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Abstract 
Pearl millet (Pennisetum glaucum L.) is a resilient crop known for its ability to thrive 

in arid and semi-arid regions, making it a crucial staple in regions prone to drought. 

Rajasthan, a state in India, emerged as the top producer of pearl millet. This study 

enhances yield forecasting for pearl millet using machine learning models across nine 

districts viz. Jaipur, Ajmer, Jodhpur, Bikaner, Bharatpur, Alwar, Sikar, Jhunjhunu and 

Nagaur in Rajasthan, India. Data from 1997–2019 (23 years), including yield data from 

the Directorate of Economics and Statistics and weather data from the NASA POWER 

web portal, were analysed. The study employed individual machine learning methods 

(GLM, ELNET, XGB, SVR and RF) and their ensemble combinations (GLM, ELNET, 

Cubist and RF). Discerning the overall best performing model across all locations 

remained challenging. For instance, while ensemble models exhibited subpar perfor-

mance in Barmer and Nagaur, their performance ranged from satisfactory to com-

mendable in other locations. To identify the best model, all models were ranked based 

on their R2 and nRMSE (%) values. Combined average ranks during training and 

testing revealed the model performance ranking as I-XGB (3.83) >  I-GLM (4.28) >  E-  

ELNET (4.32) >  I-RF (4.67) >  E-GLM (4.88) >  I-SVR (4.90) >  I-ELNET (4.94) >  E- 

RF (6.03) >  E-Cubist (7.15), where I denotes individual model, while E denotes 

ensemble model. Intriguingly, while individual GLM and XGB models demonstrated 

superior performance during calibration, they exhibited poorer performance during 

validation, potentially indicating issues of data overfitting. Hence, the ensemble ELNET 

approach is recommended for accurate prediction of pearl millet yield, followed by 

the individual RF model. These performances underscore the importance of tailored 

model selection based on specific geographic and environmental conditions.
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Introduction
Agriculture is a vital sector in India, playing a crucial role in ensuring food, nutrition, and 
livelihood security. It employs more than two-thirds of the workforce and significantly con-
tributes to the country’s Gross Domestic Product (GDP) [1] Traditionally, Indian farming 
systems aimed to meet the dietary needs of both people and domestic animals, focusing on 
growing nutritious cereals such as millets and sorghum. However, with the commercialization 
of agriculture, farmers have shifted towards high-yield crops like rice and wheat. This change 
has led to increased malnutrition, undernourishment and micronutrient deficiencies. There-
fore, there is a pressing need to adopt precision agriculture systems to enhance the yield and 
quality of highly nutritious crops other than main cereals.

In India, pearl millet (Pennisetum glaucum L.) is the fourth most widely cultivated food crop 
after rice, wheat, and maize [2]. It grows rapidly with minimal inputs, has high photosynthetic 
efficiency, and offers a balanced nutritional profile. It is also tolerant to extreme climatic con-
ditions and biotic stresses. Recognizing its nutritional value, the Indian government has initi-
ated a “millet revolution” to promote these grains as ‘Nutri Cereals’ for enhanced production, 
consumption, and trade [3]. Pearl millet is known for its resilience and low water requirements, 
has gained prominence. Its economic significance is clear from its contribution to exports and 
ongoing research aimed at enhancing its nutritional value and stress tolerance [4].

Pearl millet is a crucial crop in subsistence agriculture across the semi-arid tropics of India, 
where it is extensively cultivated for grain, fodder, and fuel [5,6]. It is the sixth most important 
cereal crop globally in terms of annual production [4,7]. Known locally as bajra in India, pearl 
millet significantly contributes to the agricultural landscape, generating approximately 20 mil-
lion US dollars in millet exports during 2021–22. Its nutritional significance is underscored by 
its health benefits and potential use as an alternative poultry feed ingredient, demonstrating 
its versatility in addressing nutritional challenges [8].

Rajasthan, recognized as the “National Leader in Pearl Millets,” has the largest area and 
highest production of pearl millet in India. The state cultivates approximately 4.6 million 
hectares, with an average production of about 2.8 million tons and a productivity rate of 
400 kg per hectare [8]. Rajasthan’s semi-arid climate, characterized by low and erratic rainfall, 
makes it a suitable region for cultivating drought-resistant crops like pearl millet. The sig-
nificance of this study in this region lies in the fact that accurate yield predictions are crucial 
for policy planning, agricultural management, and food security initiatives. By focusing on 
Rajasthan, this study addresses the specific challenges faced by farmers in semi-arid regions, 
such as water scarcity and variable weather patterns. Accurate yield predictions can enhance 
resource allocation, improve food supply chain efficiencies, and inform decision-making at 
both governmental and farm levels. This, in turn, can help stabilize the livelihoods of farmers, 
optimize the use of agricultural inputs and contribute to the overall economic development of 
the region.

Moreover, monsoon systems, which play a critical role in facilitating agricultural activities 
across large parts of the world, have become increasingly unpredictable due to climate change. 
This unpredictability in rainfall and temperature gradients, as highlighted by [9], has direct 
implications for global and regional food security. Although pearl millet is known for its 
tolerance to abiotic and biotic stresses, the changing monsoonal patterns still pose challenges 
for its yield in regions like Rajasthan. Variations in precipitation and increased temperatures 
can negatively affect the growth cycle and yield outcomes, such variability leads to signifi-
cant reductions in crop productivity. In light of these challenges, the use of machine learning 
models becomes even more critical. By analysing long-term weather patterns and yield data, 
the present study seeks to provide more accurate and location-specific forecasts that can help 
farmers in regions like Rajasthan adapt to the changing climatic conditions.
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The arrival of machine learning and data analytics in agriculture presents new opportu-
nities to tackle various challenges. Machine learning algorithms can analyse vast amounts of 
historical weather and crop yield data to identify patterns and make accurate predictions [10]. 
This technological advancement is particularly relevant for pearl millet, given its importance 
in regions like Rajasthan where traditional farming practices are heavily influenced by climatic 
variability. By integrating machine learning techniques, we can develop predictive models 
that not only forecast yields more accurately, but also provide actionable insights for farmers 
to optimize their practices in response to changing environmental conditions. Moreover, the 
comparative analysis of different machine learning models and their ensemble combinations 
represents a novel approach in the context of agricultural yield forecasting. While individual 
models have their strengths, ensemble methods, which combine multiple models, can often 
provide more robust and accurate predictions by leveraging the strengths of each component 
model [9–11].

