ)3 →ℝ by

𝑎2(𝝓ℎ,𝝍ℎ) ∶= ⟨𝝓ℎ,𝝍ℎ⟩ + 𝑘2⟨ℂ ∶ 𝜺(𝝓ℎ),𝜺(𝝍ℎ)⟩.
As ℂ is positive definite by assumption, applying Korn’s inequality (see, e.g. [19, Theorem 11.2.6]) yields positive definiteness of 
𝑎2(⋅, ⋅) in 𝑯1(Ω). Furthermore, defining the family of linear functionals

𝐿𝑖
2(𝝍ℎ) ∶= 𝑘2⟨ℂ ∶ 𝜺m(Πℎ𝒎

𝑖+1
ℎ

),𝜺(𝝍ℎ)⟩ + 𝑘⟨d𝑡𝒖𝑖ℎ,𝝍ℎ⟩ + ⟨𝒖𝑖ℎ,𝝍ℎ⟩ + 𝑘2⟨𝒇 ,𝝍ℎ⟩ + 𝑘2⟨𝒈,𝝍ℎ⟩Γ𝑁
,

we have that (21) is equivalent to 𝑎2(𝒖𝑖+1ℎ
,𝝍ℎ) = 𝐿𝑖

2(𝝍ℎ) for all 𝝍ℎ ∈ 1
𝐷
(ℎ)3, for each 𝑖 = 0,… ,𝑁 − 1. Again exploiting the finite 

dimension, we have existence and uniqueness of a solution 𝒖𝑖+1
ℎ

∈ 1
𝐷
(ℎ)3 to (21). □

6.2. Discrete energy law

We now prove the discrete energy law satisfied by the iterates of Algorithm 4.1.

Proof of Proposition 4.4. Let 0 ≤ 𝑖 ≤𝑁 −1 be an arbitrary integer. Choosing the test function 𝝓ℎ = 𝒗𝑖ℎ ∈ℎ[𝒎𝑖
ℎ
] in (19), we obtain

𝛼
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ + 𝜃𝑘

‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 = −⟨𝛁𝒎𝑖
ℎ
,𝛁𝒗𝑖

ℎ
⟩ + ⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
],𝒗𝑖

ℎ
⟩.

Moreover, we have

1
2
‖‖‖𝛁𝒎𝑖+1

ℎ

‖‖‖2 = 1
2
‖‖‖𝛁𝒎𝑖

ℎ

‖‖‖2 + 𝑘⟨𝛁𝒎𝑖
ℎ
,𝛁𝒗𝑖

ℎ
⟩ + 𝑘2

2 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 .

Combining the two above equations, we obtain

m[𝒎𝑖+1
ℎ

] − m[𝒎𝑖
ℎ
] = −𝛼𝑘

‖‖‖𝒗𝑖ℎ‖‖‖2ℎ − 𝑘2(𝜃 − 1∕2)‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 + 𝑘⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎
𝑖
ℎ
],𝒗𝑖

ℎ
⟩. (36)

Choosing the test function 𝝍ℎ = 𝒖𝑖+1ℎ
− 𝒖𝑖

ℎ
= 𝑘 d𝑡𝒖𝑖+1ℎ

in (21) yields

⟨d𝑡𝒖𝑖+1ℎ
− d𝑡𝒖𝑖ℎ,d𝑡𝒖

𝑖+1
ℎ
⟩ + ⟨ℂ[𝜺(𝒖𝑖+1

ℎ
) − 𝜺m(Πℎ𝒎

𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩ = ⟨𝒇 ,𝒖𝑖+1

ℎ
− 𝒖𝑖

ℎ
⟩ + ⟨𝒈,𝒖𝑖+1

ℎ
− 𝒖𝑖

ℎ
⟩Γ𝑁

.

Using Lemma A.5, the first term on the left-hand side can be reformulated as

⟨d𝑡𝒖𝑖+1ℎ
− d𝑡𝒖𝑖ℎ,d𝑡𝒖

𝑖+1
ℎ
⟩ = 1

2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − 1
2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2 + 1

2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2

which yields
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1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − 1
2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2 + 1

2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + ⟨ℂ[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩ = ⟨𝒇 ,𝒖𝑖+1

ℎ
− 𝒖𝑖

ℎ
⟩ + ⟨𝒈,𝒖𝑖+1

ℎ
− 𝒖𝑖

ℎ
⟩Γ𝑁

.

(37)

Similarly, we have

⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

= ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

= ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)], [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]⟩

+ ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(𝒎𝑖
ℎ
)⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

(51)
= 1

2
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)‖‖‖2ℂ − 1
2
‖‖‖𝜺(𝒖𝑖ℎ) − 𝜺m(𝒎𝑖

ℎ
)‖‖‖2ℂ

+ 1
2
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]‖‖‖2ℂ

+ ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(𝒎𝑖
ℎ
)⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩,

respectively. Altogether, we thus obtain

el[𝒖𝑖+1ℎ
,𝒎𝑖+1

ℎ
] + 1

2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − el[𝒖𝑖ℎ,𝒎𝑖
ℎ
] − 1

2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2

= −1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 − 1

2
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]‖‖‖2ℂ

− ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(𝒎𝑖
ℎ
)⟩

− ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩.

(38)

Combining (36) and (38) yields

[𝒖𝑖+1
ℎ

,𝒎𝑖+1
ℎ

] + 1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − [𝒖𝑖
ℎ
,𝒎𝑖

ℎ
] − 1

2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2

= −𝛼𝑘
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ − 𝑘2(𝜃 − 1∕2)‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 + 𝑘⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
],𝒗𝑖

ℎ
⟩

− 1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 − 1

2
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]‖‖‖2ℂ

− ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(𝒎𝑖
ℎ
)⟩

− ⟨ℂ ∶ [𝜺(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺m(𝒖𝑖+1ℎ
) − 𝜺(𝒖𝑖

ℎ
)⟩

= −𝛼𝑘
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ −𝐷𝑖

ℎ,𝑘
−𝐸𝑖

ℎ,𝑘
,

where, in the last identity, we have used the expression of 𝐷𝑖
ℎ,𝑘

in (24) and we have defined

𝐸𝑖
ℎ,𝑘

∶= ⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(𝒎𝑖
ℎ
)⟩

− 𝑘⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎
𝑖
ℎ
],𝒗𝑖

ℎ
⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

To conclude the proof of (23), it remains to show that the latter coincides with (25). To this end, using the expression of the elastic 
field and Lemma A.4, we obtain

𝑘⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎
𝑖
ℎ
],𝒗𝑖

ℎ
⟩ (7)
= 2𝑘⟨ℤ⊤ℂ ∶ [𝜺(𝒖𝑖

ℎ
) − 𝜺m(Πℎ𝒎

𝑖
ℎ
)]Πℎ𝒎

𝑖
ℎ
,𝒗𝑖

ℎ
⟩

(50)
= 2𝑘⟨ℂ ∶ [𝜺(𝒖𝑖

ℎ
) − 𝜺m(Πℎ𝒎

𝑖
ℎ
)],ℤ(Πℎ𝒎

𝑖
ℎ
⊗ 𝒗𝑖

ℎ
)⟩.

Moreover, from (20) and the minor symmetry of ℤ, we get the expansion

𝜺m(𝒎𝑖+1
ℎ

) = 𝜺m(𝒎𝑖
ℎ
) + 2𝑘 ℤ(𝒎𝑖

ℎ
⊗ 𝒗𝑖

ℎ
) + 𝑘2𝜺m(𝒗𝑖ℎ). (39)

Altogether, it follows that
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𝐸𝑖
ℎ,𝑘

= 𝑘2⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒗𝑖ℎ)⟩
+ 2𝑘⟨ℂ ∶ [𝜺(𝒖𝑖+1

ℎ
) − 𝜺m(𝒎𝑖+1

ℎ
)],ℤ(𝒎𝑖

ℎ
⊗ 𝒗𝑖

ℎ
)⟩

− 2𝑘⟨ℂ ∶ [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)],ℤ(Πℎ𝒎

𝑖
ℎ
⊗ 𝒗𝑖

ℎ
)⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

= 𝑘2⟨ℂ ∶ [𝜺(𝒖𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)],𝜺m(𝒗𝑖ℎ)⟩
+ 2𝑘⟨ℂ ∶ {[𝜺(𝒖𝑖+1

ℎ
) − 𝜺m(𝒎𝑖+1

ℎ
)] − [𝜺(𝒖𝑖

ℎ
) − 𝜺m(𝒎𝑖

ℎ
)]},ℤ(𝒎𝑖

ℎ
⊗ 𝒗𝑖

ℎ
)⟩

+ 2𝑘⟨ℂ ∶ [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎𝑖

ℎ
)],ℤ[(𝒎𝑖

ℎ
−Πℎ𝒎

𝑖
ℎ
)⊗ 𝒗𝑖

ℎ
]⟩

+ ⟨ℂ ∶ [𝜺m(𝒎𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖+1
ℎ

)],𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩.

This shows (25) and concludes the proof. □

6.3. Stability

We now prove Proposition 4.6 showing unconditional stability of Algorithm 4.1 and an estimate of the violation of the unit length 
constraint. For the sake of clarity, we split the proof into several lemmas.

