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A B S T R A C T

NDE 4.0 represents the integration of recent advancements in robotics, sensor technology, and Artificial Intel
ligence (AI), transforming and automating traditional NDE in line with Industry 4.0 principles. Despite these 
advancements, data analysis in NDE is still largely performed manually or with traditional rule-based tools such 
as signal thresholding. These tools often struggle to effectively manage complex data patterns or high noise 
levels, leading to unreliable defect detection. Additionally, they require frequent manual adjustments to set 
appropriate parameters for varying inspection conditions, which can be inefficient and error-prone in dynamic or 
fast paced environments. In contrast, AI-based analysis tools have demonstrated improvements over traditional 
methods, offering greater accuracy in defect detection and adaptability to higher variability within captured 
signals. However, their adoption in industrial settings remains limited due to challenges associated with model 
trust and their “black box” nature. Additionally, practical guidelines for implementing AI tools into NDE 
workflow are rarely discussed, motivating this work to explore various integration strategies across different 
automation levels. Three levels of automation were explored, ranging from basic AI-assisted workflows, where 
tools provide suggestions, to advanced applications where multiple AI models simultaneously process data in a 
comprehensive analysis, shifting human operators to a supervisory role. Proposed strategies of AI integration into 
the NDE automation workflow were evaluated on inspection of two defective complex-geometry carbon fibre- 
reinforced plastics components, commonly used in aerospace and energy sectors for safety-critical structures 
such as aircraft fuselages and wind turbine blades. The experimental scans were conducted using a phased array 
ultrasonic testing roller probe mounted on an industrial manipulator, closely replicating industrial practices, and 
successfully identifying 36 manufactured defects through a combination of supervised object detection on 
amplitude C-scans, unsupervised anomaly detection on ultrasonic B-scans, and a self-supervised AI model for 
processing full volumetric ultrasonic data. This inclusion of multiple AI models led to an improvement of up to 
17.2 % in the F1 score compared to single-model approaches. Unlike manual inspections, which take hours for 
larger components, the proposed approach completes the analysis in 94.03 and 57.01 s for the two inspected 
samples, respectively.

1. Introduction

Non-Destructive Evaluation (NDE) encompasses techniques for 
inspecting materials without altering their properties. Common methods 
include radiographic testing, thermographic testing, electromagnetic 

inspection, and Ultrasonic Testing (UT). NDE can be performed at 
multiple stages throughout the lifecycle of a material or component: 
during manufacturing (both in-process and post-manufacturing), 
throughout its service life with periodic inspections, and after decom
missioning at end-of-life. NDE can be broadly divided into three stages: 
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sensor delivery, data collection, and data interpretation. Traditionally, 
sensor delivery and data collection in NDE processes were performed 
manually. However, recent advancements in robotic technology [1,2] 
and the adoption of industrial manipulators have greatly improved the 
precision, speed and repeatability of sensor positioning and data 
acquisition, reducing the inspection times and reliance on certified in
spectors [3]. Despite these advancements, data interpretation remains a 
manual, labour-intensive process prone to errors and misinterpretation, 
especially when dealing with large datasets where operator fatigue can 
become a critical factor.

Carbon Fibre-Reinforced Plastics (CFRPs) are composite materials 
consisting of a polymer matrix reinforced with carbon fibres, creating a 
material with an engineered structure manifesting a high tensile 
strength-to-weight ratio, and corrosion resistance [4]. As a result, CFRPs 
have become essential in industries such as aerospace, where they are 
utilised in constructing critical airframe components like fuselages, 
wings, and control surfaces, helping to reduce structural weight for 
improved fuel efficiency [5]. UT is the preferred method for bulk in
spection due to its flexibility and safety, often used in the 
post-manufacturing inspection of CFRP components for quality control 
and generally the most widely adopted certification sign-off procedure 
for safety critical aerospace components [6,7]. UT operates on the 
principle of the piezoelectric effect, where an electric pulse excites a 
transducer to generate high-frequency ultrasonic waves. When a trans
ducer is coupled to the test piece, the waves propagate into the material 
and interact with its internal structures. As the waves encounter scat
terers and reflectors within the material, a portion of the waves’ energy 
returns to the transducer. The received energies are converted back into 
voltage and recorded over time, forming an amplitude versus time graph 
known as an ultrasonic A-scan.

Phased Array Ultrasonic Testing (PAUT) builds upon the conven
tional UT by utilising an array configuration of ultrasonic transducers. 
This arrangement allows for precise electronic control of individual el
ements, where transmission/reception delays can be programmed to 
create electronic beamforming, linear scanning, and beam steering 
[8–10]. Usually, collected ultrasonic data is examined through different 
views. B-scan represents a two-dimensional cross-section (side) view of 
the inspected material, where brighter areas indicate higher signal 
amplitude of reflected/scattered wave. On the other hand, a C-scan is a 
top-down two-dimensional view containing maximum recorded ampli
tudes or Time-Of-Flight (TOF) information of the scanned component 
within a selected time gate. PAUT systems are prevalent in aerospace 
and energy industries due to their wider scanning coverage of the sur
face, and hence higher inspection speeds, advanced beamforming ca
pabilities, and readiness for automated delivery [11,12].

Current industry NDE practices in the aerospace sector begin with 
automated robotic sensor delivery and data acquisition. This initial stage 
is followed by data preparation, which includes signal processing tech
niques such as frequency filtering, signal enveloping with the Hilbert 
transform [13] and signal gating. Next, NDE inspectors review segments 
of the C-scans, and if indications exceeding industry guidelines for 
allowable defect size or amplitude threshold are identified, the corre
sponding B-scans are further examined. Lastly, areas of interest are 
extracted for quality certification report creation. Automated robotic 
data acquisition for components like wing covers of midsize civil aircraft 
models typically takes around 40 min, with data analysis requiring a 
similar amount of time for pristine components. However, this step may 
be extended by an additional hour or more if artefacts and defects are 
detected. This additional time is allocated for further inspection of 

different views of the data, primarily individual B-scans around areas of 
interest, and the report generation process. The overall workflow is 
illustrated in Fig. 1.

Apart from defect detection, defect sizing is another critical step in 
the data analysis workflow. Current industrial guidelines for NDE in
spection describe allowable defect sizes based on their type and location 
on the aircraft. For instance, in the case of delaminations, the largest 
allowable flaw area that would not be categorised as a defect range from 
60 to 500 mm2, depending on the specific location on the aircraft. 
Traditionally, defect sizing is achieved using the 6 dB drop method, 
where an operator manually moves the probe to find the maximum 
amplitude and then determines the defect boundaries by identifying 
points where the amplitude drops by 6 dB (i.e., to half of the maximum 
amplitude). This method allows for fine-tuned probe positioning, mak
ing it highly dependent on operator skill. A similar approach can be 
applied to automated PAUT testing. However, instead of manual 
movement, the PAUT array is manipulated using industrial robotics, 
significantly improving repeatability, precision, and scanning speed. 
Despite these advantages, the resolution for defect sizing is constrained 
by the fixed pitch between individual transducers and the predefined 
scan step.

Following detection and sizing, operators are tasked with catego
rising defects based on their physical properties, which are inferred from 
ultrasonic signal features. This classification step is critical in dis
tinguishing between common defect types in CFRPs such as de
laminations, porosities, and foreign object inclusions, each of which 
exhibits distinct patterns in ultrasonic data. This manual process is not 
only time-consuming and labour-intensive but also prone to in
consistencies as different operators may interpret the same dataset 
differently. The variability in human judgment introduces additional 
challenges in reproducibility and makes a fair assessment of perfor
mance difficult. The reliance on contextual judgment, global under
standing of data, and external knowledge about the inspected 
components further highlights the complexity of the operator’s role.