Understanding climate behaviour and its effects on crop yields is essential for better yield 
prediction. Numerous studies have highlighted the significant impact of various weather vari-
ables on crop yield. Several researchers have developed pre-harvest yield forecasting models 
based on weather variables [12–14]. However, there is a need for more robust and accurate 
models that can provide reliable forecasts tailored to specific crops and regions. In light of 
this, our study aims to fill this gap by developing advanced machine learning models to pre-
dict the yield of pearl millet, utilizing 23 years of historical data from Rajasthan. The novelty of 
our research lies in the comparative analysis of individual machine learning methods (GLM, 
ELNET, XGB, SVR, and RF) and their ensemble combinations (GLM, ELNET, Cubist, and 
RF). By leveraging these advanced techniques, we seek to improve the accuracy and reliabil-
ity of yield forecasts, which can significantly benefit farmers, policymakers, and stakeholders 
involved in agricultural planning and food security initiatives. This study not only contributes 
to the existing body of knowledge but also provides practical tools for enhancing agricultural 
productivity in semi-arid regions like Rajasthan.

Materials and methods

Data collection
To develop robust machine learning models for predicting pearl millet yield, we collected 
comprehensive data from multiple sources. Yield data spanning 23 years (1997–2019) were 
obtained from the Directorate of Economics and Statistics, Department of Agriculture and 
Farmers Welfare, Government of India, providing detailed records for nine major pearl 
millet-producing districts in the state. These districts include Jaipur, Ajmer, Jodhpur, Bikaner, 
Bharatpur, Alwar, Sikar, Jhunjhunu and Nagaur. Concurrently, weather data for the same 
period were gathered from the NASA Power website. This dataset encompassed crucial 
meteorological variables such as average weekly maximum temperature (°C), minimum 
temperature (°C), average relative humidity (%), wind speed (m/s), solar radiation and weekly 
accumulated rainfall (mm). The integration of these datasets allowed for a comprehensive 
analysis of the relationship between climatic conditions and pearl millet yields, forming the 
basis for our predictive modelling efforts. The meticulous collection and synchronization of 
yield and weather data were critical to ensuring the accuracy and reliability of our machine 
learning models. Fig 1 illustrates the area selected for this study.

Weather indices
Two indices were developed for each weather variable: [1] an unweighted weather index, 
which is a simple sum of weekly weather variable values across different weeks, and [2] a 
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weighted weather index, which is a total of these weekly values with weights derived from cor-
relation coefficients. The weights are assigned based on the correlation coefficients between 
the target variable and the product of the weather variables for each week [15].

The computation of unweighted weather indices is straightforward and clear, involving a 
simple summation of weekly weather variable values without any weight. However, calculat-
ing weighted weather indices is a more intricate process that involves two main steps. First, 
correlation coefficients are calculated between the target variables and the weather variables 
for each week. This step establishes the relationship strength between each weather variable 
and the target variable. In the second step, the sum product is computed by multiplying each 
week’s weather variables by their respective correlation coefficients and then summing these 
products across the weeks. This process yields the weighted weather indices, which account 
for the varying influence of different weather variables on the target variable. This weighted 
approach ensures that more influential weather variables have a greater impact on the 
index, providing a more nuanced and accurate representation of weather impacts. This dual 
approach also allows for a more comprehensive analysis, accommodating the complexity and 
variability inherent in weather data and its effects on crop yield [16].

Fig 1. Study area, highlighting the nine major pearl millet-producing districts in Rajasthan.

https://doi.org/10.1371/journal.pone.0317602.g001

https://doi.org/10.1371/journal.pone.0317602.g001
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The weighted and unweighted weather indices were calculated using Equations (1) and (2)
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Here, Z is the weather index of ith weather variable, n is the week of forecast, X Xiw i w/ ’  is the 
value of ith/i’th weather variable and r riw

j
ii w
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yield with ith weather variable/ product of ith and i’th weather variables in wth week.

Multivariate techniques involved in model development
In the present study, a variety of multivariate techniques were employed to develop a robust 
and accurate predictive model. These techniques enable the simultaneous analysis of multiple 
predictor variables, such as weather indices and historical yield data, to capture complex rela-
tionships and patterns in the data. Specifically, the individual methodologies utilized included 
Random Generalized Linear Models (GLM), Elastic Net (ELNET), Extreme Gradient Boosting 
(XGB), Support Vector Machines (SVR) and Random Forests (RF), to model the relationship 
between meteorological factors and pearl millet yield. Additionally, their ensemble approaches 
viz. GLM, ELNET, Cubist and RF were also utilized. It is noteworthy that 16 years of histor-
ical data were used for model training, while the remaining 7 years of data were reserved for 
model testing and validation, ensuring the robustness and generalizability of these predictive 
models.

GLM
Generalized Linear Models (GLM) are highly effective tools for forecasting crop yields due 
to their flexibility in handling various types of response variables and their ability to model 
relationships between predictors and the response variable. GLMs extend linear models by 
allowing the response variable to follow different distributions from the exponential family, 
such as Gaussian, binomial, or Poisson, making them suitable for a range of agricultural data 
types. For crop yield forecasting, predictors can include environmental factors like tempera-
ture, precipitation, soil quality, and historical yield data. By incorporating these variables, 
GLMs can capture the complex interactions and non-linear relationships that influence crop 
productivity.

Elastic net
Elastic Net, introduced by [17], addresses the limitations of ridge and LASSO regression 
methods. LASSO regression performs well with variables that are less correlated, while ridge 
regression is more effective with highly correlated variables. However, in models with numer-
ous variables where the degree of correlation is unknown, both LASSO and ridge regression 
may fall short. Elastic Net overcomes this challenge by integrating the penalties of both 
LASSO (l1 norm) and ridge (l2 norm) regressions. This combination allows Elastic Net to 
accurately predict by accounting for both types of penalties.

XG boost (XGB)
XGB is a highly scalable machine learning algorithm designed for tree boosting, as intro-
duced by [18]. XGB is an ensemble method that leverages decision trees by building them 
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sequentially, with each tree aiming to improve the performance of the previous one. The 
training process for each tree in XGB is parallelized, which significantly accelerates the overall 
training speed [19].

The core concept of XGB involves constructing multiple weak learners from the entire 
dataset and combining their outputs to enhance regression or classification performance. To 
mitigate overfitting, XGB employs a regularized model, where the weak learners can either 
be regression trees or linear models [18,20]. In this study, the XGB model is specifically built 
using decision trees. The algorithm generates predicted values by summing the leaf weights 
across all decision trees.