An immediate consequence of the projection-free update (19) is the following 𝐿2-bound for the approximate magnetisations.

Lemma 6.2. For every integer 1≤ 𝑗 ≤𝑁 , it holds that

‖‖‖𝒎𝑗

ℎ

‖‖‖2 ≤ 𝐶1

(
1 + 𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2

)
, (40)

‖‖‖ℎ

[ |||𝒎𝑗

ℎ

|||2 ]− 1‖‖‖𝐿1(Ω)
≤ 𝐶2𝑘

2
𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2 . (41)

where 𝐶1,𝐶2 > 0 are constants depending the shape-regularity parameter of ℎ (𝐶1 depends also on |Ω|).
Proof. We follow [12]. Starting from (20) and noting that 𝒗𝑖

ℎ
∈ℎ[𝒎𝑖

ℎ
], we have for each 𝑧 ∈ℎ that for every 0 ≤ 𝑖 ≤ 𝑗 − 1

|||𝒎𝑖+1
ℎ

(𝑧)|||2 = |||𝒎𝑖
ℎ
(𝑧)|||2 + 𝑘2

|||𝒗𝑖ℎ(𝑧)|||2 .
Inductively, starting with |𝒎0

ℎ
(𝑧)| = 1, we deduce that

|𝒎𝑗

ℎ
(𝑧)|2 = 1 + 𝑘2

𝑗−1 ∑
𝑖=0 
|𝒗𝑖

ℎ
(𝑧)|2.

Then, noting that ‖1‖ = |Ω|1∕2 and using (33) yields (40) (for a suitable constant 𝐶1 > 0 we do not explicitly compute). The same 
argument shows (41). □

We also have the following estimate of all quantities involving the magnetisation.

Lemma 6.3. For every integer 1≤ 𝑗 ≤𝑁 , it holds that

‖‖‖𝛁𝒎𝑗

ℎ

‖‖‖2 + 𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2 + (𝜃 − 1

2

)
𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 ≤ 𝐶3

[‖‖‖𝛁𝒎0
ℎ

‖‖‖2 + 𝑘

𝑗−1 ∑
𝑖=0 

(
1 + ‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2

)]
, (42)

where 𝐶3 > 0 depends only on 𝛼, |Ω|, ‖ℤ‖𝑳∞(Ω), and ‖ℂ‖𝑳∞(Ω).

Proof. Let 1 ≤ 𝑗 ≤𝑁 be an integer. Starting from (36) (cf. the proof of Proposition 4.4), we sum up from 0 to 𝑗 − 1 to obtain

1
2
‖‖‖𝛁𝒎𝑗

ℎ

‖‖‖2 + 𝛼𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ + (𝜃 − 1

2

)
𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 = 1

2
‖‖‖𝛁𝒎0

ℎ

‖‖‖2 + 𝑘

𝑗−1 ∑
𝑖=0 
⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
],𝒗𝑖

ℎ
⟩.

Using Lemma 6.1, we can estimate the term involving the elastic field for some 𝜈 > 0 by

|||⟨𝒉m[𝒖𝑖ℎ,Πℎ𝒎
𝑖
ℎ
],𝒗𝑖

ℎ
⟩||| ≤ 1 

4𝜈
‖‖‖𝒉m[𝒖𝑖ℎ,Πℎ𝒎

𝑖
ℎ
]‖‖‖2 + 𝜈

‖‖‖𝒗𝑖ℎ‖‖‖2 (35)≤ 2 
𝜈
‖ℤ‖2

𝑳∞(Ω) ‖ℂ‖2𝑳∞(Ω)

(‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2 + ‖ℤ‖2𝑳∞(Ω) |Ω|)+ 𝜈
‖‖‖𝒗𝑖ℎ‖‖‖2 .

Then we get
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1
2
‖‖‖𝛁𝒎𝑗

ℎ

‖‖‖2 + 𝛼𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ + (𝜃 − 1

2

)
𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 ≤ 1

2
‖‖‖𝛁𝒎0

ℎ

‖‖‖2
+ 2𝑘

𝜈

𝑗−1 ∑
𝑖=0 
‖ℤ‖2

𝑳∞(Ω) ‖ℂ‖2𝑳∞(Ω)

(‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2 + ‖ℤ‖2𝑳∞(Ω) |Ω|)+ 𝜈𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2 . 

Using (30) and choosing 𝜈 = 𝛼∕2 yields (42) (for a suitable constant 𝐶3 > 0 which we do not compute explicitly). □

In the following lemma, we show that the magnetostrain is Lipschitz continuous with respect to the magnetisation (the use of the 
nodal projection is exploited here).

Lemma 6.4. For all 𝒎ℎ,1,𝒎ℎ,2 ∈ 1(ℎ)3 satisfying ||𝒎ℎ,𝓁(𝑧)|| ≥ 1 for all 𝓁 = 1,2 and 𝑧∈ℎ, it holds that

‖‖𝜺m(Πℎ𝒎ℎ,1) − 𝜺m(Πℎ𝒎ℎ,2)‖‖ ≤ 𝐶m ‖‖𝒎ℎ,1 −𝒎ℎ,2‖‖ , (43)

where 𝐶m > 0 depends only on ‖ℤ‖𝑳∞(Ω) and the shape-regularity parameter of ℎ.

Proof. Straightforward calculations exploiting the boundedness guaranteed by the nodal projection, i.e. ‖‖Πℎ𝒎ℎ,1‖‖𝑳∞(Ω) = ‖‖Πℎ𝒎ℎ,2‖‖𝑳∞(Ω) = 1, show that

‖‖𝜺m(Πℎ𝒎ℎ,1) − 𝜺m(Πℎ𝒎ℎ,2)‖‖ ≲ ‖‖Πℎ𝒎ℎ,1 − Πℎ𝒎ℎ,2‖‖ ,

where the hidden constant depends on ‖ℤ‖𝑳∞(Ω). From the norm equivalence in [11, Lemma 3.4]) and the fact that the projection 
onto the sphere is non-expanding (i.e. Lipschitz continuous with constant 1), it follows that

‖‖Πℎ𝒎ℎ,1 − Πℎ𝒎ℎ,2‖‖ ≲ ‖‖𝒎ℎ,1 −𝒎ℎ,2‖‖ ,
where the hidden constant depends on the shape-regularity of the mesh. Combining the above two estimates yields the desired result, 
where 𝐶m > 0 is the product of the two constants hidden above. □

Lemma 6.5. For every integer 1≤ 𝑗 ≤𝑁 , the following estimate holds

‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 + ‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2 + 𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 𝑗−1 ∑

𝑖=0 
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺(𝒖𝑖
ℎ
)‖‖‖2

≤ 𝐶4

[
1 + ‖‖‖𝒖̇0ℎ‖‖‖2 + ‖‖‖𝜺(𝒖0ℎ)‖‖‖2 + ‖‖‖𝛁𝒎0

ℎ

‖‖‖2 + 𝑘

𝑗−1 ∑
𝑖=0 

(
1 + ‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2

)]
, (44)

where 𝐶4 > 0 depends only on the shape-regularity parameter of ℎ and the problem data 𝛼, Ω, ℂ, ℤ, 𝒇 and 𝒈.

Proof. Let 1 ≤ 𝑗 ≤𝑁 be an integer. Starting from (37) (cf. the proof of Proposition 4.4), summing up from 0 to 𝑗 − 1, we have

1
2
‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 − 1

2
‖‖‖d𝑡𝒖0ℎ‖‖‖2 + 1

2

𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 𝑗−1 ∑

𝑖=0 
⟨ℂ ∶ 𝜺(𝒖𝑖+1

ℎ
),𝜺(𝒖𝑖+1

ℎ
) − 𝜺(𝒖𝑖

ℎ
)⟩

=
𝑗−1 ∑
𝑖=0 
⟨ℂ ∶ 𝜺m(Πℎ𝒎

𝑖+1
ℎ

),𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩ + ⟨𝒇 ,𝒖𝑗

ℎ
⟩ − ⟨𝒇 ,𝒖0

ℎ
⟩ + ⟨𝒈,𝒖𝑗

ℎ
⟩Γ𝑁

− ⟨𝒈,𝒖0
ℎ
⟩Γ𝑁

. 