The above-mentioned tasks and workflow highlight the potential of 
automation in NDE data analysis, particularly in the aerospace industry, 
where large volumes of data are routinely handled. While data acqui
sition is predominantly automated, the subsequent stages of data anal
ysis, defect identification, sizing, and classification, remain heavily 
reliant on NDE operators. In certain scenarios, basic automation tools 
can be used to analyse stable and well-defined signals. In Ref. [14], the 
authors introduce tools to assist with thickness measurements, detection 
of delaminations in areas with varying thickness, and evaluation of 
porosity content. These tools require human interaction to narrow down 
areas of interest and provide some input parameters, resulting in a 
reduction of analysis time by 70 %. Another approach is presented in 
Ref. [15], where data analysis is based on a multi-step algorithm. 
However, for complex signals heavily influenced by geometrical features 
of components, overlapping ultrasonic echoes, or external factors such 
as poor scan quality, the use of advanced solutions is needed [16].

Artificial Intelligence (AI) is an umbrella term that encompasses 
various algorithms and models designed to improve their performance 
with exposure to data. Machine learning is a subcategory of AI focused 
on developing advanced and complex models that utilise multiple layers 
of processing to transform input data. In recent years, there has been a 
notable increase in AI research addressing various NDE challenges, such 
as bridging the gap between simulated and real domains [17], auto
mating image analysis [18], and enabling online path generation for 
robotic inspection [19]. Academic research in UT using AI can be 

Fig. 1. Standard NDE workflow in the aerospace sector.

V. Tunukovic et al.                                                                                                                                                                                                                             



NDT and E International 154 (2025) 103392

3

categorised by the different ultrasonic views used, namely A-scans, 
B-scans, and C-scans. Each view offers unique insights into the inspected 
material. 

• A-scan view provides a simple representation of the signal’s ampli
tude against the time of propagation. This view is useful for assessing 
the material thickness and identifying individual defects such as 
impact damage and larger delaminations [20]. However, A-scans are 
limited in spatial information and require expertise to interpret 
confidently. Most academic studies use A-scans as input for AI 
models, with a primary focus on the inspection of metal welds and 
steel samples. In Ref. [21], the authors have used Autoencoder (AE) 
architecture to denoise A-scans and improve their quality. The work 
presented in Ref. [22] utilised linear neural networks to determine 
fatigue life and tensile strength of spot welds from A-scan signals. 
The authors of [23] compared several classifiers on CFRP data, ul
timately concluding that feature extraction using a Convolutional 
Neural Network (CNN) outperformed hand-crafted methods. In 
Ref. [24], the researchers employed a CNN paired with a gated 
recurrent unit to successfully classify manufactured debonding de
fects in braided CFRPs. Study detailed in Ref. [25] compared the 
performance of three models - CNN, Long Short-Term Memory 
(LSTM), and a combined CNN-LSTM model to precisely identify the 
defect depth in the CFRP sample, with the best model achieving an 8 
% relative error compared to the ground truth.

• B-scan view offers a two-dimensional representation of the test 
material, providing spatial information and allowing for the visual
isation of defects’ location in relation to the material’s geometry, 
making it generally easier to interpret than A-scans. Fewer academic 
publications focus on using B-scans as input to AI models, with most 
concentrating on metal materials. Object detection models for 
identifying defects in steel blocks, including EfficientDet, RetinaNet, 
and YOLO, were used in Ref. [26]. Building on this prior work, the 
authors in Ref. [27] improved defect detection results by simulta
neously inputting three consecutive B-scans into the EfficientDet 
model to provide additional contextual information. In their latest 
research [28], the same authors further enhanced their approach by 
introducing a new model called DefectDet, specifically designed to 
address the challenges posed by extreme aspect ratios in B-scan 
views. A variational AE was employed in Ref. [29] to describe the 
distribution of pristine UT data and to discern defective B-scans 
based on the observed reconstruction errors. This research was 
further extended in Ref. [30], where the authors compared the 
anomaly detection performance of the GANomaly and PaDiM models 
and proposed a semi-supervised anomaly detection model called 
DifferNet.

• C-scan view presents indications associated with scatterers/re
flectors in the form of amplitude or TOF across the entire scanned 
area, providing the spatial information in a 2D view. This view re
quires additional processing, including signal envelope analysis and 
careful gating. Although this view is often considered the easiest to 
interpret, its effectiveness may be compromised if defects are located 
close to the prominent geometrical features such as the front or back 
wall, as they could be erroneously gated out. Compared to A-scan 
and B-scan views, C-scans are the least used as inputs for AI models. 
In Ref. [31], the authors used TOF C-scans of aircraft components 
and modified YOLO family object detection models to identify 
defective areas. The work presented in Ref. [32] compared several AI 
models for the binary classification of various defects in reference 
CFRP samples, including U-Net, Transformer models, CNNs, and 
LSTMs, with U-Net achieving the best results. The authors of [33] 
explored the classification of fibre waviness in CFRP materials using 
U-Net and SegNet models, framing the problem as one of anomaly 
detection.

It has been demonstrated that AI models are capable of 

outperforming humans in certain tasks. The study detailed in Ref. [34] 
explored the capability of NDE inspectors to distinguish between real UT 
data and data created by generative AI models. The study concluded that 
artificial data is indistinguishable from real data, making it an ideal 
candidate for training future inspectors and for supplementation of 
training datasets for alternative AI models. In Ref. [35], the authors 
compared the defect detection performance of an AI model with that of 
three NDE operators. The results showed that human operators made a 
larger number of false calls, while the AI correctly identified all defects 
present in the data. This trend extends to other fields as well. In 
Ref. [36], the researchers demonstrated that an AI model designed for 
analysis and diagnosis of three-dimensional optical coherence tomog
raphy data matches or exceeds the accuracy of medical professionals 
with years of experience. Similarly, the researchers in Ref. [37] lever
aged an ensemble of AI models to outperform human experts in medical 
diagnosis based on medical sonography. Despite the highlighted ad
vancements in AI models, data analysis in industry remains predomi
nantly manual, with limited adoption of new AI-based automation tools. 
Two key reasons for this are a lack of trust in the models, which includes 
concerns from both industry users and regulators, particularly in 
safety-critical processes [38], and the “black box” nature of AI, where 
the reasoning behind decisions is obscured. This lack of transparency 
leads to greater risks in evaluating safety-critical components, as inac
curate predictions from an automated system could result in unpredicted 
catastrophic in-service failures. Therefore, while these studies confirm 
the potential of incorporating new AI tools into NDE workflows, 
advancing to higher automation levels will depend on building trust in 
these systems.

Definitions of automation levels vary across fields and applications 
[39]. In the context of NDE, the authors of [16] propose a taxonomy for 
the entire NDE process, categorising it into Classical NDE (Level 0), 
Operator assistance (Level 1), Partial automation (Level 2), Operational 
automation (Level 3), and Full automation (Level 4). In recent years, 
there has been a notable shift towards adopting automated solutions in 
NDE workflows, leveraging advancements in robotics, AI, and other 
technologies, recognised as NDE 4.0 [16,40]. This transition aims to 
redefine the roles of human NDE operators, transitioning them to more 
supervisory positions where they oversee and address specific parts of 
the process, while automated systems manage the bulk of repetitive 
tasks. The overarching objective is to enhance efficiency while 
improving the precision and repeatability of the overall NDE workflow.