Support vector regression
Support Vector Machine Regression (SVR) is a regression model derived from the Support 
Vector Machine (SVR) framework. Similar to SVR, SVR aims to find a regression plane that 
minimizes the distance of all input data points to this hyperplane. In essence, SVR necessitates 
the use of a kernel function to map inputs from the original space to a higher- dimensional 
space [21]. Subsequently, a linear function is established in this feature space to strike a 
balance between minimizing errors and preventing overfitting [22,23]. Commonly employed 
kernel functions in SVR encompass linear kernels, polynomial kernels, and Gaussian radial 
basis kernels. Moreover, the key hyperparameters that require tuning in SVR are the penalty 
coefficient C and the kernel coefficient gamma. SVR’s utilization of diverse kernel functions 
and hyperparameter tuning enables it to effectively model complex relationships in the data. 
By mapping inputs to higher-dimensional spaces and constructing linear functions, SVR can 
capture intricate patterns and deliver accurate regression predictions. The flexibility of SVR in 
handling various kernel functions and hyperparameters makes it a versatile and powerful tool 
for regression tasks across different domains.

Random forest
The Random Forest (RF) regression algorithm is an ensemble-learning technique that inte-
grates numerous regression trees to improve predictive accuracy. Each regression tree within 
the RF framework is structured as a series of hierarchical conditions, which are sequentially 
applied from the root to the terminal nodes, or leaves, of the tree [24–26]. When the Random 
Forest (RF) algorithm receives an input vector (x) containing the values of various evidential 
features analysed for a specific training area, it constructs a set of K regression trees and then 
averages their outcomes. Following the growth of K trees T x

k
( ){ }

1
, the RF regression predic-

tor can be expressed as the aggregation of the predictions from these trees [26].

 f x
k

T xrf
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k
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In order to mitigate the correlation among the individual trees within the Random Forest 
(RF) model, the algorithm enhances the diversity of the trees by having them develop from 
distinct training data subsets generated using a technique known as bagging [27]. Bagging is 
a technique aimed at reducing prediction variance to enhance a model’s generalizability by 
generating multiple trees from training data through sampling with replacement [28].

Ensemble approach
In this study, ensemble approaches were also employed to enhance the predictive accuracy 
of machine learning models for pearl millet yield forecasting. Ensemble learning techniques 
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combine multiple base models to improve overall performance by leveraging the strengths of 
individual models and mitigating their weaknesses. Specifically, four ensemble approaches 
were investigated: Generalized Linear Models (GLM), Elastic Net (ELNET), Cubist, and 
Random Forests (RF). These ensemble approaches integrate the predictions of multiple indi-
vidual models, incorporating diverse perspectives and capturing a wider range of patterns in 
the data. By combining the predictions of individual models, ensemble approaches can often 
achieve higher predictive accuracy and robustness, making them well-suited for complex and 
dynamic agricultural systems like pearl millet cultivation.

Evaluation of the model performance
To evaluate the performance of various models considered in the study, statistical measures 
such as the coefficient of determination (R²), root mean square error (RMSE) (t/ha), normal-
ized root mean square error (nRMSE (%)), and Mean Biased Error (MBE) (t/ha) were calcu-
lated. A higher R² value closer to 1 and a lower RMSE value closer to 0 are indicative of better 
model performance. The nRMSE (%) values were classified as < 10% for excellent, 10–20% for 
good, 20–30% for fair, and >  30% for poor model performance [29]. These evaluation metrics 
were computed using the “apply Stats” function of R software, which in under “tdr’ library. 
These statistical measures are defined as:
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Here yi  represents the actual value and y̆i  represents the predicted value for i = 1, 2,……, 
n. σy  and σ ŷ  represents the standard deviation of actual and predicted yield.

Results
The descriptive statistics (Table 1) demonstrate the variability in the data used for model 
training and testing. For example, the yield values across the districts vary significantly, with 
a mean yield ranging from 0.25 to 1.65, and the sample variance in weather variables, such as 
temperature and rainfall, also shows substantial variability.

This table demonstrates significant variability in weather parameters such as temperature 
(Tmax and Tmin), rainfall, relative humidity, wind speed, and solar radiation, all of which 
contribute to the prediction of pearl millet yield using machine learning models.

The comprehensive results of our study, detailing the outcomes derived from the appli-
cation of five individual machine learning models and four distinct ensemble modelling 
techniques across nine key pearl millet-producing districts are systematically discussed and 
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described by the predictive performance of individual and ensemble models, offering insights 
into their effectiveness and reliability across the study regions.

Individual models
Table 2 presents the performance metrics of individual models utilized for forecasting pearl 
millet yield, providing a comprehensive overview of their calibration and validation results. 
Fig 2 presents Taylor diagrams depicting the performance of individual models. The analy-
sis of various individual models for predicting pearl millet yield in the Alwar district reveals 
noteworthy disparities in performance. During the calibration phase, all models exhibit 
commendable accuracy, with R-squared values ranging from 0.89 (ELNET) to 0.99 (GLM 
and XGB), alongside consistently low normalized Root Mean Square Error (nRMSE (%)) 
values, all below 0.16. Additionally, minimal Mean Biased Error (MBE) (t/ha) values near zero 
indicate the models’ proficiency in estimating pearl millet yield. However, upon validation, 
ELNET emerges as the top performer, boasting an impressive R-squared value of 0.99 and an 
associated nRMSE (%) of 0.13. Following closely is XGB with an R-squared value of 0.90 and 
nRMSE (%) of 0.15, indicating robust predictive capability. Notably, SVR and RF also demon-
strate credible performance during validation, with R-squared values of 0.80 and 0.83 respec-
tively, alongside relatively low nRMSE (%) values of 0.18 and 0.16, respectively. Conversely, 

Table 1. Descriptive statistics of yield and weather parameters of different locations.