Applying Lemma A.5 to the last term on the left-hand side and rearranging we have

1
2
‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 + 1

2
‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2ℂ + 1

2

𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 1

2

𝑗−1 ∑
𝑖=0 
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺(𝒖𝑖
ℎ
)‖‖‖2ℂ

= 1
2
‖‖‖d𝑡𝒖0ℎ‖‖‖2 + 1

2
‖‖‖𝜺(𝒖0ℎ)‖‖‖2ℂ +

𝑗−1 ∑
𝑖=0 
⟨ℂ ∶ 𝜺m(Πℎ𝒎

𝑖+1
ℎ

),𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩ + ⟨𝒇 ,𝒖𝑗

ℎ
⟩ − ⟨𝒇 ,𝒖0

ℎ
⟩ + ⟨𝒈,𝒖𝑗

ℎ
⟩Γ𝑁

− ⟨𝒈,𝒖0
ℎ
⟩Γ𝑁

. 
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The term involving the magnetostrain can be estimated as

𝑗−1 ∑
𝑖=0 
⟨ℂ ∶ 𝜺m(Πℎ𝒎

𝑖+1
ℎ

),𝜺(𝒖𝑖+1
ℎ

) − 𝜺(𝒖𝑖
ℎ
)⟩

= ⟨𝜺m(Πℎ𝒎
𝑗

ℎ
),ℂ ∶ 𝜺(𝒖𝑗

ℎ
)⟩ − ⟨𝜺m(Πℎ𝒎

1
ℎ
),ℂ ∶ 𝜺(𝒖0

ℎ
)⟩ − 𝑘

𝑗−1 ∑
𝑖=1 
⟨d𝑡𝜺m(Πℎ𝒎

𝑖+1
ℎ

),ℂ ∶ 𝜺(𝒖𝑖
ℎ
)⟩

≤ ‖‖‖𝜺m(Πℎ𝒎
𝑗

ℎ
)‖‖‖2 + 1

4
‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2ℂ + 1

2
‖‖‖𝜺m(Πℎ𝒎

1
ℎ
)‖‖‖2ℂ + 1

2
‖‖‖𝜺(𝒖0ℎ)‖‖‖2ℂ

+ 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖d𝑡𝜺m(Πℎ𝒎

𝑖+1
ℎ

)‖‖‖2 + 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2ℂ

≤ 3
2
‖ℤ‖2

𝑳∞(Ω) |Ω|+ 1
4
‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2ℂ + 1

2
‖‖‖𝜺(𝒖0ℎ)‖‖‖2ℂ

+ 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖d𝑡𝜺m(Πℎ𝒎

𝑖+1
ℎ

)‖‖‖2 + 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2ℂ .

Using Lemma 6.4, we get‖‖‖d𝑡𝜺m(Πℎ𝒎
𝑖+1
ℎ

)‖‖‖ = 1 
𝑘

‖‖‖𝜺m(Πℎ𝒎
𝑖+1
ℎ

) − 𝜺m(Πℎ𝒎
𝑖
ℎ
)‖‖‖ (43)≤ 1 

𝑘
𝐶m
‖‖‖𝒎𝑖+1

ℎ
−𝒎𝑖

ℎ

‖‖‖ = 𝐶m
‖‖‖𝒗𝑖ℎ‖‖‖ .

It follows that

𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖d𝑡𝜺m(Πℎ𝒎

𝑖+1
ℎ

)‖‖‖2 ≤ 𝐶2
m 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖𝒗𝑖ℎ‖‖‖2 .

Moreover, for every 𝛿 > 0 we have that

|||⟨𝒇 ,𝒖𝑗ℎ⟩ + ⟨𝒈,𝒖𝑗ℎ⟩Γ𝑁

||| ≤ 𝐶KPC(‖𝒇‖ + ‖𝒈‖Γ𝑁
)‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖ℂ ≤ 𝐶2

KPC
4𝛿 

(‖𝒇‖ + ‖𝒈‖Γ𝑁
)2 + 𝛿

‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2ℂ ,

where 𝐶KPC > 0 is a constant depending only on |Ω| and ℂ (a combination of the continuity constant of the trace operator 𝑯 1(Ω)→
𝑳2(Γ𝑁 ), the constants appearing in Poincaré’s and Korn’s inequalities, and the equivalence constant in the norm equivalence ‖⋅‖ ≃‖⋅‖ℂ). Overall, choosing 𝛿 = 1∕8 and recalling that d𝑡𝒖0ℎ = 𝒖̇

0
ℎ
, we obtain

1
2
‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 + 1

8
‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2ℂ + 1

2

𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 1

2

𝑗−1 ∑
𝑖=0 
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺(𝒖𝑖
ℎ
)‖‖‖2ℂ ≤ 3

2
‖ℤ‖2

𝑳∞(Ω) |Ω|
+ 2𝐶2

KPC(‖𝒇‖ + ‖𝒈‖Γ𝑁
)2 + 1

2
‖‖‖𝒖̇0ℎ‖‖‖2 + [1 +𝐶KPC

(‖𝒇‖ + ‖𝒈‖Γ𝑁

)]‖‖‖𝜺(𝒖0ℎ)‖‖‖2ℂ + 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2ℂ +

𝐶2
m 𝑘

2 

𝑗−1 ∑
𝑖=1 
‖‖‖𝒗𝑖ℎ‖‖‖2 .

Applying Lemma 6.3 to estimate the last term on the right-hand side, we obtain (44) (for a suitable constant 𝐶4 > 0 which we do not 
compute explicitly). □

We are now in a position to prove Proposition 4.6.

Proof of Proposition 4.6. We apply Lemmas 6.2, 6.3 and 6.5. Combining (40), (42) and (44), we obtain

‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 + ‖‖‖𝜺(𝒖𝑗ℎ)‖‖‖2 + 𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 𝑗−1 ∑

𝑖=0 
‖‖‖𝜺(𝒖𝑖+1ℎ

) − 𝜺(𝒖𝑖
ℎ
)‖‖‖2

+ ‖‖‖𝒎𝑗

ℎ

‖‖‖2𝑯1(Ω)
+ (1 −𝐶1𝑘)𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2 + (𝜃 − 1

2

)
𝑘2

𝑗−1 ∑
𝑖=0 
‖‖‖𝛁𝒗𝑖ℎ‖‖‖2

≤ 𝐶1 +𝐶4 + (𝐶3 +𝐶4)
‖‖‖𝛁𝒎0

ℎ

‖‖‖2 +𝐶4
‖‖‖𝒖̇0ℎ‖‖‖2 +𝐶4

‖‖‖𝜺(𝒖0ℎ)‖‖‖2
+ (𝐶3 +𝐶4)𝑘

𝑗−1 ∑
𝑖=0 

(
1 + ‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2

)
≤ 𝐶1 +𝐶4 + (𝐶3 +𝐶4)

‖‖‖𝛁𝒎0
ℎ

‖‖‖2 +𝐶4
‖‖‖𝒖̇0ℎ‖‖‖2 +𝐶4

‖‖‖𝜺(𝒖0ℎ)‖‖‖2
+ (𝐶3 +𝐶4)𝑇 + (𝐶3 +𝐶4)𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝜺(𝒖𝑖ℎ)‖‖‖2 ,
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where in the last estimate we have used that 𝑘𝑗 ≤ 𝑇 . If the time-step size 𝑘 is sufficiently small, the coefficients in front of all terms 
on the left-hand side are strictly positive. Given the boundedness of the approximate initial data guaranteed by assumption (26), 
the desired stability estimate (27) then follows from the discrete Grönwall lemma; see e.g. [49, Lemma 10.5]. Finally, (28) follows 
from (27) and (41). This concludes the proof. □

6.4. Convergence

The proof of convergence of Algorithm 4.1 (Theorem 4.7(i)) follows the standard argument to prove existence of weak solutions 
for parabolic equations (uniform boundedness of Galerkin approximations, extraction of subsequences with suitable convergence 
properties, identification of the limit with a weak solution of the problem; see, e.g., [27, Section 7.1]) and thus has the same structure 
as the one which proves the convergence of [15, Algorithm 4.1]. Therefore, in the upcoming analysis, we will provide only a sketch 
of the steps of the proof that can be found in [15]. However, we will present in detail the (non-obvious) steps that we have to perform 
to cope with the partial omission of the nodal projection (for which we borrow ideas from [1,12]) and to prove our novel energy 
estimate.

We start the proof with showing the following lemma, which provides an estimate of the 𝐿𝑝 -norm (𝑝 ≥ 1) of the difference between 
the approximate magnetisations generated by Algorithm 4.1 and their nodal projections.

Lemma 6.6. Let 𝑝 ∈ [1,∞). For all integers 1≤ 𝑗 ≤𝑁 , it holds that

‖‖‖𝒎𝑗

ℎ
−Πℎ𝒎

𝑗

ℎ

‖‖‖𝑳𝑝(Ω)
≤ 𝐶

𝑇 1−1∕𝑝

2 
𝑘1+1∕𝑝

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2𝑳2𝑝(Ω)

, (45)

where 𝐶 > 0 depends only on the shape-regularity of ℎ.

Proof. Let 1 ≤ 𝑗 ≤𝑁 be an integer. For all 𝑧 ∈ℎ, we have that

|||𝒎𝑗

ℎ
(𝑧) − Πℎ𝒎

𝑗

ℎ
(𝑧)||| =

|||||||𝒎
𝑗

ℎ
(𝑧) −

𝒎
𝑗

ℎ
(𝑧) |||𝒎𝑗

ℎ
(𝑧)|||

||||||| =
|||𝒎𝑗

ℎ
(𝑧)|||− 1 =

|||𝒎𝑗

ℎ
(𝑧)|||2 − 1|||𝒎𝑗

ℎ
(𝑧)|||+ 1 

≤ 1
2

(|||𝒎𝑗

ℎ
(𝑧)|||2 − 1

)
= 𝑘2

2 

𝑗−1 ∑
𝑖=0 
|||𝒗𝑖ℎ(𝑧)|||2 .