However, this evolution introduces several challenges. First, the 
increased complexity of automated systems can make troubleshooting 
and maintenance more difficult, as operators may need to develop new 
skills to manage these systems effectively. At the same time, the mental 
workload on staff is likely to increase [40]. Additionally, there is a risk of 
inappropriate reliance on automation, where tasks requiring human 
judgment are delegated to machines, potentially leading to errors or 
oversights. A study detailed in Ref. [38] assigned NDE operators 
detection and sizing tasks using automated tools and found significant 
levels of both disuse (operators disagreeing with the automation when it 
is correct) and misuse (operators agreeing with the automation when it 
is incorrect). To address this, the authors recommend incorporating 
discussions on the limitations of automation tools into the training of 
new personnel. Furthermore, by providing reasons behind potential 
automation failures, operators can develop a more informed and 
appropriate approach to using these tools, while also building trust 
through direct experience with the technology. In the context of auto
mation, the term “human-in-the-loop” refers to systems where human 
operators remain actively involved in decision-making processes, while 
“out-of-the-loop” refers to systems where automation takes over tasks 
with no direct human involvement. Over-reliance on fully automated 
systems can result in out-of-the-loop performance degradation, where 
operators lose the ability to identify system errors and perform tasks 
manually. Studies, such as [41], have highlighted that operators relying 
on automation tools have diminished manual task performance 
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compared to those who perform tasks without automation. To address 
these issues, it is suggested that humans maintain a high level of control 
through periodic interventions, which can help minimise system failure 
rates [42].

Trust can be defined as subjective anticipation of future behaviour 
[43], often based on reported performance metrics on a subset of data 
used in the study. This approach shapes the human perception of trust, 
which is more effectively demonstrated through direct interaction with 
the model and observation of its decisions [44]. Some implementations 
leverage the human-in-the-loop method to enhance trust, where the 
human operator oversees and supervises decisions made by the AI, 
facilitating continuous improvement of the existing models. Such an 
approach was explored in Ref. [45] where humans collaborated with AI 
models to build trust and enhance accuracy. This was achieved by 
identifying anomalous instances of data, labelling them, and incorpo
rating them into subsequent iterations of model development. Addi
tionally, allowing the human operator to question and have control over 
AI predictions is another way to build trust in probabilistic models [46]. 
An alternative approach is to adopt explainable and interpretable AI 
[47]. However, these strategies are rarely explored in the field of NDE, 
with the most notable work being [48], where the authors used a novel 
dimensionality reduction method to strengthen the explainability of the 
AI model used for the sizing of defects from UT data.

While there is a clear need to increase automation in data analysis, 
and some progress has been made with traditional methods that offer 
significant time savings [14,15], guidelines for the practical imple
mentation of AI tools in NDE are often lacking. Moreover, existing 
research on the adoption of AI methods for analysing UT data tends to 
focus on a single ultrasonic view. This approach does not accurately 
reflect how human inspectors conduct NDE, as they utilise multiple 
views to form conclusions about the inspected material. Relying on only 
one view can also overlook the strengths of other ultrasonic views, 
which may be better suited for inspecting varied locations, and detecting 

different types of defects or features. To address these gaps, this work 
focuses on. 

• Proposal and discussion of automation levels in data analysis, 
ranging from operator assistance level (Level 1) to full automation 
(Level 4), with a focus on integration strategies to minimise the risk 
of critical system failures.

• Development of a comprehensive PAUT data analysis workflow 
utilising three distinct AI models that analyse B-scan views, C-scan 
views, and full 3D volumetric data in a coordinated manner.

• Presenting a case study involving an automated robotic inspection 
system for PAUT of CFRP materials used in the aerospace industry. 
This case study examines two reference industrial samples with 
complex geometry using an experimental setup that closely mimics 
industrial practices and employs industrial manipulators for accurate 
and precise measurements.

The rest of the paper is organised as follows: proposed levels of 
automation of data analysis are introduced in Section 2, Section 3 fo
cuses on the materials and methods, Section 4 presents the results and 
discussion, and Section 5 concludes the work and outlines trajectories 
for future work.

2. Data analysis: levels of automation

2.1. Level 0: classical NDE

Taking inspiration from the automation levels defined for the entire 
NDE process defined in Ref. [16], Fig. 2 illustrates the proposed auto
mation levels for data analysis. Data analysis at level 0 of automation 
corresponds to classical NDE, where the operator manually examines all 
data, performs preprocessing tasks, and makes decisions independently. 
This manual approach, although still widely used due to historical 

Fig. 2. Proposed data analysis workflows for different levels of automation.
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industrial approach in training operators and reliance on individual 
decision making, relies heavily on the operator’s NDE expertise and 
judgment. While offering high traceability and explainability, it also 
results in longer data analysis times, higher operator workload, and 
increased likelihood of human-induced errors, particularly during pro
longed repetitive tasks [40].

2.2. Level 1: operator assistance

At Level 1, operator-assisted data analysis, the human operator re
tains responsibility for all decisions and tasks. AI models assist by 
providing suggestions and highlighting areas of interest, but the final 
decision regarding the presence/absence of defects (sentencing) remains 
with the operator. However, the risk of failure at this level of automation 
is higher than at Level 0, primarily due to the potential for inappropriate 
reliance on automation, which could lead to misuse or disuse of the AI 
tools. Therefore, this level requires moderate trust in the AI models, 
which are expected to generate suggestions while focusing on mini
mising false negative (failing to detect an actual defect) calls to accel
erate the analysis process. When used correctly, operator-assisted 
automation is ideal for gaining insights into scenarios where AI models 
may underperform without compromising the quality of the final NDE 
inspection. Additionally, this approach allows for continuous improve
ment by using those findings in future model re-training. Lastly, 
allowing operators to interact with the models, fine-tune inference pa
rameters, and observe outputs during deployment could help build trust 
over time, as suggested in Ref. [44]. However, it is important to note 
that, as AI technologies are not yet widely implemented in the industry, 
NDE operators have not been trained in refining or adjusting AI tools. 
Therefore, additional training would be necessary for operators to 
confidently undertake this task.

2.3. Level 2: partial automation

Partial automation of NDE data analysis at Level 2 relies on a com
bined system of single- or multi model processing with human-in-the- 
loop decision-making. For single model setup, predictions with confi
dence scores above a set threshold are accepted automatically, while 
lower-confidence predictions are passed to a human-in-the-loop mech
anism for further review. On the other hand, multi model configuration 
involves two AI models collaborating to identify areas with potential 
defect indications, automatically accepting them if their decisions 
coincide, and activating human-in-the-loop decision-making to resolve 
any disagreements. This approach greatly accelerates data analysis by 
focusing human intervention solely on resolving model discrepancies 
rather than manually processing all data.

The prerequisite for this level of automation is a high trust in the 
models to identify all defective areas while tolerating some false posi
tives. False positives are managed through two mechanisms: first, by 
cross-verifying outputs between two detection models, which are un
likely to produce identical false positives, and second, by engaging 
human-in-the-loop decisions when models disagree. Overall, Level 2 of 
automation is characterised by faster data analysis and reduced human 
workload, albeit at the expense of higher system complexity and an 
elevated risk of failure. To prevent human-out-of-the-loop performance 
degradation, operators retain the ability to intervene and take control at 
any time. They can audit AI decisions and examine intermediate outputs 
from each stage, thereby improving both explainability and traceability.