Parameter Static parameter Yield (t/ha) Tmax (°C) Tmin (°C) Rain (mm) RH (%) WS (m/sec) SR (W/m2)
Alwar Mean 1.65 33.71 19.75 1.60 42.18 1.97 17.98

Standard deviation 0.40 6.76 7.86 4.69 20.57 0.88 5.12
Sample variance 0.16 45.71 61.82 22.02 422.98 0.77 26.19

Barmer Mean 0.25 34.84 20.83 0.83 38.25 3.03 20.17
Standard deviation 0.20 5.78 6.86 4.04 16.99 1.53 4.43
Sample variance 0.04 33.47 47.05 16.33 288.95 2.34 19.66

Churu Mean 0.44 33.41 20.21 1.19 36.95 2.16 19.31
Standard deviation 0.26 7.11 7.91 3.93 16.51 0.99 5.09
Sample variance 0.07 50.59 62.55 15.45 272.63 0.99 25.88

Jaipur Mean 1.25 32.97 19.22 1.47 41.40 2.17 19.34
Standard deviation 0.40 6.29 7.33 4.82 20.94 0.96 4.97
Sample variance 0.16 39.66 53.79 23.21 438.40 0.92 24.73

Jalore Mean 0.57 34.84 20.34 1.17 40.71 2.58 20.24
Standard deviation 0.41 5.43 6.81 4.90 20.50 1.29 4.66
Sample variance 0.17 29.45 46.44 24.02 420.31 1.68 21.76

Jhunjhunu Mean 0.99 33.01 19.57 1.35 39.13 2.10 18.96
Standard deviation 0.46 6.72 7.55 4.15 18.74 0.92 5.16
Sample variance 0.21 45.18 56.99 17.22 351.17 0.85 26.67

Jodhpur Mean 0.58 34.28 19.84 0.98 38.46 2.54 20.45
Standard deviation 0.37 5.93 7.43 4.13 18.88 1.21 4.67
Sample variance 0.14 35.20 55.19 17.09 356.32 1.47 21.86

Nagaur Mean 0.78 33.81 19.59 1.04 38.41 2.45 19.98
Standard deviation 0.33 6.22 7.50 3.60 18.61 1.15 4.85
Sample variance 0.11 38.73 56.28 12.99 346.37 1.31 23.53

Sikar Mean 0.97 32.87 19.43 1.32 39.12 2.25 19.18
Standard deviation 0.37 6.50 7.36 4.23 18.63 0.98 5.03
Sample variance 0.13 42.19 54.17 19.74 347.23 0.96 25.31

https://doi.org/10.1371/journal.pone.0317602.t001

https://doi.org/10.1371/journal.pone.0317602.t001
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Table 2. Performance assessment of individual models during training and testing.

Alwar
Calibration Validation
GLM ELNET XGB SVR RF GLM ELNET XGB SVR RF

  R2 0.99 0.89 0.99 0.95 0.96 0.39 0.99 0.90 0.80 0.83

  RMSE t ha/( ) 0.00 0.13 0.00 0.13 0.11 24.79 0.12 0.15 0.17 0.15

  nRMSE %( ) 0.00 0.09 0.00 0.09 0.16 25.81 0.13 0.15 0.18 0.16

  MBE t ha/( ) 0.00 0.00 0.00 0.02 0.00 −10.25 0.12 0.08 −0.01 −0.01

Barmer

  R2 0.99 0.66 0.99 0.89 0.90 0.28 0.29 0.03 0.00 0.03

  RMSE t ha/( ) 0.00 0.12 0.00 0.09 0.07 0.14 0.19 0.19 0.16 0.17

  nRMSE %( ) 0.00 0.19 0.00 0.14 0.10 0.32 0.46 0.44 0.38 0.41

  MBE t ha/( ) 0.00 0.00 0.00 −0.03 0.00 0.03 0.04 −0.02 −0.02 −0.01

Churu

  R2 0.99 0.91 0.99 0.94 0.97 0.71 0.71 0.65 0.83 0.65

  RMSE t ha/( ) 0.00 0.08 0.00 0.08 0.06 0.58 0.13 0.17 0.12 0.15

  nRMSE %( ) 0.00 0.09 0.00 0.09 0.07 0.96 0.21 0.28 0.20 0.24

  MBE t ha/( ) 0.00 0.00 0.00 0.01 0.01 0.21 −0.04 −0.10 −0.07 −0.05

Jaipur

  R2 0.99 0.95 0.99 0.84 0.93 0.80 0.95 0.82 0.99 0.92

  RMSE t ha/( ) 0.00 0.09 0.00 0.17 0.13 0.20 0.19 0.18 0.08 0.13

  nRMSE %( ) 0.00 0.06 0.00 0.11 0.08 0.20 0.19 0.17 0.08 0.11

  MBE t ha/( ) 0.00 0.00 0.00 0.00 0.00 −0.07 0.17 0.00 0.03 0.01

Jalore

  R2 0.99 0.72 0.99 0.75 0.87 0.02 0.64 0.46 0.54 0.47

  RMSE t ha/( ) 0.00 0.22 0.01 0.23 0.17 1.53 0.28 0.30 0.29 0.29

  nRMSE %( ) 0.00 0.15 0.00 0.15 0.12 1.43 0.26 0.28 0.27 0.27

  MBE t ha/( ) 0.00 0.00 0.00 −0.03 0.00 −1.09 0.12 0.08 0.10 0.01

Jhunjhunu

  R2 0.99 0.95 0.99 0.95 0.96 0.58 0.71 0.81 0.85 0.89

  RMSE t ha/( ) 0.00 0.10 0.04 0.12 0.10 0.74 0.23 0.34 0.13 0.14

  nRMSE %( ) 0.00 0.06 0.02 0.07 0.06 0.80 0.25 0.37 0.14 0.15

  MBE t ha/( ) 0.00 0.00 0.00 −0.03 0.00 0.57 0.13 0.16 0.03 0.07

Jodhpur

  R2 0.99 0.78 0.99 0.83 0.96 0.13 0.47 0.52 0.77 0.42

  RMSE t ha/( ) 0.00 0.18 0.00 0.20 0.09 1.90 0.28 0.30 0.22 0.29

  nRMSE %( ) 0.00 0.16 0.00 0.17 0.08 2.18 0.32 0.35 0.26 0.33

  MBE t ha/( ) 0.00 0.00 0.00 −0.06 0.00 0.92 −0.13 −0.07 −0.15 −0.09

Nagaur

  R2 0.99 0.80 0.99 0.86 0.96 0.79 0.75 0.39 0.20 0.39

  RMSE t ha/( ) 0.00 0.15 0.02 0.14 0.08 0.31 0.18 0.27 0.29 0.27

(Continued)
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GLM exhibits subpar performance during validation, with an R-squared value of 0.39 and a 
notably high nRMSE (%) value of 25.81. These findings emphasize the importance of careful 
model selection and validation in accurately forecasting pearl millet yield.