If 𝑝 = 1, the norm equivalence (33) immediately yields (45). If 𝑝 > 1, applying (33) twice and using the convexity of 𝑥𝑝 for 𝑥 > 0 as 
well as 𝑗𝑘 ≤ 𝑇 , we obtain

‖‖‖𝒎𝑗

ℎ
−Πℎ𝒎

𝑗

ℎ

‖‖‖𝑝𝑳𝑝(Ω)
≲
∑

𝑧∈ℎ

ℎ3
𝑧

|||𝒎𝑗

ℎ
(𝑧) − Πℎ𝒎

𝑗

ℎ
(𝑧)|||𝑝 ≤ ∑

𝑧∈ℎ

ℎ3
𝑧

(
𝑘2

2 

𝑗−1 ∑
𝑖=0 
|||𝒗𝑖ℎ(𝑧)|||2

)𝑝

≤ ∑
𝑧∈ℎ

ℎ3
𝑧

𝑘2𝑝

2𝑝
𝑗𝑝−1

𝑗−1 ∑
𝑖=0 
|||𝒗𝑖ℎ(𝑧)|||2𝑝 ≤ ∑

𝑧∈ℎ

ℎ3
𝑧

𝑘𝑝+1

2𝑝
𝑇 𝑝−1

𝑗−1 ∑
𝑖=0 
|||𝒗𝑖ℎ(𝑧)|||2𝑝

≲
𝑘𝑝+1

2𝑝
𝑇 𝑝−1

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2𝑝𝑳2𝑝(Ω)

,

where the hidden constants depend only on the shape-regularity of ℎ. Then, (45) for 𝑝 > 1 follows from the inequality ‖⋅‖𝓁𝑝 ≤ ‖⋅‖𝓁1
satisfied by the 𝑝-norms in finite dimensions. This concludes the proof. □

Now, let {𝒎ℎ𝑘}, {𝒎±
ℎ𝑘
}, {𝒗−

ℎ𝑘
}, {𝒖ℎ𝑘}, {𝒖±

ℎ𝑘
}, {𝒖̇ℎ𝑘}, {𝒖̇±

ℎ𝑘
} be the time reconstructions defined according to (16) using the ap

proximations {(𝒖𝑖
ℎ
,𝒎𝑖

ℎ
)}0≤𝑖≤𝑁 generated by Algorithm 4.1. In the following lemma, we show that the uniform stability established in 

Proposition 4.6 allows us to extract convergent subsequences from the sequences of time reconstructions.

Lemma 6.7. Under the assumptions of Theorem 4.7(i), there exist 𝒖 ∈ 𝐿∞(0, 𝑇 ;𝑯1
𝐷
(Ω)) with 𝜕𝑡𝒖 ∈ 𝐿∞(0, 𝑇 ;𝑳2(Ω)) and 𝒎 ∈

𝐿∞(0, 𝑇 ;𝑯1(Ω;𝕊2)) with 𝜕𝑡𝒎 ∈ 𝐿2(0, 𝑇 ;𝑳2(Ω)) such that, upon extraction of (non-relabelled) subsequences, we have the following con

vergence results:

𝒖ℎ𝑘 ⇀ 𝒖 in 𝑯1(Ω𝑇 ), (46a)

𝒖ℎ𝑘,𝒖
±
ℎ𝑘

∗ 
⇀ 𝒖 in 𝐿∞(0, 𝑇 ;𝑯1(Ω)), (46b)

𝒖ℎ𝑘,𝒖
±
ℎ𝑘

⇀ 𝒖 in 𝐿2(0, 𝑇 ;𝑯1(Ω)), (46c)

𝒖ℎ𝑘,𝒖
±
ℎ𝑘

→ 𝒖 in 𝑳2(Ω𝑇 ), (46d)

𝒖̇ℎ𝑘, 𝒖̇
±
ℎ𝑘

∗ 
⇀ 𝜕𝑡𝒖 in 𝐿∞(0, 𝑇 ;𝑳2(Ω)), (46e)
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𝒖̇ℎ𝑘, 𝒖̇
±
ℎ𝑘

⇀ 𝜕𝑡𝒖 in 𝑳2(Ω𝑇 ), (46f)

𝒎ℎ𝑘 ⇀𝒎 in 𝑯1(Ω𝑇 ), (46g)

𝒎ℎ𝑘 →𝒎 in 𝑯𝑠(Ω𝑇 ) for all 𝑠 ∈ (0,1), (46h)

𝒎ℎ𝑘,𝒎
±
ℎ𝑘

∗ 
⇀𝒎 in 𝐿∞(0, 𝑇 ;𝑯1(Ω)), (46i)

𝒎ℎ𝑘,𝒎
±
ℎ𝑘

⇀𝒎 in 𝐿2(0, 𝑇 ;𝑯1(Ω)), (46j)

𝒎ℎ𝑘,𝒎
±
ℎ𝑘

→𝒎 in 𝐿2(0, 𝑇 ;𝑯𝑠(Ω)) for all 𝑠 ∈ (0,1), (46k)

𝒎ℎ𝑘,𝒎
±
ℎ𝑘

→𝒎 in 𝑳2(Ω𝑇 ), (46l)

𝒎ℎ𝑘,𝒎
±
ℎ𝑘

→𝒎 pointwise a.e. in Ω𝑇 , (46m)

𝒗−
ℎ𝑘

⇀ 𝜕𝑡𝒎 in 𝑳2(Ω𝑇 ), (46n)

as ℎ,𝑘→ 0.

Proof. Using the boundedness expressed in Proposition 4.6, we can successively extract weakly (-star) convergent subsequences 
(non-relabelled, with possibly different limits) from {𝒖ℎ𝑘} and {𝒖±

ℎ𝑘
}, from {𝒖̇ℎ𝑘} and {𝒖̇±

ℎ𝑘
}, from {𝒎ℎ𝑘} and {𝒎±

ℎ𝑘
}, and from {𝒗−

ℎ𝑘
}.

Let 𝒖 ∈𝑯1(Ω𝑇 ) satisfy the weak convergence (46a). Owing to the continuous inclusions 𝑯1(Ω𝑇 ) ⊂ 𝐿2(0, 𝑇 ;𝑯1(Ω)) ⊂ 𝑳2(Ω𝑇 )
and the compact inclusion 𝑯1(Ω𝑇 ) ⋐ 𝑳2(Ω𝑇 ), we obtain convergences (46c) and (46d). Moreover, from the continuous inclu
sion 𝐿∞(0, 𝑇 ;𝑯1(Ω)) ⊂ 𝐿2(0, 𝑇 ;𝑯1(Ω)), we can identify the weak-star limit of {𝒖ℎ𝑘} in 𝐿∞(0, 𝑇 ;𝑯1(Ω)) with the weak limit in 
𝐿2(0, 𝑇 ;𝑯1(Ω)), which shows (46b) for {𝒖ℎ𝑘}.

Let 𝒎 ∈𝑯1(Ω𝑇 ) satisfy the weak convergence (46g). Arguing as above and using a well-known result for convergence in 𝐿𝑝
spaces, we obtain convergences (46j), (46l) and (upon extraction of a further subsequence) (46m) for {𝒎ℎ𝑘}. The continuous inclusion 
𝐿∞(0, 𝑇 ;𝑯1(Ω)) ⊂ 𝐿2(0, 𝑇 ;𝑯1(Ω)), shows (46i) for {𝒎ℎ𝑘}.

Let 0 < 𝑠 < 1 be arbitrary. Since 𝑯𝑠(Ω𝑇 ) = [𝑳2(Ω𝑇 ),𝑯1(Ω𝑇 )]𝑠 and 𝐿2(0, 𝑇 ;𝑯𝑠(Ω)) = [𝑳2(Ω𝑇 ),𝐿2(0, 𝑇 ;𝑯1(Ω))]𝑠, well-known 
results from interpolation theory (see, e.g., [16, Theorem 6.4.5 and Theorem 3.8.1] and [16, Theorem 5.1.2]) yield the compact 
embedding 𝑯1(Ω𝑇 ) ⋐ 𝑯𝑠(Ω𝑇 ) and the continuous inclusion 𝑯𝑠(Ω𝑇 ) ⊂ 𝐿2(0, 𝑇 ;𝑯𝑠(Ω)). These in turn show convergences (46h)
and (46k) for {𝒎ℎ𝑘}. Furthermore, (46n) follows directly from 𝜕𝑡𝒎ℎ𝑘 = 𝒗−ℎ𝑘.

