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We investigate the detection of a weak transient broadband signal, and compare a polynomial subspace detection ap-
proach to a likelihood ratio test. The former is based on an analytic eigenvalue decomposition of the array data in order 
to derive a subspace projection away from stronger stationary sources that obscure the transient signal. An energy de-
tection in the noise-only subspace has been demonstrated to work well in a number of broadband array applications. In 
this contribution, we aim to explore its comparison to a statistically optimum test, the likelihood ratio test (LRT). The 
LRT requires more information about the scenario than the subspace test — namely the data covariance due to the 
transient signal — but can still serve as a suitable benchmark. Somewhat surprisingly, simulation results show that 
the more dispersive the propagation environment and the weaker the transient signal is compared to any stationary 
sources, the better it is to base a test — either the LRT or even a simple energy criterion — on the data in the noise-
only subspace. This is due to the reduced matrix dimensions and enhanced condition numbers of the involved 
space-time covariance matrices. 
Video to this article can be found online at https://doi.org/10.1016/ 
j.sctalk.2025.100451. 
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Fig. 2. Background cognitive radio: in the presence of secondary users (in red), the aim is to detect an emerging primary user (in green), such that secondary users can vacate 
the frequency band. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Signal model. The measurement vector x  n  ∈ CM acquired by M sensors, which are illuminated by L M stationary sources through a convolutive mixing system 
H  n  . This system also models the source power spectral densities, such that the source signal vector u  n  ∈ CL contains temporally and spatially uncorrelated Gaussian 
excitations. The measurement vector is corrupted by additive Gaussian noise v  n  ∈ CM ; a transient signal may be present, modelled the source ut n , which contributes to 
the sensors via a vector of impulse responses ht n . Many applications aim to detect such a transient signal [1–16]. In the innovation filter model [17], the system H  n  
defines the space-time covariance matrix in the stationary case with the transient signal absent; its z -transform R  z  ,  a  parahermitian  matrix [18]  such  that  
RP z R 1 z∗ H R  z  admits an analytic eigenvalue decomposition R  z  Q  z  Λ z QP z , with an analytic paraunitary matrix Q  z  such that Q −1 z QP z
[19–22]. The diagonal matrix Λ z diag λ1 z , , λM z contains the analytic eigenvalues λm z , m 1, , M. Only L of these eigenvalues will be significant, with 
the remainder defining the noise-only subspace .

Fig. 4. Subspace projection and syndrome vector. Using algorithms for the analytic eigenvalue decomposition of R  z  [23–27] or for its approximation [28–31], the 
eigenvectors that correspond to eigenvalues due to noise form the columns of Q⊥ z ⊷Q⊥ n . The latter can be used to project the measurement data x  n  onto the noise-
only subspace. The resulting projection is refered to as syndrome vector s  n  ; it will ideally only contain noise, but if a transient source is present, some of its energy will 
fall into s  n  . Thus, the syndrome energy, which follows a generalised chi-square distribution, forms a surprisingly good discriminator for the presence of a transient s ource
[9], and has been successfully applied to e.g. voice activity detection for weak speakers in the presence of background noise [10], other speakers [11], or for primary user 
detection [12] in cognitive radio scenarios [13]. This complements related findings that successfully exploit polynomial subspace decompositions in the area of audio pro-
cessing [32,33]. 

Fig. 5. Simulation parameters for example scenario. We operate with L 5 sources and M 8 sensors; the transient signal, if present, has the same power as the additive 
noise in v  n  . The SNR, the power level between the stationary sources and the noise, is set to either 10 dB or 20 dB. We also vary the order of the convolutive mixing system 
as K 8  or  K 16. The simple syndrome energy detector will be compared to a likelihood ratio test [34,35], which assumes significantly more knowledge of the scenario, 
since the covariance of the transient signal contribution to x  n  must be known.
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Fig. 6. Simulation results for separability of distributions for moderately strong stationary users and moderate temporal correlation. The stationary users are 10 dB above the 
noise floor and all signals are observed through convolutive mixing of order K 8. As decision variable, we either use the energy of the syndrome vector, or an LRT test 
applied to either the measurement vector x  n  or the syndrome vector s  n  , and measure a simple separability between the distributions for the decision variable with and 
without transient signal. The decision variables can be averaged over T subsequent snapshots. For small value of T, methods operating on the syndrome vector perform 
slightly better due to the temporal decorrelation effect of the subspace projection. As the window T gets large enough, the LRT applied to the measurement vector captures 
enough of this correlation to perform best. Results marked by circles refer to statistics estimated from 1e5 snapshots of data rather than from the signal mode l in Fig. 3 
[34–36]. The covariance matrices are sufficiently accurate to yield no significant difference to the case where the ground truth is available (marked by asterisks). 

Fig. 7. An experiment which repeats the system parameters from Fig. 6 but here estimated quantities are based on only 1e3 snapshots. The experimental results for the LRT 
operating on the measurement vector are more sensitive to perturbations by the estimation errors [36–42] particularly as the data window T increases. This is due to the large 
dimensions and the increasingly poor conditioning of the involved covariance matrices, and as a result, the experimental values (blue circles) start to drop below the theo-
retical ones (blue asterisks). The experiments based on the subspace projection do not share this sensitive and remain largely unperturbed by the reduced sample size. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Simulation results for separation of distributions with stronger stationary users and a more dispersive propagation environment. The stationary users are now 20 dB 
above the noise and the transient signal, and the order of the convolutive mixing matrices is or K 16, and as in Fig. 6, the graph shows the separability of the distributions 
over the window T over which the decision variable is averaged. The temporal whitening of the projection in Fig. 4 now leads to an exaggerated advantage for operarting on 
the syndrome vector for lower values of T. For high values of T, where the LRT requires the inversion of covariance matrices of dimension MT MT, numerical problems start 
to surface, and the application to estimated space-time covariances, i.e. a generalised LRT, shows a catastrophic decline in performance.
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Fig. 9. Condition number for covariance matrices vs temporal window T. Over the window of snapshots over which the decision variable is averaged, we observe the 
condition number of the MT MT covariance matrix required for the LRT and GLRT, as well as the condition number for the LRT/GLRT-internal (M − LT M − L T co-
variance matrix when applied to the syndrome vector. Because the covariance matrix of the measurement vector contains the eigenvalues pertaining to the strong stationary 
sources, the resulting condition number is large. The resulting numerical instability is further emphasised when estimated covariance matrices (circles instead of asterisks) are 
utilised, justifying the performance drop in Fig. 8 for the LRT applied to the measurement vector for large values of T [ ]. In case of applying the LRT/GLRT to the syndrome 
vector, the dominant eigenvalues relating to the stationary sources are removed. 
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