For Barmer district, during the calibration phase, models like GLM, XGB and RF demon-
strated high accuracy, with R-squared values ranging from 0.90 (RF) to 0.99 (GLM and XGB). 
However, ELNET (R2 =  0.66) and SVR (R2 =  0.89) exhibited slightly lower performance in com-
parison. Notably, all models displayed minimal Root Mean Square Error (RMSE) (t/ha) values 
during calibration, indicating precise forecasting. However, during validation, the predictive 
accuracy decreased for all models possibly due to overfitting of the data, with R-squared values 
ranging from 0.00 (SVR) to 0.29 (ELNET). ELNET (R2 =  0.29) and GLM (R2 =  0.28) maintained 
relatively higher R-squared values compared to other models. Nevertheless, all models showed an 
increase in RMSE (t/ha) and normalized RMSE (nRMSE (%)) values during validation, suggest-
ing a decrease in predictive accuracy. Overall, while certain individual models performed well 
during calibration, their predictive power diminished during validation, highlighting the com-
plexity of accurately forecasting pearl millet yield for the Barmer district.

For the Churu district, during the calibration phase, all models demonstrated high accu-
racy, with R-squared values ranging from 0.91 to 0.99. Particularly noteworthy is the perfor-
mance of GLM, XGB and RF, which exhibited exceptionally high R-squared values of 0.99, 
0.99 and 0.97, respectively, indicating strong predictive capability. Minimal Root Mean Square 
Error (RMSE) (t/ha) values across all models during calibration further support their precise 
forecasting accuracy. However, during validation, there was a noticeable decrease in predictive 
accuracy for all models, with R-squared values ranging from 0.65 to 0.83. Despite this decline, 
SVR demonstrated the highest R-squared value of 0.83 during validation, indicating relatively 
robust predictive performance. Nevertheless, an increase in RMSE (t/ha) and normalized 
RMSE (nRMSE (%)) values during validation suggests a decrease in overall predictive accu-
racy compared to the calibration phase. Additionally, while most models displayed minimal 
Mean Biased Error (MBE) (t/ha) values close to zero during calibration, slight discrepancies 
were observed during validation, indicating some level of bias in the predicted values.

For the Jaipur district, during the calibration phase, all models exhibited high accuracy, 
with R-squared values ranging from 0.84 to 0.99. Particularly noteworthy is the performance 
of GLM and XGB, which demonstrated R-squared values of 0.99, indicating strong predic-
tive capability. Additionally, all models displayed minimal Root Mean Square Error (RMSE) 
(t/ha) and normalized RMSE (nRMSE (%)) values during calibration, indicative of precise 
forecasting accuracy. During validation, the predictive performance of the models remained 
relatively strong, with R-squared values ranging from 0.80 to 0.99. SVR stood out with the 

Alwar
Calibration Validation
GLM ELNET XGB SVR RF GLM ELNET XGB SVR RF

  nRMSE %( ) 0.00 0.13 0.02 0.12 0.07 0.36 0.21 0.32 0.34 0.32

  MBE t ha/( ) 0.00 0.00 0.00 −0.04 0.00 −0.16 −0.02 −0.01 0.05 0.05

Sikar

  R2 0.99 0.85 0.99 0.78 0.92 0.49 0.47 0.59 0.65 0.60

  RMSE t ha/( ) 0.00 0.15 0.01 0.20 0.12 0.57 0.24 0.24 0.20 0.22

  nRMSE %( ) 0.00 0.12 0.01 0.16 0.09 0.64 0.27 0.27 0.23 0.25

  MBE t ha/( ) 0.00 0.00 0.00 0.00 0.01 −0.18 −0.05 0.06 0.01 0.08

https://doi.org/10.1371/journal.pone.0317602.t002

Table 2. (Continued)

https://doi.org/10.1371/journal.pone.0317602.t002
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highest R-squared value of 0.99 during validation, highlighting its robust predictive accuracy. 
Notably, while most models maintained minimal RMSE (t/ha) and nRMSE (%) values during 
validation, slight variations were observed. For instance, GLM, ELNET and XGB exhibited 
slightly higher RMSE (t/ha) and nRMSE (%) values compared to other two models. Moreover, 
despite minor discrepancies, all models displayed minimal Mean Biased Error (MBE) (t/ha) 
values close to zero during validation, indicating overall unbiased predictions. Overall, the 
results suggest that various models can provide accurate forecasts of pearl millet yield for the 
Jaipur district.

Fig 2. Taylor diagrams depicting the performance of individual models during validation.

https://doi.org/10.1371/journal.pone.0317602.g002

https://doi.org/10.1371/journal.pone.0317602.g002
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For the Jaipur district, during the calibration phase, all models exhibited high accuracy, 
with R-squared values ranging from 0.84 to 0.99. Particularly noteworthy is the performance 
of GLM and XGB, which demonstrated R-squared values of 0.99, indicating strong predictive 
capability. Additionally, all models displayed minimal Root Mean Square Error (RMSE) and 
normalized RMSE (nRMSE (%)) values during calibration, indicative of precise forecasting 
accuracy. During validation, the predictive performance of the models remained relatively 
strong, with R-squared values ranging from 0.80 to 0.99. SVR stood out with the highest 
R-squared value of 0.99 during validation, highlighting its robust predictive accuracy. Notably, 
while most models maintained minimal RMSE (t/ha) and nRMSE (%) values during valida-
tion, slight variations were observed. For instance, GLM, ELNET and XGB exhibited slightly 
higher RMSE (t/ha) and nRMSE (%) values compared to other two models. Moreover, despite 
minor discrepancies, all models displayed minimal Mean Biased Error (MBE) (t/ha) values 
close to zero during validation, indicating overall unbiased predictions. Overall, the results 
suggest that various models can provide accurate forecasts of pearl millet yield for the Jaipur 
district.

For the Jalore district, during the calibration phase, notable variations in performance are 
observed among the models, with GLM and XGB demonstrating high accuracy, reflected in 
R-squared values of 0.99. Conversely, ELNET and SVR show comparatively lower R-squared 
values of 0.72 and 0.75, respectively during calibration. Despite this, all models display min-
imal Root Mean Square Error (RMSE) (t/ha) and normalized RMSE (nRMSE (%)) values, 
indicating precise forecasting accuracy during calibration. However, during validation, the 
predictive performance of the models diminishes, with R-squared values ranging from 0.02 
to 0.64. Notably, GLM performs poorly during validation, with an R-squared value of 0.02, 
indicating limited predictive capability. ELNET stands out with the highest R-squared value 
of 0.64 during validation, demonstrating relatively stronger predictive accuracy compared to 
other models. Nevertheless, all models exhibit an increase in RMSE (t/ha) and nRMSE (%) 
values during validation, suggesting a decrease in overall predictive accuracy compared to the 
calibration phase. Additionally, while most models display minimal Mean Biased Error (MBE) 
(t/ha) values close to zero during validation, GLM exhibits a substantial negative MBE (t/ha) 
value, indicating a bias towards underestimation in its predicted values.