Overall, this shows the convergence results (46a)--(46d) and (46g)--(46n) for the sequences {𝒖ℎ𝑘}, {𝒎ℎ𝑘} and {𝒗−
ℎ𝑘
}. Using the 

same argument, one can obtain the same results for {𝒖±
ℎ𝑘
} and {𝒎±

ℎ𝑘
}. Since the quantity

𝑗−1 ∑
𝑖=0 
‖‖‖𝒎𝑖+1

ℎ
−𝒎𝑖

ℎ

‖‖‖2 + 𝑗−1 ∑
𝑖=0 
‖‖‖𝒖𝑖+1ℎ

− 𝒖𝑖
ℎ

‖‖‖2 + 𝑗−1 ∑
𝑖=0 
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖ (47)

is uniformly bounded, arguing as in [15, Lemma 5.7] we can show that the limits of {𝒖ℎ𝑘} and {𝒖±
ℎ𝑘
} (resp. {𝒎ℎ𝑘} and {𝒎±

ℎ𝑘
}) 

coincide. The continuous inclusion 𝐿∞(0, 𝑇 ;𝑳2(Ω)) ⊂ 𝐿2(0, 𝑇 ;𝑳2(Ω)) = 𝑳2(Ω𝑇 ), the boundedness of the third term in (47) and the 
identity 𝜕𝑡𝒖ℎ𝑘 = 𝒖̇+

ℎ𝑘
imply (46e)--(46f). Finally, the fact that 𝒎 satisfies |𝒎| = 1 a.e. in Ω follows from the available convergence 

results and (28). For the details, we refer to Step 3 of the proof of [29, Proposition 6]. This concludes the proof. □

Let {𝒎̂±
ℎ𝑘
} be the piecewise constant time reconstructions defined using the projection of the approximate magnetisations, i.e., 

𝒎̂−
ℎ𝑘
(𝑡) ∶= Πℎ𝒎

𝑖
ℎ

and 𝒎̂+
ℎ𝑘
(𝑡) ∶= Πℎ𝒎

𝑖+1
ℎ

for all 𝑖 = 0,… ,𝑁1 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) (cf. (16)).
In the following lemma, we establish further convergence results that will be needed to identify the limit (𝒖,𝒎) constructed in 

Lemma 6.7 with a weak solution of (4)--(6).

Lemma 6.8 (auxiliary convergences). Under the assumptions of Theorem 4.7(i), upon extraction of a further (non-relabelled) subsequence, 
we have the following convergence results:

𝒎̂±
ℎ𝑘

∗ 
⇀𝒎 in 𝐿∞(0, 𝑇 ;𝑯1(Ω)), (48a)

𝒎̂±
ℎ𝑘

⇀𝒎 in 𝐿2(0, 𝑇 ;𝑯1(Ω)), (48b)

𝒎̂±
ℎ𝑘

→𝒎 in 𝑳2(Ω𝑇 ), (48c)

𝒎±
ℎ𝑘

⊗𝒎±
ℎ𝑘

→𝒎⊗𝒎 in 𝑳2(Ω𝑇 ), (48d)

𝒎̂±
ℎ𝑘

⊗ 𝒎̂±
ℎ𝑘

→𝒎⊗𝒎 in 𝑳2(Ω𝑇 ), (48e)

as ℎ,𝑘→ 0.

Proof. Firstly, we note that ‖‖‖Πℎ𝒎
𝑖
ℎ

‖‖‖𝑳∞(Ω)
= 1 and ‖‖‖𝛁Πℎ𝒎

𝑖
ℎ

‖‖‖ ≲
‖‖‖𝛁𝒎𝑖

ℎ

‖‖‖ ≲ 1 for all 𝑖 = 0,… ,𝑁 (the estimate of the gradient follows 

from (27) and (34)). We infer that the sequences {𝒎̂±
ℎ𝑘
} are uniformly bounded in 𝐿∞(0, 𝑇 ;𝑯1(Ω)) and arguing as in the proof of 
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Lemma 6.7, we can extract subsequences satisfying the convergence properties in (48a)--(48c). The fact that the limit is exactly the 
function 𝒎 ∈𝐿∞(0, 𝑇 ;𝑯1(Ω;𝕊2)) constructed in Lemma 6.7 follows from Lemma 6.6 (applied 𝑝 = 1), which guarantee that 𝒎̂±

ℎ𝑘
→𝒎

in 𝑳1(Ω𝑇 ), which in turn implies that the limit functions in 𝑳2(Ω𝑇 ), 𝐿2(0, 𝑇 ;𝑯1(Ω)) and 𝐿∞(0, 𝑇 ;𝑯1(Ω)) must necessarily be the 
same.

To show (48d)--(48e), we note that for 𝒙,𝒚 ∈ℝ3 we have

𝒙⊗ 𝒙− 𝒚⊗ 𝒚 = 1
2
[(𝒙+ 𝒚)⊗ (𝒙− 𝒚) + (𝒙− 𝒚)⊗ (𝒙+ 𝒚)].

Let 3∕4 ≤ 𝑠 < 1. Using the above identity and the continuous inclusion 𝑯 𝑠(Ω) ⊂𝑳4(Ω) for all 𝑠 ≥ 3∕4, for arbitrary 𝑡 ∈ (0, 𝑇 ), we have‖‖‖𝒎±
ℎ𝑘
(𝑡)⊗𝒎±

ℎ𝑘
(𝑡) −𝒎(𝑡)⊗𝒎(𝑡)‖‖‖ ≤ ‖‖‖𝒎±

ℎ𝑘
(𝑡) +𝒎(𝑡)‖‖‖𝑳4(Ω)

‖‖‖𝒎(𝑡) −𝒎±
ℎ𝑘
(𝑡)‖‖‖𝑳4(Ω)

≲
‖‖‖𝒎±

ℎ𝑘
(𝑡) +𝒎(𝑡)‖‖‖𝑯1(Ω)

‖‖‖𝒎(𝑡) −𝒎±
ℎ𝑘
(𝑡)‖‖‖𝑯𝑠(Ω)

.

It follows that‖‖‖𝒎±
ℎ𝑘

⊗𝒎±
ℎ𝑘

−𝒎⊗𝒎
‖‖‖𝑳2(Ω𝑇 )

≲
‖‖‖𝒎±

ℎ𝑘
+𝒎‖‖‖𝐿∞(0,𝑇 ;𝑯1(Ω))

‖‖‖𝒎−𝒎±
ℎ𝑘

‖‖‖𝐿2(0,𝑇 ;𝑯𝑠(Ω))
.

Convergence (48d) then follows from the uniform boundedness of both 𝒎±
ℎ𝑘

and 𝒎 in 𝐿∞(0, 𝑇 ;𝑯1(Ω)) and the strong conver
gence (46k) from Lemma 6.7. The proof of (48e) is identical (due to the use of the nodal projection, one can use the Hölder inequality ‖⋅‖𝐿2 ≤ ‖⋅‖𝐿∞ ‖⋅‖𝐿2 ). This concludes the proof. □

Now, we are in a position to prove Theorem 4.7(i).

Proof of Theorem 4.7(i). We apply Lemma 6.7, which yields 𝒖 ∈𝐿∞(0, 𝑇 ;𝑯1
𝐷
(Ω)) with 𝜕𝑡𝒖 ∈𝐿∞(0, 𝑇 ;𝑳2(Ω)) and 𝒎 ∈𝐿∞(0, 𝑇 ;𝑯1

(Ω;𝕊2)) with 𝜕𝑡𝒎 ∈ 𝐿2(0, 𝑇 ;𝑳2(Ω)) as well as subsequences of {𝒖ℎ𝑘} and {𝒎ℎ𝑘} satisfying the desired convergence properties. This 
already shows that 𝒖 and 𝒎 satisfy property (i) of Definition 2.1. Property (iii) follows from the available convergence results, the 
continuity of the trace operator 𝑯1(Ω𝑇 ) → 𝑯1∕2(Ω), and assumption (26) on the discrete initial data. To conclude the proof, it 
remains to show that property (ii) holds, i.e., that 𝒖 and 𝒎 satisfy the variational formulations (10) and (11), respectively. The result 
follows from the convergence properties established in Lemmas 6.7--6.8. We omit the details, because

• the proof that 𝒖 satisfies (10) is identical to the one presented in [15, page 1378], which is a consequence of the fact that in the 
displacement update (21) we employ the nodal projection for the magnetisation appearing on the right-hand side (our generalised 
setting involving a more general expression for the magnetostrain, body forces and traction does not pose further mathematical 
challenges here).

• the proof that 𝒎 satisfies (11) can be obtained combining the argument of [15, pages 1376--1378] (which show convergence of 
the method with nodal projection towards a variational formulation of the LLG equation with magnetoelastic term) with the one 
of [29, page 1363] (where the modifications due to the omission of the nodal projection are presented).

This concludes the proof. □

6.5. Energy inequality

In this section, we use the compact notation 𝒎̂ℎ =Πℎ𝒎ℎ to denote the nodal projection of a general magnetisation approximation 
𝒎ℎ.

To start with, in the following proposition, we state a variant of Proposition 4.4 for the discrete energy

̂ℎ[𝒖ℎ,𝒎ℎ] =
1
2
‖‖𝛁𝒎ℎ

‖‖2 + 1
2
‖‖𝜺(𝒖ℎ) − 𝜺m(𝒎̂ℎ)‖‖2ℂ − ⟨𝒇 ,𝒖ℎ⟩ − ⟨𝒈,𝒖ℎ⟩Γ𝑁

,

which is obtained from (3) by applying the nodal projection to the discrete magnetisation appearing in the elastic energy. We omit 
the proof since it is very similar to the one of Proposition 4.4.