2.4. Level 3: high automation

Level 3 automation operates as a multi model system, where a third, 
higher-precision AI model resolves disagreements between the initial 
two AI models. In this work, the two initial models are selected based on 
a logic of mirroring the manual approach taken by human operators, 
who typically examine C-scan data first to identify defects and then use 

B-scan data for further investigation. Therefore, the two models work 
independently on C-scan and B-scan data, and with their rapid inference 
offer a balanced combination of efficiency and accuracy for defect 
detection. The third model, which operates on full 3D volumetric data, 
offers the highest precision and is reserved for the final verification of 
areas where the first two models disagree. However, it is the slowest of 
the three and scales the least efficiently with increases in data size. 
Instead, it is selectively applied to specific sections, replacing the 
human-in-the-loop mechanism from Level 2. At this level, used AI 
models must be scrutinised and fine-tuned, aiming to achieve optimal 
accuracy with no tolerance for false negatives. Human operators, while 
removed from direct involvement, transition to a supervisory role, 
retaining the ability to intervene, monitor, and override AI decisions as 
necessary. This configuration delivers many advantages of an ideal 
automated system, albeit with slightly slower analysis and increased 
computational power required to run multiple AI models in parallel.

2.5. Level 4: full automation

Level 4 automation represents an idealised long-term goal where an 
AI model surpasses human capabilities in both speed and accuracy. In 
this setup, a single end-to-end model is responsible for all decision- 
making, eliminating the need for human NDE operators to inspect the 
data. While this approach would offer the fastest analysis, it comes with 
the highest risks and requires very high trust in the AI model, which can 
only be achieved through rigorous testing and parameter tuning. This 
level also represents an extreme case of automation, where human out- 
of-the-loop performance issues might arise. Most academic works that 
report evaluation metrics for developed AI models can be seen as ex
amples of Level 4 automation.

It is important to note that different inspection scenarios may benefit 
from different combinations of AI models depending on requirements 
such as inference speed, precision, and explainability. As automation 
levels increase, several key system characteristics change. Higher 
automation levels lead to faster analysis speeds, with significant re
ductions in human workload. However, this comes at the cost of 
increased risks and system complexity. Lastly, trust in the AI system 
becomes crucial at higher levels of automation. Table 1 provides an 
overview of these system characteristics across different data analysis 
automation levels.

The lower risk associated with human operator performance stems 
from their ability to demonstrate inspection competency through 
rigorous training and testing. This acquired expertise is expected to 
generalise to out-of-distribution cases, as it is based on fundamental 
principles rather than solely on pattern recognition. In contrast, AI- 
based approaches often struggle with out-of-distribution scenarios, 
leading to higher inspection risks. However, the risk level for human 
operators is not fixed and varies significantly depending on individual 

Table 1 
System characteristics for different automation levels of data analysis.

System 
Characteristic

Automation Level

Level 0 Level 1 Level 2 Level 
3

Level 4

Risk Operator 
dependent

Low Medium High Very 
High

AI Trust None Low Medium High Very 
High

System 
complexity

Very low Low Medium High Very 
High

Human 
workload

Very High Very 
High

Medium Low None

AI workload None Low Medium High Very 
High

Analysis speed Very slow Slow Medium Fast Very 
Fast
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skill and experience.

3. Materials and methods

3.1. Experimental setup

For data acquisition, an Olympus/Evident RollerFORM-5L64 [49] 
phased array probe, which is a roller probe product suited for automa
tion of PAUT, paired with Peak NDT Ltd. MicroPulse 6 controller [50] 
was used. This phased array with a central frequency of 5 MHz com
prises 64 individual ultrasonic elements arranged linearly with a pitch of 
0.8 mm and an elevation of 6.4 mm, positioned inside a deformable tyre 
filled with a liquid creating a 25 mm stand-off between the array and the 
sample’s surface. The liquid was selected to closely match the acoustic 
impedance of the tyre to facilitate the propagation of ultrasonic waves 
into the sample.

The ultrasonic controller features 128 transmission and reception 
channels, allowing for the customisation of focal laws. For this study, a 
linear scanning mode with a sub-aperture of 4 elements was employed. 
This resulted in an active aperture of 48.8 mm and the recording of 61 A- 
scans in each electronic sweep of the array. An excitation voltage of 80 V 
and pulse width of 100 ns were used, in conjunction with a digital 6 MHz 
lowpass filter and a sampling rate of 100 MHz. An overall gain of 22.5 dB 
was applied upon reception of the signal, in addition to Time Variable 
Gain (TVG) added during post-processing. The use of TVG enhances the 
signal amplitudes in the later stages of the ultrasonic propagation, 
compensating for the highly attenuative nature of the inspected CFRP 
material, as is set to 1.5 dB/mm.

The PAUT sensor was delivered to scan the component through an 
automated platform built around an industrial manipulator KUKA KR90 
R3100 extra HA. To achieve a consistent coupling quality of the PAUT 
roller probe to the component’s surface during the scan, a bespoke ro
botic control platform was used to adaptively change the robot pose 
based on real-time feedback from a Schunk GmbH & Co. FTN-GAMMA- 
IP65 SI-130-10 force torque sensor [51] mounted on the robot [52]. Air 
pockets between the probe’s tyre and the sample’s surface act as strong 
reflectors on the UT signals, diminishing the sample’s volumetric signal 
quality, therefore sufficient coupling had to be achieved and sustained 
during the scan. To this end, water was sprayed over the sample surface, 
creating a thin film between the material and the PAUT tyre.

3.2. Reference samples

This study focuses on the analysis of two CFRP samples manufac
tured by Spirit AeroSystems, UK according to Bombardier aerospace 
process specification standard. To partly imitate defects occurring in the 
manufacturing process, a range of Polytetrafluoroethylene (PTFE) and 
other polymer inserts were embedded [53]. The first sample (Sample A) 
was a stepped specimen with dimensions 780.0 × 200.0 mm and 
thicknesses ranging from 7.5 to 13.5 mm. Square inserts, each 
measuring 6.0 × 6.0 mm, were embedded in the sample at different 

depths and locations, resulting in a total of 24 defects. The inserts were 
positioned both near the edges and at the centre of the sample, with 
depths ranging from subsurface levels to near the back wall, as detailed 
in.

Table 2. An amplitude C-scan, model of the sample A, and PAUT 
roller probe dimensions are presented in Fig. 3.

The second sample (Sample B) was composed of a flat panel skin 
surface co-cured with three stringer sections. The sample contained 12 
PTFE inserts, with 6 located immediately beneath the surface and 6 
beneath the stringer sections, as detailed in Table 3. The sizes of the 
inserts were 20.0 × 10.0 mm, 10.0 × 5.0 mm, and 5.0 × 5.0 mm. An 
amplitude C-scan and a model of the sample B are illustrated in Fig. 4.

3.3. Data stream handling

Training and development of AI models was performed on a high- 
performance desktop Windows 11 PC. This system was equipped with 
an Nvidia RTX 3090 Ti Graphics Processing Unit (GPU), 128 GB of 
Random Access Memory (RAM), and two Intel® Xeon® Gold 6428 2.50 
GHz Central Processing Unit (CPUs), while PyTorch [54] framework was 
used for model development. The data processing, data capture, syn
chronisation between individual hardware elements, and model in
ferences were performed on a Windows 11 Dell Precision 5570 laptop 
equipped with Intel i9-12900H 2.50 GHz CPU, 64 GB of RAM, and 
NVIDIA RTX A2000 8 GB GPU. Robotic control was executed with JAVA 
code wrapped in Python syntax, while UT and AI processes were per
formed in Python 3.8. Data acquisition and processing were split into 
two Python nodes.