For the Jhunjhunu district, during the calibration phase, all models demonstrate high accu-
racy, with R-squared values ranging from 0.95 to 0.99. Notably, GLM and XGB models exhibit 
particularly strong performance, with R-squared values of 0.99, indicating robust predictive 
capabilities. Additionally, all models display minimal Root Mean Square Error (RMSE) (t/ha) 
and normalized RMSE (nRMSE (%)) values during calibration, suggesting precise forecasting 
accuracy. However, during validation, the predictive performance of the models varies. While 
GLM and XGB models maintain a good R-squared values of 0.58 and 0.71 respectively, SVR, 
RF, and ELNET models demonstrate even higher R-squared values, ranging from 0.81 to 0.89. 
Notably, RF and SVR models exhibit the highest R-squared values during validation, suggest-
ing strong predictive accuracy. Nevertheless, all models experience an increase in RMSE (t/ha) 
and nRMSE (%) values during validation, indicating a decrease in overall predictive accuracy 
compared to the calibration phase. Positive MBE (t/ha) values during the validation stage also 
suggest overestimation of the pearl millet yield.

For the Nagaur district, during the calibration phase, all models exhibit varying degrees of 
accuracy, with R-squared values ranging from 0.80 to 0.99. Notably, GLM and XGB models 
demonstrate particularly strong performance, boasting R-squared values of 0.99, indicative 
of their robust predictive capabilities. Moreover, all models demonstrate minimal Root Mean 
Square Error (RMSE) (t/ha) and normalized RMSE (nRMSE (%)) values during calibra-
tion, indicating precise forecasting accuracy. However, during validation, the predictive 
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performance of the models varies. While GLM (0.79) and ELNET (0.75) models maintain rel-
atively high R-squared values during validation, XGB (0.39), SVR (0.20) and RF (0.39) models 
show comparatively lower R-squared values. Nonetheless, all models experience an increase 
in RMSE (t/ha) and nRMSE (%) values during validation, indicating a decrease in overall 
predictive accuracy compared to the calibration phase. Notably, several models exhibit biases 
in their predicted values during validation, as indicated by the Mean Biased Error (MBE) (t/
ha) values deviating from zero.

For the Sikar district, during the calibration phase, all models demonstrate varying levels 
of accuracy, with R-squared values ranging from 0.78 to 0.99. Notably, GLM and XGB models 
exhibit particularly strong performance, achieving R-squared values of 0.99, indicative of 
robust predictive capabilities. Additionally, all models display minimal Root Mean Square 
Error (RMSE) (t/ha) and normalized RMSE (nRMSE (%)) values during calibration, suggest-
ing precise forecasting accuracy. However, during validation, the predictive performance of 
the models varies. While GLM and ELNET models maintain relatively low R-squared values 
of 0.49 and 0.47 during validation, SVR, RF and XGB models show comparatively higher 
R-squared values of 0.65, 0.60 and 0.59, respectively. Nonetheless, all models experience an 
increase in RMSE (t/ha) and nRMSE (%) values during validation, indicating a decrease in 
overall predictive accuracy compared to the calibration phase. It’s noteworthy that all models 
exhibit biases in their predicted values during validation, as indicated by Mean Biased Error 
(MBE) (t/ha) values deviating from zero except SVR (MBE =  0.01).

Ensemble models
Ensemble approaches were offering their efficacy throughout both calibration and validation 
stages (Table 3). Fig 3 represents the Taylor diagrams representing the performance of ensemble 
models. For Alwar district, while maintaining a similar pattern to individual models, the ensem-
ble models exhibit diverse levels of accuracy during calibration, with R-squared values ranging 
from 0.82 (Cubist) to 0.98 (GLM and ELNET). Notably, all ensemble models demonstrate mini-
mal Mean Biased Error (MBE) (t/ha) values, all negative but very close to zero, indicating a slight 
underperformance. Upon validation, the ensemble models uphold their predictive ability, with 
R-squared values varying from 0.91 to 0.94. Of particular interest is the consistent performance of 
Random Forest (RF) with an R-squared value of 0.91 and the robust performance of Cubist with 
an R-squared value of 0.94. A comparative analysis reveals that while individual models XGB and 
ELNET showcased superior performance, in the ensemble approach, ELNET emerged as the top 
performer. However, upon holistic comparison across all models, XGB maintains its position as 
the best-performing model, with a slight margin evident in the statistical metrics.

In case of ensemble approaches, the combined models showed varying levels of accu-
racy for Alwar district, with R-squared values ranging from 0.37 (Cubist) to 0.70 (ELNET) 
during the training stage. ELNET demonstrated the highest R-squared value of 0.70 among 
the combined models. However, during validation, the predictive accuracy decreased again 
for all combined models, with R-squared values ranging from 0.13 to 0.31. GLM and ELNET 
displayed the highest R-squared values during validation, which is 0.31 and 0.22, respectively. 
Nonetheless, all combined models exhibited an increase in Root Mean Square Error (RMSE) 
(t/ha) and normalized RMSE (nRMSE (%)) values during validation, indicating a decrease 
in predictive accuracy compared to the calibration phase. Additionally, positive MBE (t/
ha) values of all ensemble approach also suggesting overestimation of the yield. The overall 
comparison of the individual and ensemble models shows ELNET is the best approach in both 
scenarios. However, ensemble model like ELNET, showcased improved predictive accuracy 
during validation compared to individual models. Despite this improvement, both individual 
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Table 3. Performance assessment of ensemble models during training and testing.