Proposition 6.9. For every integer 0≤ 𝑖 ≤𝑁 − 1, the iterates of Algorithm 4.1 satisfy the discrete energy law

̂ℎ[𝒖𝑖+1ℎ
,𝒎𝑖+1

ℎ
] + 1

2
‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖2 − ̂ℎ[𝒖𝑖ℎ,𝒎
𝑖
ℎ
] − 1

2
‖‖‖d𝑡𝒖𝑖ℎ‖‖‖2 = −𝛼𝑘

‖‖‖𝒗𝑖ℎ‖‖‖2ℎ − 𝐷̂𝑖
ℎ,𝑘

− 𝐸̂𝑖
ℎ,𝑘

, (49)

where 𝐷̂𝑖
ℎ,𝑘

and 𝐸̂𝑖
ℎ,𝑘

are given by

𝐷̂𝑖
ℎ,𝑘

∶= 𝑘2(𝜃 − 1∕2)‖‖‖𝛁𝒗𝑖ℎ‖‖‖2 + 1
2
‖‖‖d𝑡𝒖𝑖+1ℎ

− d𝑡𝒖𝑖ℎ
‖‖‖2 + 1

2
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎̂
𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)]‖‖‖2ℂ ≥ 0

and
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𝐸̂𝑖
ℎ,𝑘

∶=
5 ∑

𝓁=1
𝐸̂𝑖

ℎ,𝑘,𝓁

∶= ⟨𝝈(𝒖𝑖+1
ℎ

, 𝒎̂𝑖+1
ℎ

) − 𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎̂

𝑖+1
ℎ

) − 𝜺m(𝒎̂
𝑖
ℎ
)⟩

+ ⟨𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎̂

𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)⟩ + ⟨𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)⟩

+ 2𝑘⟨𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),ℤ ∶ [(𝒎̂𝑖

ℎ
−𝒎𝑖

ℎ
)⊗ 𝒗𝑖

ℎ
]⟩ + 𝑘2⟨𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒗𝑖ℎ)⟩.

respectively.

Now, we are in a position to prove Theorem 4.7(ii).

Proof of Theorem 4.7(ii). Let 𝑡′ ∈ (0, 𝑇 ). Let 1 ≤ 𝑗 ≤𝑁 such that 𝑡′ ∈ (𝑡𝑗−1, 𝑡𝑗 ). Summing (49) for 𝑖 = 0,… , 𝑗 − 1 yields

̂ℎ[𝒖
𝑗

ℎ
,𝒎

𝑗

ℎ
] + 1

2
‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 − ̂ℎ[𝒖0ℎ,𝒎

0
ℎ
] − 1

2
‖‖‖d𝑡𝒖0ℎ‖‖‖2 + 𝛼𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ + 𝑗−1 ∑

𝑖=0 
𝐷̂𝑖

ℎ,𝑘
= −

𝑗−1 ∑
𝑖=0 

𝐸̂𝑖
ℎ,𝑘

.

Using the Cauchy–Schwarz inequality, the weighted Young inequality, and Lemma 6.4, we obtain the estimate

|𝐸𝑖
ℎ,𝑘,1| = |⟨𝝈(𝒖𝑖+1ℎ

, 𝒎̂𝑖+1
ℎ

) − 𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎̂

𝑖+1
ℎ

) − 𝜺m(𝒎̂
𝑖
ℎ
)⟩|

≤ ‖‖‖[𝜺(𝒖𝑖+1ℎ
) − 𝜺m(𝒎̂

𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)]‖‖‖ℂ ‖‖‖𝜺m(𝒎̂𝑖+1

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)‖‖‖ℂ

≤ 1
4
‖‖‖[𝜺(𝒖𝑖+1ℎ

) − 𝜺m(𝒎̂
𝑖+1
ℎ

)] − [𝜺(𝒖𝑖
ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)]‖‖‖2ℂ

+𝐶2
m ‖ℂ‖𝑳∞(Ω) 𝑘

2 ‖‖‖𝒗𝑖ℎ‖‖‖2 .
We now estimate 𝐸𝑖

ℎ,𝑘,4 (assuming 𝑖 ≥ 1, because 𝐸0
ℎ,𝑘,4 = 0 as 𝒎̂0

ℎ
=𝒎0

ℎ
by assumption). Using the Cauchy–Schwarz inequality, the 

Hölder inequality (for 𝑝 = 2∕(1−2𝜀) and 𝑝′ = 2𝑝∕(𝑝−2) with 0 < 𝜀 ≪ 1∕2 arbitrary), Lemma 6.6, and classical inverse estimates (see, 
e.g. [11, Lemma 3.5]), we obtain

|𝐸𝑖
ℎ,𝑘,4| = 2𝑘|⟨𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),ℤ ∶ [(𝒎̂𝑖

ℎ
−𝒎𝑖

ℎ
)⊗ 𝒗𝑖

ℎ
]⟩|

≤ 2‖ℤ‖𝑳∞(Ω) 𝑘
‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖

ℎ
)‖‖‖ ‖‖‖𝒎̂𝑖

ℎ
−𝒎𝑖

ℎ

‖‖‖𝑳𝑝(Ω)
‖‖‖𝒗𝑖ℎ‖‖‖𝑳𝑝′ (Ω)

≲ 𝑘
‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖

ℎ
)‖‖‖ 𝑘(𝑝+1)∕𝑝

(
𝑖−1 ∑
𝓁=0

‖‖‖𝒗𝓁ℎ‖‖‖2𝑳2𝑝(Ω)

)‖‖‖𝒗𝑖ℎ‖‖‖𝑳𝑝′ (Ω)

≲ 𝑘2+1∕𝑝
‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖

ℎ
)‖‖‖ ℎ

3(1−𝑝)∕𝑝
min

(
𝑖−1 ∑
𝓁=0

‖‖‖𝒗𝓁ℎ‖‖‖2
)

ℎ
3(2−𝑝′)∕(2𝑝′)
min

‖‖‖𝒗𝑖ℎ‖‖‖
≲ ℎ−3

min𝑘
5∕2−𝜀 ‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖

ℎ
)‖‖‖
(

𝑖−1 ∑
𝓁=0

‖‖‖𝒗𝓁ℎ‖‖‖2
)‖‖‖𝒗𝑖ℎ‖‖‖ .

Similarly, we obtain

|𝐸𝑖
ℎ,𝑘,5| = |𝑘2⟨𝝈(𝒖𝑖ℎ, 𝒎̂𝑖

ℎ
),𝜺m(𝒗𝑖ℎ)⟩| ≲ ℎ

−3∕2
min 𝑘2

‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖
ℎ
)‖‖‖ ‖‖‖𝒗𝑖ℎ‖‖‖2 .

Moreover, noting 𝒎0
ℎ
= 𝒎̂0

ℎ
we have that

𝑗−1 ∑
𝑖=0 

(
𝐸̂𝑖

ℎ,𝑘,2 + 𝐸̂𝑖
ℎ,𝑘,3

)
=

𝑗−1 ∑
𝑖=0 
⟨𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎̂

𝑖+1
ℎ

) − 𝜺m(𝒎𝑖+1
ℎ

)⟩ + 𝑗−1 ∑
𝑖=0 
⟨𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)⟩

= ⟨𝝈(𝒖0
ℎ
, 𝒎̂0

ℎ
),𝜺m(𝒎0

ℎ
) − 𝜺m(𝒎̂

0
ℎ
)⟩ − ⟨𝝈(𝒖𝑗−1

ℎ
, 𝒎̂

𝑗−1
ℎ

),𝜺m(𝒎
𝑗

ℎ
) − 𝜺m(𝒎̂

𝑗

ℎ
)⟩

+
𝑗−2 ∑
𝑖=0 
⟨𝝈(𝒖𝑖+1

ℎ
, 𝒎̂𝑖+1

ℎ
) − 𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)⟩.

= −⟨𝝈(𝒖𝑗−1
ℎ

, 𝒎̂
𝑗−1
ℎ

),𝜺m(𝒎
𝑗

ℎ
) − 𝜺m(𝒎̂

𝑗

ℎ
)⟩

+
𝑗−2 ∑
𝑖=0 
⟨𝝈(𝒖𝑖+1

ℎ
, 𝒎̂𝑖+1

ℎ
) − 𝝈(𝒖𝑖

ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)⟩
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Using inverse estimates, Lemma 6.4 and Lemma 6.6, we obtain the estimate

|⟨𝝈(𝒖𝑖+1
ℎ

, 𝒎̂𝑖+1
ℎ

) − 𝝈(𝒖𝑖
ℎ
, 𝒎̂𝑖

ℎ
),𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)⟩|

≲

(‖‖‖𝜺(𝒖𝑖+1ℎ
) − 𝜺(𝒖𝑖

ℎ
)‖‖‖ + ‖‖‖𝜺m(𝒎̂𝑖+1

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)‖‖‖)‖‖‖𝜺m(𝒎𝑖

ℎ
) − 𝜺m(𝒎̂

𝑖
ℎ
)‖‖‖

≲

(
ℎ−1
min𝑘

‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖ + 𝑘2
‖‖‖𝒗𝑖ℎ‖‖‖2

)‖‖‖𝒎𝑖
ℎ
+ 𝒎̂𝑖

ℎ

‖‖‖𝑯1(Ω)
𝑘4∕3ℎ−2

min

𝑖−1 ∑
𝓁=0

‖‖‖𝒗𝓁ℎ‖‖‖2 .
Altogether, omitting all non-negative dissipative terms and using the stability from Proposition 4.6, we thus obtain