The acquisition/communication node first sets up a Transmission 
Control Protocol/Internet Protocol (TCP/IP) connection to the UT 
equipment and listens for the User Datagram Protocol (UDP) connection 
established by the KUKA robotic controller. Once all connections are 
active, another TCP/IP connection to the processing node is initiated to 
maximise the utilisation of available computing resources. In Python, 
the global interpreter lock restricts true multiprocessing and parallelism 
within a single interpreter process, therefore running two separate 
scripts concurrently allows the scripts to utilise different CPU cores 
effectively. Alternative programming languages such as C++ offer more 
straightforward solutions for parallelism but would result in more 
complex code and make implementation of the developed AI models 
more difficult. Another potential solution includes using Robotic Oper
ating System (ROS) framework which is optimised for real-time 
applications.

Upon establishing the connection to the processing node, the robotic 
controller begins monitoring and broadcasting its’ positions. The 
communication node continuously checks the Euclidean distance be
tween subsequent position updates, triggering the UT data capture 
command if it surpasses the predetermined distance threshold of 0.8 mm 
(i.e. scanning step used in this study). The threshold aligns with the pitch 
of the used PAUT assembly, ensuring a square aspect ratio in the final 
data representation. Upon receiving the data, the robotic positions and 

Table 2 
Details for sample A.

Defect Between plies (start/end) ~Depth (mm) Sample thickness (mm) Defect Between plies (start/end) ~Depth (mm) Sample thickness (mm)

1 2/3 0.65 13.50 13 18/19 4.80 9.59
2 2/3 0.65 13.50 14 18/19 4.80 9.59
3 2/3 0.65 11.70 15 14/15 3.76 7.46
4 2/3 0.65 11.70 16 14/15 3.76 7.46
5 2/3 0.65 9.59 17 50/51 13.11 13.50
6 2/3 0.65 9.59 18 50/51 13.11 13.50
7 2/3 0.65 7.46 19 42/43 11.03 11.70
8 2/3 0.65 7.46 20 42/43 11.03 11.70
9 26/27 6.88 13.50 21 34/35 8.96 9.59
10 26/27 6.88 13.50 22 34/35 8.96 9.59
11 22/23 5.84 11.70 23 26/27 6.88 7.46
12 22/23 5.84 11.70 24 26/27 6.88 7.46
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UT readings are correlated and transmitted immediately to the pro
cessing node, repeating the process until the scan is completed. The 
processing node, upon receiving the data, performs basic data manipu
lation, including reshaping, normalisation, data padding, TVG, and 
Hilbert transform, before feeding the data into AI models described in 
Section 3.4. A block diagram illustrating the ultrasonic and robotic 
setup, alongside the communication and processing nodes, is illustrated 
in Fig. 5.

Additionally, it is important to address the limitations and set 
reasonable expectations for the positional triggering setup. The current 
configuration, with a UDP connection between the KUKA controller and 
laptop, provides a positional update rate of 250 Hz. This update rate may 
present challenges at higher scanning speeds, potentially resulting in 
positional overshooting for data capture triggers. In the conducted 

experiments, scanning speeds of up to 30 mm/s were tested and deemed 
satisfactory.

Another critical aspect to consider is the resolution of ultrasonic 
scans. In the aerospace sector, the primary objective of NDE is to detect 
defects classified as critical based on their size and location on the 
structure. Quality control documents from Spirit AeroSystems indicate 
that delaminations ranging from 60 to 500 mm2 may be allowed, 
depending on their position within the structure. When converted to 
equivalent circular defects, these areas correspond to defect diameters 
ranging from 8.8 to 25 mm. Given this context, acquiring data at in
tervals of 0.8 mm ensures at least five frames per defect are captured.

Fig. 3. A) Amplitude C-scan of sample A, b) Model of sample A, c) PAUT probe dimensions.

Table 3 
Details of defects in sample B.

Defect Insert size (mm 
x mm)

Between plies 
(start/end)

~Depth 
(mm)

Sample thickness 
(mm)

Defect Insert size (mm 
x mm)

Between plies 
(start/end)

~Depth 
(mm)

Sample thickness 
(mm)

1 5.0 × 5.0 2/3 0.9 7.8 7 5.0 × 5.0 18/19 6.8 12.5
2 10.0 × 10.0 2/3 0.9 7.8 8 10.0 × 10.0 18/19 6.8 12.5
3 20.0 × 10.0 2/3 0.9 7.8 9 20.0 × 10.0 18/19 6.8 12.5
4 5.0 × 5.0 2/3 0.9 7.8 10 5.0 × 5.0 18/19 6.8 12.5
5 10.0 × 10.0 2/3 0.9 7.8 11 10.0 × 10.0 18/19 6.8 12.5
6 20.0 × 10.0 2/3 0.9 7.8 12 20.0 × 10.0 18/19 6.8 12.5

Fig. 4. Amplitude C-scan and a schematic of Sample B demonstrating the actual and estimated location of defects, respectively.
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3.4. Artificial Intelligence models

3.4.1. Anomaly autoencoder model
The first AI model used in this work is detailed in Ref. [55]. The 

framework comprises a two-step process: an automated gating method 
and an anomaly detector based on the AE structure. While the surface 
echo is removed automatically due to a constant known offset of the 
inspected sample from the ultrasonic array, determined by the roller 
probe’s outer diameter, the automated gating method analyses volu
metric data to identify and exclude the back-wall echo. This approach 
operates without needing prior knowledge of the material’s thickness or 
geometry and is achieved using a peak-finding algorithm from the SciPy 
Python library [56] applied to Hilbert-transformed volumetric data. The 
algorithm applies a threshold of 0.25 for normalised amplitudes, a value 
chosen within the range of 0–1 and calibrated using an additional flat 
CFRP pristine sample, and a minimum distance of 5 time samples be
tween identified peaks to filter out minor peaks thus reducing data 
dimensionality and processing times. The identified peaks are subse
quently processed using the Density-Based Spatial Clustering of Appli
cations with Noise (DBSCAN) algorithm, an unsupervised clustering 
algorithm [57], which groups peaks into distinct clusters based on two 
parameters: eps (the maximum allowable distance between peaks in a 
cluster) and min_number_of_peaks (the minimum count of peaks required 
to form a cluster). The eps value is set to 7, following the values from the 
original publication. The value for min_number_of_peaks is manually 
defined to ensure that defects up to 20.0 × 10.0 mm in size are not 
excluded. It is set to 250 to capture significant defects while excluding 
smaller, irrelevant clusters. This threshold can also be set automatically 
by observing the size of the captured data and adjusting the value based 
on the number of expected changes in the material’s thickness. Finally, 
identified clusters, representing the back wall echo, are removed from 
the data.

Afterwards, the gated data is passed through the AE, which consists 
of encoder and decoder components, as illustrated in Fig. 6. The encoder 
is composed of a series of convolutional layers that compress input B- 
scans into a feature representation, while the decoder performs the in
verse operation to reconstruct the input. Since the training dataset 
exclusively consists of pristine data, the model learns the expected 
structural noise patterns and is able to reconstruct these without issue. 
However, when a B-scan containing defects is introduced, the model 
struggles to accurately reconstruct these anomalies. The discrepancy 
between the input and output is quantified using Mean Squared Error 
(MSE), where a higher MSE indicates the presence of potential defects. 
To differentiate pristine from defective B-scans, an anomaly threshold is 
applied to the observed MSE errors. A single threshold is applied across 
all automation levels, set as the median value of all observed MSE errors, 
increased by 50 % of the median value. This approach is based on the 
expectation that most B-scans in the scanned sample are pristine. As a 
result, the median value of MSE will effectively represent the typical 
value for pristine B-scans, while the additional offset helps capture only 
significant deviations, accounting for smaller variations. This method is 
consistent across all levels of automation, prioritising the safety con
siderations and detection of defects while accepting a higher rate of false 
positives. It is worth noting that this threshold can be adjusted based on 
the specific application scenario, and could also be defined using other 
statistical methods, such as standard deviations.