Alwar
Calibration Validation
GLM ELNET SVR RF GLM ELNET XGB SVR

  R2 0.98 0.98 0.82 0.86 0.91 0.93 0.94 0.91

  RMSE t ha/( ) 0.07 0.06 0.20 0.16 0.13 0.12 0.13 0.10

  nRMSE %( ) 0.05 0.04 0.14 0.11 0.14 0.12 0.13 0.11

  MBE t ha/( ) −0.01 −0.01 −0.01 −0.05 0.06 0.07 −0.09 −0.01

Barmer

  R2 0.44 0.70 0.37 0.39 0.31 0.22 0.13 0.13

  RMSE t ha/( ) 0.15 0.13 0.17 0.16 0.17 0.18 0.29 0.27

  nRMSE %( ) 0.28 0.20 0.26 0.25 0.41 0.41 0.67 0.63

  MBE t ha/( ) −0.01 −0.01 0.03 −0.01 0.01 0.01 0.08 0.04

Churu

  R2 0.95 0.95 0.68 0.76 0.73 0.76 0.90 0.77

  RMSE t ha/( ) 0.06 0.06 0.15 0.13 0.13 0.12 0.08 0.12

  nRMSE %( ) 0.07 0.07 0.18 0.15 0.22 0.20 0.14 0.20

  MBE t ha/( ) −0.01 −0.01 −0.03 −0.01 −0.06 −0.05 0.02 −0.04

Jaipur

  R2 0.96 0.96 0.87 0.96 0.97 0.97 0.70 0.85

  RMSE t ha/( ) 0.08 0.08 0.14 0.09 0.15 0.15 0.28 0.15

  nRMSE %( ) 0.06 0.05 0.10 0.06 0.15 0.14 0.27 0.15

  MBE t ha/( ) −0.02 −0.01 −0.03 −0.03 0.13 0.13 0.16 0.02

Jalore

  R2 0.72 0.72 0.30 0.72 0.69 0.64 0.72 0.62

  RMSE t ha/( ) 0.27 0.26 0.35 0.30 0.24 0.25 0.33 0.30

  nRMSE %( ) 0.18 0.17 0.23 0.28 0.22 0.23 0.31 0.28

  MBE t ha/( ) −0.06 −0.02 0.09 0.17 −0.08 0.06 0.25 0.17

Jhunjhunu

  R2 0.95 0.96 0.89 0.92 0.53 0.54 0.60 0.77

  RMSE t ha/( ) 0.13 0.13 0.18 0.14 0.31 0.30 0.35 0.31

  nRMSE %( ) 0.08 0.08 0.11 0.08 0.33 0.32 0.37 0.33

  MBE t ha/( ) 0.01 0.01 0.01 −0.03 0.18 0.18 0.25 0.19

Jodhpur

  R2 0.98 0.96 0.78 0.76 0.41 0.47 0.45 0.56

  RMSE t ha/( ) 0.06 0.07 0.20 0.18 0.35 0.30 0.29 0.31

  nRMSE %( ) 0.05 0.06 0.18 0.16 0.40 0.34 0.33 0.36

  MBE t ha/( ) 0.00 0.00 0.05 −0.01 −0.09 −0.09 −0.15 −0.23

Nagaur

  R2 0.95 0.97 0.67 0.80 0.62 0.59 0.14 0.10

  RMSE t ha/( ) 0.09 0.08 0.18 0.14 0.27 0.26 0.34 0.35

(Continued)
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and ensemble models experienced a decrease in predictive accuracy during validation, as indi-
cated by higher RMSE (t/ha) and nRMSE (%) values.

For Churu district, during the calibration phase, the ensemble models exhibited varying 
degrees of accuracy, with R-squared values ranging from 0.68 to 0.95. Notably, ELNET and GLM 
ensemble models displayed robust performance, demonstrating high R-squared values of 0.95 for 
both. However, Cubist and RF ensemble models showed comparatively lower R-squared values, 
indicating relatively weaker predictive capabilities during calibration. Despite these variations, all 
ensemble models demonstrated minimal Root Mean Square Error (RMSE) (t/ha) values, indic-
ative of precise forecasting accuracy during calibration. During validation, the ensemble models 
maintained their predictive prowess, with R-squared values ranging from 0.73 to 0.90. Nota-
bly, Cubist ensemble models showcased the highest R-squared value of 0.90, indicating strong 
predictive performance during validation. Conversely, RF, ELNET and GLM ensemble models 
also demonstrated commendable performance, with R-squared values of 0.77, 0.76 and 0.73, 
respectively. Overall, based on the R-squared values of validation phase the SVR individual model 
stands out as the top performer among individual models, while the Cubist ensemble model 
exhibits the highest accuracy among the ensemble models.

For Jaipur, during the calibration phase, the ensemble models exhibited varying degrees 
of accuracy, with R-squared values ranging from 0.87 to 0.96. Notably, GLM, ELNET and 
RF ensemble models displayed robust performance, demonstrating high R-squared values 
of 0.96. However, Cubist ensemble models showed comparatively lower R-squared values, 
indicating relatively weaker predictive capabilities during calibration. Despite these varia-
tions, all ensemble models demonstrated minimal Root Mean Square Error (RMSE) (t/ha) 
and normalized RMSE (nRMSE (%)) values, indicative of precise forecasting accuracy during 
calibration. During validation, the ensemble models maintained their predictive prowess, 
with R-squared values ranging from 0.70 to 0.97. Notably, GLM and ELNET ensemble mod-
els exhibited the highest R-squared values of 0.97, indicating strong predictive performance 
during validation. Conversely, Cubist ensemble models showed a lower R-squared value, 
suggesting comparatively weaker predictive capabilities. Despite the overall strong perfor-
mance of ensemble models, it’s worth noting that these models exhibited slightly higher 
Mean Biased Error (MBE) (t/ha) values during validation, indicating overestimation in the 
predicted values except RF. Nonetheless, the consistent accuracy demonstrated by the ensem-
ble models highlights their effectiveness in predicting pearl millet yield for the Jaipur district, 
underscoring their relevance in informing agricultural decision-making processes.

For Jalore, during the calibration phase, the ensemble models exhibit varying degrees of 
accuracy, with R-squared values ranging from 0.30 to 0.72. Notably, ELNET and RF ensemble 
models demonstrate relatively higher R-squared values of 0.72, indicating stronger predictive 

Alwar
Calibration Validation
GLM ELNET SVR RF GLM ELNET XGB SVR

  nRMSE %( ) 0.08 0.07 0.16 0.13 0.31 0.30 0.40 0.41

  MBE t ha/( ) 0.05 0.05 0.01 0.00 −0.04 −0.03 0.04 0.03

Sikar

  R2 0.49 0.83 0.51 0.70 0.78 0.45 0.46 0.71

  RMSE t ha/( ) 0.57 0.16 0.27 0.20 0.18 0.25 0.26 0.19

  nRMSE %( ) 0.64 0.13 0.22 0.16 0.14 0.28 0.29 0.21

  MBE t ha/( ) −0.18 −0.01 0.01 0.02 −0.01 −0.08 −0.11 −0.05

https://doi.org/10.1371/journal.pone.0317602.t003

Table 3. (Continued)

https://doi.org/10.1371/journal.pone.0317602.t003
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capabilities. However, Cubist ensemble models display a comparatively lower R-squared value of 
0.30 during calibration. Despite these differences, all ensemble models show similar Root Mean 
Square Error (RMSE) (t/ha) and normalized RMSE (nRMSE (%)) values, suggesting comparable 
forecasting accuracy during calibration. During validation, the predictive performance of the 
ensemble models remains consistent, with R-squared values ranging from 0.62 to 0.72. Cubist 
ensemble models demonstrate the highest R-squared value of 0.72 during validation, indicating 
robust predictive accuracy. Conversely, RF ensemble models exhibit a slightly lower R-squared 
value of 0.62, suggesting comparatively weaker predictive capabilities. However, all ensemble 