̂ℎ[𝒖
𝑗

ℎ
,𝒎

𝑗

ℎ
] + 1

2
‖‖‖d𝑡𝒖𝑗ℎ‖‖‖2 − ̂ℎ[𝒖0ℎ,𝒎

0
ℎ
] − 1

2
‖‖‖d𝑡𝒖0ℎ‖‖‖2 + 𝛼𝑘

𝑗−1 ∑
𝑖=0 
‖‖‖𝒗𝑖ℎ‖‖‖2ℎ

− ⟨𝝈(𝒖𝑗−1
ℎ

, 𝒎̂
𝑗−1
ℎ

),𝜺m(𝒎
𝑗

ℎ
) − 𝜺m(𝒎̂

𝑗

ℎ
)⟩

≲

𝑗−1 ∑
𝑖=0 

(
𝑘2
‖‖‖𝒗𝑖ℎ‖‖‖2 + ℎ−3

min𝑘
4∕3 ‖‖‖d𝑡𝒖𝑖+1ℎ

‖‖‖ ‖‖‖𝒎𝑖
ℎ
+ 𝒎̂𝑖

ℎ

‖‖‖𝑯1(Ω)
+ ℎ−2

min𝑘
7∕3 ‖‖‖𝒗𝑖ℎ‖‖‖2

+ ℎ−3
min𝑘

3∕2−𝜀 ‖‖‖𝝈(𝒖𝑖ℎ, 𝒎̂𝑖
ℎ
)‖‖‖ ‖‖‖𝒗𝑖ℎ‖‖‖ + ℎ

−3∕2
min 𝑘2

‖‖‖𝒗𝑖ℎ‖‖‖2 )
≲ 𝑘+ ℎ−3

min𝑘
1∕3 + ℎ−2

min𝑘
4∕3 + ℎ−3

min𝑘
1∕2−𝜀 + ℎ

−3∕2
min 𝑘.

Using (30), rewriting the above using the time reconstructions (16) and integrating in time over an arbitrary measurable set T ⊂ [0, 𝑇 ], 
we obtain

∫
T 

(
[𝒖+

ℎ𝑘
(𝑡′),𝒎+

ℎ𝑘
(𝑡′)] + 1

2
‖‖‖𝒖̇+ℎ𝑘(𝑡′)‖‖‖2 − ̂ℎ[𝒖−ℎ𝑘(0),𝒎

−
ℎ𝑘
(0)] − 1

2
‖‖‖𝒖̇−ℎ𝑘(0)‖‖‖2

)
d𝑡′

+ ∫
T 

⎛⎜⎜⎜⎝𝛼
𝑡′

∫
0 

‖‖‖𝒗−ℎ𝑘(𝑡)‖‖‖2 d𝑡
⎞⎟⎟⎟⎠d𝑡

′ + ∫
T 

⎛⎜⎜⎜⎝𝛼
𝑡𝑗

∫
𝑡′

‖‖‖𝒗−ℎ𝑘(𝑡)‖‖‖2 d𝑡
⎞⎟⎟⎟⎠d𝑡

′

− ∫
T 
⟨𝝈(𝒖−

ℎ𝑘
(𝑡′), 𝒎̂−

ℎ𝑘
(𝑡′)),𝜺m(𝒎+

ℎ𝑘
(𝑡′)) − 𝜺m(𝒎̂

+
ℎ𝑘
(𝑡′))⟩d𝑡′

≲ 𝑘+ ℎ−3
min𝑘

1∕3 + ℎ−2
min𝑘

4∕3 + ℎ−3
min𝑘

1∕2−𝜀 + ℎ
−3∕2
min 𝑘.

We now consider the limit of this inequality as ℎ,𝑘 → 0. The assumed CFL condition 𝑘 = 𝑜(ℎ9) implies that the right-hand side 
converges to 0 in the limit as ℎ,𝑘 → 0. The last two terms on the left-hand side converge to 0: the first one by no concentration 
of Lebesgue functions, the other thanks to the available convergence results (cf. the convergences guaranteed by Lemmas 6.7--6.8). 
Weak lower semicontinuity guarantees

∫
T 

⎛⎜⎜⎜⎝[𝒖(𝑡
′),𝒎(𝑡′)] + 1

2
‖‖𝜕𝑡𝒖(𝑡′)‖‖2 + 𝛼

𝑡′

∫
0 

‖‖𝜕𝑡𝒎(𝑡)‖‖2 d𝑡⎞⎟⎟⎟⎠d𝑡
′ ≤ lim inf

ℎ,𝑘→0 ∫
T 

⎛⎜⎜⎜⎝̂ℎ[𝒖+ℎ𝑘(𝑡
′),𝒎+

ℎ𝑘
(𝑡′)] + 1

2
‖‖‖𝒖̇+ℎ𝑘(𝑡′)‖‖‖2 + 𝛼

𝑡′

∫
0 

‖‖‖𝒗−ℎ𝑘(𝑡)‖‖‖2 d𝑡
⎞⎟⎟⎟⎠d𝑡

′. 

Assumption (26) yields

lim 
ℎ,𝑘→0

(
̂ℎ[𝒖−ℎ𝑘(0),𝒎

−
ℎ𝑘
(0)] + 1

2
‖‖‖𝒖̇−ℎ𝑘(0)‖‖‖2

)
= [𝒖0,𝒎0] + 1

2
‖‖‖𝒖̇0‖‖‖2 .

Since T ⊂ [0, 𝑇 ] was arbitrary, this shows that the energy inequality (12) holds a.e. in (0, 𝑇 ) and concludes the proof. □
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Appendix A. Linear algebra definitions and identities

In this section, for the convenience of the reader, we collect some definitions and vector/matrix/tensor identities from linear 
algebra that are used throughout the work.

Definition A.1. Let 𝔸∈ℝ34 be a fourth-order tensor (4-tensor) with components 𝔸𝑖𝑗𝓁𝑚, where 𝑖, 𝑗,𝓁,𝑚 = 1,2,3. We say that

(1) 𝔸 is minorly symmetric if 𝔸𝑖𝑗𝓁𝑚 =𝔸𝑗𝑖𝓁𝑚 =𝔸𝑖𝑗𝑚𝓁 ,
(2) 𝔸 is majorly symmetric if 𝔸𝑖𝑗𝓁𝑚 =𝔸𝓁𝑚𝑗𝑖,
(3) and 𝔸 is (fully) symmetric if the aforementioned two conditions hold together.

The transpose of 𝔸 is the 4-tensor 𝔸⊤ ∈ℝ34 given by (𝔸⊤)𝑖𝑗𝓁𝑚 =𝔸𝓁𝑚𝑗𝑖. In particular, 𝔸 is majorly symmetric if 𝔸⊤ =𝔸.

Remark A.2. In three dimensions, 4-tensors have 34 = 81 components. Minorly symmetric 4-tensors have 36 independent compo
nents, majorly symmetric 4-tensors have 45 independent components, and fully symmetric 4-tensors have 21 independent compo
nents. Throughout this work the stiffness tensor ℂ is assumed to be fully symmetric, whereas the magnetostriction tensor ℤ is assumed 
to be only minorly symmetric. In the numerical experiments of Section 5, we consider the isotropic case, in which ℂ and ℤ have only 
two (the so-called Lamé constants) and one (the so-called saturation magnetostriction) independent components, respectively.

In the following definition, we recall some operations between tensors.

Definition A.3. Let 𝔸,𝔹 ∈ℝ34 be 4-tensors, let 𝝂,𝝁 ∈ℝ3×3 be 2-tensors (matrices), and let 𝒎,𝒘 ∈ℝ3 be 1-tensors (vectors).

• We denote the double contraction between 𝔸 and 𝔹 as the 4-tensor 𝔸 ∶ 𝔹 ∈ℝ34 given by

(𝔸 ∶ 𝔹)𝑖𝑗𝓁𝑚 =
∑
𝑝,𝑞 

𝔸𝑖𝑗𝑝𝑞𝔹𝑝𝑞𝓁𝑚.

• We denote the double contraction between 𝔸 and 𝝂 as the 2-tensor 𝔸 ∶ 𝝂 ∈ℝ3×3 given by

(𝔸 ∶ 𝝂)𝑖𝑗 =
∑
𝓁,𝑚 

𝔸𝑖𝑗𝓁𝑚𝜈𝓁𝑚.

• We denote the Frobenius product of 𝝁 and 𝝂 as the scalar 𝝁 ∶ 𝝂 ∈ℝ given by

𝝁 ∶ 𝝂 =
∑
𝑖,𝑗 

𝜇𝑖𝑗𝜈𝑖𝑗 .

• We denote the tensor product of 𝒎 and 𝒘 as the 2-tensor 𝒎⊗𝒘 ∈ℝ3×3 given by

(𝒎⊗𝒘)𝑖𝑗 =𝑚𝑖𝑤𝑗.

The following result is useful for manipulation of the magnetostrain terms.