This unsupervised learning approach demonstrated successful defect 
detection for defects larger than 4.0 mm in diameter. The model’s 
lightweight architecture enables efficient integration without significant 
computational demands, as inference on an NVIDIA 3080 Ti GPU- 
accelerated machine can batch-process approximately 2000 B-scans in 
1.26 ± 0.09 s. The limitation of this model lies in the failure to detect 
smaller defects (approximately 3.0 mm in diameter) and those located 
within 0.5 mm of the material’s back wall. Additionally, this approach 

Fig. 5. Flowchart of the experimental setup, integration of PAUT and robot, and data flow.

Fig. 6. Autoencoder architecture and specifications.
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provides only a rough estimation of defect locations, as each B-scan is 
classified as either anomalous or not, without offering precise infor
mation about the exact position of the defect within the B-scan view. 
Lastly, removing the back wall signal eliminates useful information that 
NDE operators often rely on during analysis, particularly when assessing 
defects such as porosities, which are typically identified by a reduction 
in back wall amplitude.

3.4.2. Object detection model
The second model utilised in this work was a Faster Region- 

Convolutional Neural Network (R-CNN) object detection model 
detailed in Ref. [58]. Originally introduced in Ref. [59], Faster R-CNN is 
used as an end-to-end method for detecting various objects within image 
data. Its architecture consists of a convolutional feature extractor, a 
region proposal network that identifies regions of interest, and a clas
sifier for object identification, as illustrated in Fig. 7.

The supervised training of Faster R-CNN required simulated datasets, 
which involved substantial computation time, manually crafted ground 
truth labels, and domain-specific augmentations to produce a high- 
performing model [17]. Despite its complex architecture, demanding 
training process, and higher computational requirements during infer
ence, Faster R-CNN remains suitable for real-time deployment, 
achieving an inference speed of under 50 ms per C-scan on an NVIDIA 
3080 Ti GPU-accelerated system. During deployment, Faster R-CNN 
requires a confidence threshold to filter generated predictions (value 
between 0 and 1). Following the same logic for setting anomaly 
thresholds for the AE model, confidence thresholds are set at 0.001 for 
all automation levels. The inference process begins with the generation 
of amplitude C-scans using the automated gating method described in 
section 3.4.1. These C-scans are then fed into the Faster R-CNN model, 
which outputs bounding boxes that highlight the defects within the 
inspected material. Compared to the AE model, the Faster R-CNN offers 
superior detection performance and provides the ability to precisely 
locate defects in the inspection plane.

The primary drawback of this model is its “black box" nature, where 
the reasoning behind inference results is obscured. In industry sectors 
requiring clear, interpretable outputs, this is a disadvantage, as it limits 
transparency in the decision-making process. Furthermore, since the 
model was trained on 64 × 64 resolution images, it can struggle when 
processing input images with significantly different aspect ratios or 
sizes. To overcome this challenge, a workaround involves applying the 
model on smaller sections of the scans and then collating the results. 

Although this slightly complicates the deployment of the code, it allows 
for efficient inference and reliable defect detection. Lastly, initial testing 
revealed that Faster R-CNN occasionally struggled to detect defects as 
small as 3.0 mm, especially when their amplitude was very low.

3.4.3. Self-supervised model
The third model was a 3D Ultrasonic Self-Supervised Segmentation 

(3-DUSSS) model designed to process full 3D volumetric data, as pre
sented in Ref. [60]. This lightweight model operates by pre-training on 
pristine 1-D scan series through the component, where the model at
tempts to predict the likely distribution for the next value in the 
sequence. During inference, these distributions can be thresholded 
against the measured experimental values and used to indicate anoma
lous voxels. The model utilises a sliding window approach, whereby if a 
point is considered defect free it is added to the series to ground the 
model in relation to experimental data. If the point is considered 
defective, the model uses the mean of the predicted distribution as a best 
proxy for the expected defect-free datapoint and flags the voxel as 
defective. Similar to the AE model, training was performed on pristine 
data, allowing the 3-DUSSS model to learn the amplitude responses 
specific to carbon fibre structures. The training dataset included both 
front and back walls, which minimises the impact of poor gating which 
could lead to removal of defect signatures. During inference, the model 
requires two parameters: the allowable false call rate and an area 
threshold. The allowable false call rate defines the maximum deviation a 
voxel can have from the predicted distribution before being considered 
defective (in this work, this was set to 0.999999). The area threshold 
filters out smaller voxel groups to minimise false positive calls, with this 
threshold set to 10 in the current work.

The developed model excels in localisation, depth estimation, and 
sizing of defects, effectively detecting flaws as small as 3.0 mm in 
diameter. However, when processing large datasets, this method en
counters challenges due to the computational demand of handling the 
entire scan volume, requiring a powerful GPU with significant memory 
capacity (the original study employed a setup with three NVIDIA 
GeForce RTX 3090 GPUs). Although the model itself is lightweight, the 
volume of data for processing is substantially higher than that of indi
vidual B- or C-scan views, making GPU memory a critical factor and 
creating a bottleneck in data loading onto the GPU. Even after down- 
sampling data by a factor of 10 in the time domain, deployment on 
less powerful hardware, like the single GPU configuration used in this 
study, leads to processing times in the range of several minutes, far 
slower than the few seconds needed by AE and Faster-RCNN. Further
more, the scans in this study are relatively small compared to those 
typical in industrial settings for large components, where AE and Faster- 
RCNN would likely scale better, as 3-DUSSS must process the entire 
dataset, while other methods operate on compressed 2D views. Addi
tionally, 3-DUSSS faces challenges when encountering variations in 
thickness, making it more suitable for deployment along scan directions 
where thickness changes are minimal. However, despite being slower at 
inference than other methods, 3-DUSSS’s capability to generate a com
plete 3D segmentation map provides a comprehensive visualisation of 
the ultrasonic scan. This feature not only improves the interpretability of 
scan results but also allows for the creation of digital twins for reporting, 
adding practical value to the inspection process.

4. Results and discussion

4.1. Level 1 – operator assistance

In the Level 1 Operator Assistance level of data analysis, inference 
parameters for both the Faster R-CNN and AE models are configured to 
minimise the risk of false negatives. While the ideal performance of an 
NDE operator or automated system would result in zero false negatives 
and false positives, achieving this is challenging. In the context of NDE 
for safety-critical components, the emphasis is heavily on minimising Fig. 7. Faster R-CNN architecture (adapted from Ref. [59]).
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false negatives. Missing critical defects can have severe consequences, 
while false positives, though not directly threatening to material safety, 
may lead to higher costs if unnecessary rework is done, components are 
scrapped, or extended data analysis is conducted by operators to verify 
whether an indication is a true positive. For Faster-RCNN, the confi
dence threshold determines the number of defects identified: a higher 
threshold results in fewer, but more confident detections, reducing false 
positives but potentially missing smaller or more subtle defects. On the 
other hand, a lower confidence threshold increases the number of de
tections for smaller defects and fainter indications, though this often 
leads to more false positives. At this automation level, where the final 
decision rests with the operator and all data is expected to be reviewed, 
the preference is typically for a lower confidence threshold (i.e., 0.001). 

This setting helps minimise false negatives while relying on operators to 
review and filter out false positives, ensuring that potential defects are 
flagged for further inspection and prioritising safety by reducing the risk 
of overlooked critical defects.

For the AE model, inference involves setting a threshold for anomaly 
detection based on observed MSE. A higher threshold flags only severe 
discrepancies from the MSE associated with pristine B-scans (i.e., sig
nificant defects), thus reducing false positives but potentially missing 
minor defects. A lower threshold, on the other hand, captures a larger 
number of indications, including minor deviations that may represent 
pristine B-scans, increasing the risk of false positives. Following a similar 
approach to the Faster R-CNN model, the AE model at this level of 
automation is configured to prioritise safety by applying a lower 

Fig. 8. A) Output of the Faster R-CNN model, and b) Output of the AE model on C-scan view of the sample A (cyan/orange bounding boxes); c) B-scan frame 
containing a missed defect indication close to back wall; d) Equally sized defect close to front wall with ultrasound reverberations aiding the defect detection; e) AE 
false positive resulting from minor indications received from thickness transition at the location of sample geometrical steps. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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anomaly detection threshold (i.e., median MSE plus 50 %).
The detection results for Sample A from both the Faster R-CNN and 

AE models are illustrated in Fig. 8 a) and b). Faster R-CNN was able to 
capture all defects while producing two false positives. However, the AE 
model missed two defects, located at the thickest section of the sample 
near the back wall. A B-scan from that position is shown in Fig. 8 c), 
where it can be observed why defects at such locations complicate 
detection. The indication is nearly fused with the back wall echo; 
Therefore, even with an optimal gating approach, a part of the defective 
signal would also be removed. This presents a challenge, as the defect 
appears very small on the B-scan level, and the C-scan amplitude 
response is also considerably weaker compared to other defects.

As a comparison, Fig. 8 d) shows a defect of equal size located 
immediately after the surface echo. While the main defect echo is again 
partially merged with the surface echo, as seen in the previous scenario, 
the several recorded ultrasonic repeats of the interface with a defect 
make detection easier. Therefore, even imperfect gating would leave 
strong reflections in the data, resulting in easier detections from both AE 
and Faster R-CNN. Lastly, Fig. 8 e) presents a B-scan showing a false 
positive indication produced by the AE model. In this instance, a change 
in sample thickness results in many higher amplitude reflections caused 
by the interaction between the ultrasonic beam and sharp transition in 
sample geometry. Therefore, while the area captured in the B-scan frame 
is pristine, these minor indications cause a substantial deviation from 
the median MSE observed in the rest of the scan, resulting in a false 
positive flag.

In the presented examples, models are prone to generating false 
positive or false negative indications when calibrated with lower con
fidence and anomaly thresholds. Unfortunately, this approach yields 
results unsuitable for higher automation levels, especially due to the 
risks associated with missing defects, which could compromise the 
structural integrity of the final product if left unchecked. While false 
positives degrade the inference performance, they do not pose direct 
safety risks and can be addressed by NDE operators, albeit at the cost of 
additional analysis time. Nevertheless, the primary aim of this auto
mation level is to assist with the analysis by providing informed sug
gestions on areas of interest, with the final decision remaining with the 
NDE operator who reviews all data. While adjusting model inference 
parameters could potentially lead to the successful detection of all de
fects by both models, changing these values on per sample basis is not 
feasible in the industrial system deployment.

The reasoning behind choosing the AE and Faster R-CNN models as 
the primary models for this application is their fast inference times, 
making them suitable for deployment on less powerful hardware. Only 
the inference times of the models are reported in this work. Faster R- 
CNN processing for Sample A takes 0.22 ± 0.06 s, while the AE model 
produces results in 2.28 ± 0.12 s. Specifically, the inference time for the 
AE is 1.56 ± 0.01 s, with an additional 0.73 ± 0.025 s required for 
padding inputs to match the AE’s convolutional structure. On the other 
hand, running the 3-DUSSS model on sample A takes 221.34 ± 1.41 s. 
The results of the 3-DUSSS model are overlayed over a C-scan of the 

sample and presented in Fig. 9.
The detection results for Sample B are illustrated in Fig. 10 a) and b). 

While Faster R-CNN successfully identified all defects with two false 
positives, the AE model failed to detect a 5.0 × 5.0 mm defect in the 
stringer section. Upon further inspection, this defect is partially visible 
in the scans but was not captured in its entirety due to an insufficient 
overlap between adjacent ultrasonic passes. As a result of this scanning 
error, the defect appears smaller than its true size, reducing its ampli
tude response, and preventing it from meeting the detection threshold 
for the AE model. Although reducing the anomaly threshold further 
might enable detection of this defect, it would also result in an excessive 
number of false positives across the scan. This defect is shown in Fig. 10
c).

Additionally, while AE successfully identifies defects near the front 
wall, not all B-scans containing defects are flagged. Since defects typi
cally span several B-scan slices, the MSE error varies across these slices, 
leading to some B-scans being correctly classified as anomalous while 
others are not. This approach still serves its purpose, as it provides the 
operator with a highlighted area of interest, which is valuable for 
guiding further inspection (although achieving complete detection 
would be ideal). An example of a partially captured defect is in Fig. 10
d). This example highlights the advantage of Faster R-CNN, which le
verages the spatial context across the C-scan view, rather than relying 
solely on individual B-scan slices.

Inference for FasterRCNN took 0.55 ± 0.08 s, while AE produced 
results in 2.34 ± 0.11 s, with additional time for padding resulting in 
0.67 ± 0.01 s 3-DUSSS model for this larger sample runs in 379.98 ±
1.21 s, which underscores the challenges in the scaling of inference time. 
In contrast, manual NDE inspection is typically reported to take signif
icantly longer. For example, for a sample approximately double the size, 
the data interrogation is typically completed in 40 min by an operator, 
although this time is extended by an hour or more when defects are 
present as a closer examination and sizing of defective areas is required. 
While direct measurements for human analysis of the specific samples 
discussed in this work are not available, these figures highlight the time- 
saving potential of the proposed AI-based methods, which operate on 
the scale of seconds and minutes compared to tens of minutes or hours 
for manual inspection. The results of the 3-DUSSS model are overlaid on 
a C-scan and presented in Fig. 11, showing that all defects were suc
cessfully detected, with five false positives.

4.2. Level 2 – partial automation

Level 2 of automation combines and compares the outputs of models, 
adding a layer of validation to AI predictions. In sample A, Faster R-CNN 
and AE agreed on 22 out of 24 defects, as shown in Fig. 12. This 
agreement enhances trust in the system, as these areas are flagged by 
two independently trained AI models, each trained on distinct data and 
ultrasonic views. Meanwhile, the nine areas of disagreement were 
flagged for human review, streamlining the analysis process. Rather 
than examining the entire dataset, the operator can now focus on these 

Fig. 9. 3-DUSSS segmentation output (pink) superimposed on the C-scan image of Sample A. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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specific areas of disagreement, efficiently identifying the remaining two 
defects while filtering out false positives. For sample B, the models 
reached agreement on 11 out of 12 defects, with the human in the loop 
triggered to review five areas where the models disagreed, as shown in 
Fig. 13.