Lemma A.4. Let ℤ ∈ℝ34 be a minorly symmetric 4-tensor, let 𝝈 ∈ℝ3×3 be a symmetric 2-tensor, and let 𝒎,𝒘 ∈ℝ3 be two 1-tensors. We 
have the identity

[(ℤ⊤ ∶ 𝝈)𝒘] ⋅𝒎 = [ℤ⊤ ∶ 𝝈)𝒎] ⋅𝒘 = 𝝈 ∶ [ℤ ∶ (𝒎⊗𝒘)]. (50)

Proof. We have by the minor symmetry of ℤ that

(ℤ⊤ ∶ 𝝈)𝒎 ⋅𝒘 =
∑

𝑖,𝑗,𝓁,𝑚

ℤ⊤
𝑖𝑗𝑘𝓁𝜎𝓁𝑚𝑚𝑗𝑤𝑖

=
∑

𝑖,𝑗,𝓁,𝑚

ℤ⊤
𝑗𝑖𝑘𝓁𝜎𝓁𝑚𝑚𝑖𝑤𝑗 by relabelling

=
∑

𝑖,𝑗,𝓁,𝑚

ℤ⊤
𝑖𝑗𝑘𝓁𝜎𝓁𝑚𝑤𝑗𝑚𝑖 via minor symmetry

= (ℤ⊤ ∶ 𝝈)𝒘 ⋅𝒎.

Furthermore, we have that
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(ℤ⊤ ∶ 𝝈)𝒎 ⋅𝒘 =
∑

𝑖,𝑗,𝓁,𝑚

ℤ⊤
𝑖𝑗𝓁𝑚𝜎𝓁𝑚𝑚𝑗𝑤𝑖 =

∑
𝑖,𝑗,𝓁,𝑚

𝜎𝓁𝑚ℤ⊤
𝑖𝑗𝓁𝑚𝑚𝑗𝑤𝑖

=
∑

𝑖,𝑗,𝓁,𝑚

𝜎𝓁𝑚ℤ𝓁𝑚𝑗𝑖𝑚𝑗𝑤𝑖 via minor symmetry

=
∑
𝓁,𝑚 

𝜎𝓁𝑚[ℤ ∶ (𝒎⊗𝒘)]𝓁𝑚 = 𝝈 ∶ [ℤ ∶ (𝒎⊗𝒘)].

This show both identities in (50). □

The following identity is useful to show the stability of numerical schemes.

Lemma A.5. Let {𝜈𝑖} be a sequence in an inner product space with inner product ⟨⋅, ⋅⟩ and associated norm ‖⋅‖. We have the identity

⟨𝜈𝑖+1 − 𝜈𝑖, 𝜈𝑖+1⟩ = 1
2
‖‖𝜈𝑖+1‖‖2 − 1

2
‖‖𝜈𝑖‖‖2 + 1

2
‖‖𝜈𝑖+1 − 𝜈𝑖

‖‖2 . (51)

Appendix B. Nondimensionalisation

Let Ω ⊂ℝ3 denote the volume occupied by a ferromagnetic body (with the spatial variable 𝑥 ∈ Ω measured in meter). Consider 
the magnetisation 𝑴 (measured in A∕m), which satisfies the length constraint |𝑴| =𝑀𝑠, where the saturation magnetisation 𝑀𝑠 > 0
is also measured in A∕m, and the displacement 𝑼 (measured in m). We denote by 𝜺(𝑼 ) the total strain given by

𝜺(𝑼 ) = (𝛁𝑼 +𝛁𝑼⊤)∕2

and by 𝜺m(𝑴) the magnetostrain given by

𝜺m(𝑴) =ℤ ∶ (𝑴 ⊗𝑴∕𝑀2
𝑠
),

where ℤ is a dimensionless fourth-order tensor.
The total energy of the system (measured in J) is given by

[𝑼 ,𝑴] = 𝐴 
𝑀2

𝑠
∫
Ω 
|𝛁𝑴 |2 − 𝜇0 ∫

Ω 
𝑯ext ⋅𝑴 + 1

2 ∫
Ω 

[𝜺(𝑼 ) − 𝜺m(𝑴)] ∶ {𝑪 ∶ [𝜺(𝑼 ) − 𝜺m(𝑴)]} − ∫
Ω 
𝑭 ⋅ 𝑼 − ∫

Γ𝑁

𝑮 ⋅ 𝑼 , 

where 𝐴 is the exchange constant (measured in Jm−1), 𝜇0 is the permeability of free space (measured in NA−2), 𝑯ext is an applied 
external field (measured in A m), 𝑪 is the fourth-order stiffness tensor (measured in Nm−2), 𝑭 is a body force (measured in Nm−3), 
and 𝑮 is a surface force (measured in Nm−2).

The dynamics of 𝑴 are described by the LLG equation:

𝜕𝑡𝑴 = −𝛾𝜇0𝑴 ×𝑯eff [𝑼 ,𝑴] + 𝛼

𝑀𝑠

𝑴 × 𝜕𝑡𝑴 ,

where 𝛾 is the gyromagnetic ratio (measured in rads−1T−1), 𝛼 > 0 is the dimensionless Gilbert damping parameter, and the effective 
field 𝑯eff (measured in A∕m) reads as

𝑯eff [𝑼 ,𝑴] = − 1 
𝜇0

𝛿[𝑼 ,𝑴]
𝛿𝑴

= 2𝐴 
𝜇0𝑀

2
𝑠

𝚫𝑴 +𝑯ext +
2 

𝜇0𝑀
2
𝑠

[ℤ⊤ ∶ 𝚺(𝑼 ,𝑴)]𝑴 ,

where 𝚺(𝑼 ,𝑴) = 𝑪 ∶ [𝜺(𝑼 ) − 𝜺m(𝑴)] is the stress (measured in Nm−2). The LLG equation is coupled with the conservation of 
momentum equation satisfied by the displacement:

𝜌 𝜕𝑡𝑡𝑼 = 𝛁 ⋅𝚺(𝑼 ,𝑴) + 𝑭 ,

where 𝜌 is the mass density (measured in kgm−3).
Let 𝒎 =𝑴∕𝑀𝑠 denote the normalised magnetisation. We define the exchange length 𝓁2

ex = 2𝐴∕𝜇0𝑀
2
𝑠

(measured in m) and use it 
to rescale the spatial variable and the displacement according to 𝑥′ = 𝑥∕𝓁ex and 𝒖 =𝑼∕𝓁ex, respectively. Additionally we introduce 
the dimensionless domain Ω′ = Ω∕𝓁ex, the dimensionless time 𝑡′ = 𝛾𝜇0𝑀𝑠𝑡, the dimensionless coupling parameter 𝜅 = 𝜌𝓁2

ex𝛾
2𝜇0, as 

well as the dimensionless differential operators 𝛁 = 𝛁′∕𝓁ex and 𝚫 = 𝚫′∕𝓁2
ex. Further we define the dimensionless energy as

 ′[𝒖,𝒎] =
[𝓁ex𝒖,𝑀𝑠𝒎]

𝜇0𝑀
2
𝑠
𝓁3

ex

= 1
2 ∫
Ω′

|𝛁′𝒎|2 − ∫
Ω′

𝒉ext ⋅𝒎+ 𝜅

2 ∫
Ω′

[𝜺(𝒖) − 𝜺′m(𝒎)] ∶ {ℂ ∶ [𝜺(𝒖) − 𝜺′m(𝒎)] − 𝜅 ∫
Ω′

𝒇 ⋅ 𝒖− 𝜅 ∫
Γ′
𝑁

𝒈 ⋅ 𝒖,

where 𝒉ext =𝑯ext∕𝑀𝑠, 𝜺m(𝒎) = ℤ ∶ (𝒎⊗𝒎), 𝚺 = 𝜅𝜇0𝑀
2
𝑠
𝝈, 𝑮 = 𝜅𝜇0𝑀

2
𝑠
𝒈, 𝑭 = 𝜅(𝜇0𝑀

2
𝑠
∕𝓁ex)𝒇 , and 𝑪 = 𝜅𝜇0𝑀

2
𝑠
ℂ (all dimension

less). The dimensionless effective field, defined by 𝒉eff [𝒖,𝒎] =𝑯eff [𝓁ex𝒖,𝑀𝑠𝒎]∕𝑀𝑠, satisfies the relation

𝒉eff [𝒖,𝒎] = − 𝛿 ′[𝒖,𝒎]
𝛿𝒎

= 𝚫′𝒎+ 2𝜅[ℤ⊤ ∶ 𝝈(𝒖,𝒎)]𝒎+ 𝒉ext .
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With all these definitions, we retrieve the coupled system

𝜕𝑡′𝑡′𝒖 = 𝛁′ ⋅ 𝝈(𝒖,𝒎) + 𝒇 ,

𝜕𝑡′𝒎 = −𝒎 × 𝒉eff[𝒖,𝒎] + 𝛼 𝒎 × 𝜕𝑡′𝒎.

Altogether, we thus obtain the dimensionless model problem discussed throughout this work. Note that, to simplify the notation, 
in Sections 2--6 we omit all ‘primes’ from the dimensionless quantities, we assume 𝜅 = 1, and we neglect the applied external field 
(unless otherwise mentioned).

Data availability

Data will be made available on request.
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