4.3. Level 3 – high automation

The multi model Level 3 automation produced results consistent with 
Level 2 in terms of agreement between the AE and Faster R-CNN models, 
with the key difference being that disagreements between the models 

Fig. 10. A) Output of the Faster R-CNN model and b) Output of the AE model overlaid on C-scan view of the sample showing detected/missed defects (cyan and 
orange/red); c) Missed defect in stringer section; d) Partially captured defect close to the front wall. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)
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were resolved by the 3-DUSSS model rather than through a human-in- 
the-loop mechanism. In Sample A, the 3-DUSSS model confirmed that 
the two false negative calls by AE were defects, resulting in the suc
cessful identification of all 24 defects while discarding other false 

positive calls. An example of a disagreement in Sample A is shown in 
Fig. 14 a), where two defects near the back wall were detected by the 
Faster R-CNN but missed by the AE model (refer to Fig. 12). In this 
section, both the Faster R-CNN and 3-DUSSS models identified one false 

Fig. 11. 3-DUSSS segmentation output (pink) overlaid on the C-scan view of the sample B. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 12. Sample A) Agreement (green) and disagreement (red) between the Faster R-CNN and AE models. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)

Fig. 13. Sample B: Agreement (green) and disagreement (red) between the Faster R-CNN and AE models. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)
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positive each. These detections were rechecked for agreement and ul
timately rejected as false positives. In contrast, the two detections with 
coinciding results were confirmed as true positives, resolving the 
disagreement between the models. Inference time for the 3-DUSSS 
model was significantly reduced compared to processing the full vol
ume, taking 91.59 ± 0.83 s to resolve nine areas of disagreement. While 
this reduction may seem modest here, it is important to highlight that 
these experiments were conducted on relatively small scans and refer
ence samples. For larger datasets, typical in industrial applications, this 
targeted approach would likely result in more substantial time savings.

Similar results were observed in Sample B, where all defects were 
correctly identified. An example of model disagreement is shown in 
Fig. 14 b), where a 5.0 × 5.0 mm stringer defect, missed by AE, was 
confirmed as a true positive by the 3-DUSSS model. As in the previous 
example, 3-DUSSS produced one false positive, which was rejected since 
it did not coincide with any other model’s detection. The inference time 
for the 3-DUSSS model to resolve five areas of disagreement was 54.12 
± 0.74 s.

Overall, Level 3 automation offers several benefits. By combining the 
Faster R-CNN, AE, and 3-DUSSS models, all defects in this study were 
successfully detected, with the 3-DUSSS model resolving areas of 
disagreement and filtering out false positives. This approach ensures 
fast, reliable results while enabling the use of less powerful hardware. 

Additionally, the workflow reduces both analysis time and operator 
workload, while still allowing operators to review intermediate results, 
examine areas of disagreement, and intervene if needed, thereby pre
venting potential performance degradation. This workflow achieves 
results close to the ideal fully automated process, with minimal impact 
on analysis time and system failure risk. An overview of the performance 
metrics for individual models, including the number of false positive and 
false negative calls, as well as inference times, is provided in Table 4. 
Recall is defined as the number of true positives divided by the sum of 
true positives and false negatives, while precision is the number of true 
positives divided by the sum of true and false positives. The F1 score is 
calculated as the harmonic mean of precision and recall.

5. Conclusion

In this paper, AI-aided data analysis strategies were explored across 
three proposed levels of automation, focusing on the use of multiple AI 
models to simultaneously process different ultrasonic views. A case 
study was conducted on two defective CFRP reference samples con
taining 36 manufactured defects. These samples were inspected using an 
industrial manipulator and a PAUT roller probe to simulate industrial 
practices for inspecting large composite components. Integrating mul
tiple models within the NDE data analysis workflow provided flexibility 

Fig. 14. Areas of disagreement between models resolved by 3-DUSSS; a) Sample A with Faster R-CNN (cyan) and 3-DUSSS (pink) predictions overlaid on the C-scan; 
b) Sample B with Faster R-CNN (cyan), AE (orange), and 3-DUSSS (pink) predictions overlaid on the C-scan. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Table 4 
Overview of reported performance metrics for different automation levels.

Automation Level 1 Metric System

Anomaly detection AE Faster R-CNN 3-DUSS

Sample A Sample B Sample A Sample B Sample A Sample B

Single model system 
Operator reviews all data and all AI model outputs

Inference [s] 2.28 ± 0.12 2.34 ± 0.11 0.22 ± 0.06 0.55 ± 0.08 221.34 ± 1.41 379.98 ± 1.21
False positives [− ] 5 2 2 2 4 5
False negatives [− ] 2 1 0 0 0 0
Precision [− ] 0.815 0.846 0.923 0.857 0.857 0.706
Recall [− ] 0.917 0.917 1.000 1.000 1.000 1.000
F1 [-] 0.863 0.880 0.960 0.923 0.923 0.828

Automation Level 2 Metric System

Anomaly detection AE | Faster R-CNN

Sample A Sample B

Two model system 
Human-in-the-loop mechanism triggered for 
disagreements

Inference [s] 2.44 ± 0.18 (2.28 ± 0.12 | 0.22 ±
0.06)

2.89 ± 0.19 (2.34 ± 0.11 | 0.55 ±
0.08)

False positives [− ] 7 4
False negatives [− ] 0 0
Flagged for Human-in-the-loop 
mechanism [− ]

9 (7 false positives and 2 true 
positives)

5 (4 false positives and 1 true 
positive)

Automation Level 3 Metric System

Anomaly detection AE | Faster R-CNN | 3-DUSS

Sample A Sample B

Three model system 
Operator moved to supervisory role

Inference [s] 94.03 ± 1.01 (2.28 ± 0.12 | 0.22 ± 0.06 | 91.59 ± 0.83) 57.01 ± 0.93 (2.34 ± 0.11 | 0.55 ± 0.08 | 54.12 ± 0.74)
False positives [− ] 0 0
False negatives [− ] 0 0
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in designing workflows, managing intermediate results, and resolving 
model disagreements. This approach also facilitated a more robust setup 
leading to the successful detection of all examined defects. The study 
revealed that for. 

• Level 1 - Operator Assistance: The conservative use of AI models 
prioritises safety by minimising false negatives, at the cost of 
increasing false positives. The suggestions provided by the models 
accelerate data analysis while maintaining minimal risks associated 
with reliance on automation. Human operators validate all AI out
puts and retain full control over decision-making, resulting in only a 
slight increase in system complexity.

• Level 2 – Multi Model Partial Automation: Improved results were 
achieved by comparing outputs from two models and prompting 
human operators to intervene in areas of disagreement. This com
parison acts as an additional validation step for reported detections, 
aiming to increase trust in the automated process. While this 
approach speeds up data analysis, it requires a higher degree of trust 
in the models.

• Level 3 – Multi Model Fully Automation: Incorporating the 3-DUSSS 
model as an arbiter enabled a simultaneous analysis workflow that 
processes ultrasonic B-scans, C-scans, and full volumetric data. The 
deployment of 3-DUSSS to only areas of disagreement greatly 
reduced inference times and memory requirements, making this 
strategy deployable on less powerful hardware. The combination of 
three models achieved near-ideal results while addressing model 
trust concerns with two layers of validation.

While this research provides an analysis of the performance of 
different automation levels on fabricated defects of known size and 
shape, there is an opportunity to explore the system’s functionality when 
applied to naturally occurring defects, such as porosities, to assess the 
robustness of individual models across a wider range of defect types. 
Additionally, optimisation of models in terms of hyperparameter tuning, 
changes in architectures, or training regimes with new and varied data is 
deemed promising for achieving improved results.

In future work, the developed system will be integrated into a 
production-level industrial use case to assess its scalability, robustness, 
and performance in a complex real-world environment, while also 
addressing integration challenges with existing workflows. Additionally, 
the expansion of defect detection models to include a broader range of 
defect types, such as porosities or foreign object inclusions, will be 
explored.
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architecture for detection of defects with extreme aspect ratios in ultrasonic 
images. Neurocomputing Feb. 2022;473:107–15. https://doi.org/10.1016/J. 
NEUCOM.2021.12.008.
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