Fig 3. Taylor diagrams representing the performance of ensemble models during validation.

https://doi.org/10.1371/journal.pone.0317602.g003

https://doi.org/10.1371/journal.pone.0317602.g003
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models maintain minimal RMSE (t/ha) and nRMSE (%) values during validation, indicative of 
accurate predictions. While most ensemble models exhibit minimal Mean Biased Error (MBE) 
(t/ha) values close to zero during validation, Cubist and RF ensemble models display a higher 
MBE (t/ha) value, suggesting a potential bias in its predicted values. Overall, the ensemble 
models cannot outperform the individual models during the calibration stage, while during the 
validation the ensemble models outperform all individual models for pearl millet production 
over Jalore district.

For Jhunjhunu, during the calibration phase, all ensemble models demonstrate respect-
able accuracy, with R-squared values ranging from 0.89 to 0.96. ELNET and GLM ensemble 
models exhibit particularly strong performance, with R-squared values of 0.96, suggesting 
robust predictive capabilities. Additionally, all ensemble models display minimal Root Mean 
Square Error (RMSE) (t/ha) and normalized RMSE (nRMSE (%)) values during calibration, 
indicating precise forecasting accuracy. However, during validation, the performance of 
ensemble models slightly diminishes, with R-squared values ranging from 0.53 to 0.77. Nota-
bly, RF ensemble models demonstrate the highest R-squared value of 0.77 during validation, 
suggesting relatively strong predictive accuracy. Despite this, all ensemble models experience 
an increase in RMSE (t/ha) and nRMSE (%) values during validation, indicating a decrease in 
overall predictive accuracy compared to the calibration phase. Importantly, it’s observed that 
individual models outperformed ensemble models in terms of both calibration and validation 
metrics, suggesting the potential advantages of utilizing individual modelling approaches for 
pearl millet yield prediction in the Jhunjhunu district.

For Jodhpur district, during the calibration phase, all ensemble models demonstrate 
respectable accuracy, with R-squared values ranging from 0.76 to 0.98. Notably, GLM 
ensemble model exhibit the highest R-squared value of 0.98, indicating robust predictive 
capabilities. However, Cubist and RF ensemble approaches display comparatively lower 
R-squared values of 0.78 and 0.76, respectively during calibration. Additionally, all ensemble 
models showcase minimal Root Mean Square Error (RMSE) (t/ha) and normalized RMSE 
(nRMSE (%)) values during calibration, suggesting precise forecasting accuracy. However, 
during validation, the predictive performance of the ensemble models slightly diminishes, 
with R-squared values ranging from 0.41 to 0.56. While RF ensemble models demonstrate 
the highest R-squared value during validation, GLM, ELNET and Cubist ensemble models 
show relatively lower R-squared values. Despite this, all ensemble models experience an 
increase in RMSE (t/ha) and nRMSE (%) values during validation, indicating a decrease in 
overall predictive accuracy compared to the calibration phase. Importantly, it’s observed that 
individual models outperform ensemble models, as evidenced by their superior performance 
in both calibration and validation phases. This emphasizes the importance of careful consid-
eration when selecting modelling approaches for accurate pearl millet yield prediction in the 
Jodhpur district.

For the Nagaur district, during the calibration phase, all models demonstrate varying degrees 
of accuracy, with R-squared values ranging from 0.67 to 0.97. Particularly noteworthy is ELNET, 
which exhibits the highest R-squared value of 0.97, indicating robust predictive capabilities. How-
ever, Cubist and RF models display relatively lower R-squared values of 0.67 and 0.80, respectively 
during calibration. Additionally, all models showcase minimal Root Mean Square Error (RMSE) 
(t/ha) and normalized RMSE (nRMSE (%)) values during calibration, suggesting precise forecast-
ing accuracy. However, during validation, the predictive performance of the models diminishes 
slightly, with R-squared values ranging from 0.10 to 0.62. Notably, ELNET and GLM approaches 
maintain relatively higher R-squared values during validation compared to Cubist and RF mod-
els. Despite this, all models experience an increase in RMSE (t/ha) and nRMSE (%) values during 
validation, indicating a decrease in overall predictive accuracy compared to the calibration phase. 
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Ensemble models fail to surpass the performance of individual models for pearl millet yield fore-
casting over Nagaur district, thereby making individual models the preferred choice.

For the Sikar district, during the calibration phase, the ensemble models show varied 
performance, with R-squared values ranging from 0.49 to 0.83. Notably, ELNET demon-
strates the strongest performance among the ensemble models, with an R-squared value 
of 0.83. However, compared to individual models, the ensemble approaches generally 
exhibit higher Root Mean Square Error (RMSE) (t/ha) and normalized RMSE (nRMSE) 
(%) values during calibration, indicating comparatively lower precision in forecasting 
accuracy. Conversely, during validation, the ensemble models demonstrate improvement 
in performance, with higher R-squared values and lower RMSE (t/ha) and nRMSE (%) val-
ues compared to the calibration phase. Despite this improvement, individual models still 
outperform the ensemble approaches in terms of overall predictive accuracy, as evidenced 
by their superior statistics matrices. Therefore, while ensemble models show a slight 
enhancement during validation, the suggestion leans towards utilizing individual models 
for more reliable pearl millet yield prediction in the Sikar district, based on their excellent 
performance metrics.

Discussion

Climatic requirements of pearl millet
Pearl millet mainly grown in agricultural settings characterized by scant rainfall, impoverished 
soil fertility, restricted water access and elevated temperatures, rendering it a viable option for 
cultivation in regions where conventional cereal crops such as rice, wheat or maize struggle 
to thrive [30]. Typically cultivated in areas with low rainfall ranging from 200 to 500 mm and 
marginal soils, pearl millet faces challenges during sowing due to inadequate soil moisture, 
impeding seedling emergence and crop establishment. Despite its resilience to drought stress 
during the vegetative growth phase, prolonged stress post-flowering can result in consider-
able yield reduction as the crop’s ability to recover gradually diminishes [31]. Recognized for 
its remarkable tolerance to high temperatures, pearl millet surpasses most other cultivated 
cereals, enduring temperatures as high as 42°C [32]. Temperature requisites vary depend-
ing on the variety, with an optimal range of 22–35°C for plant growth and 19–31°C for seed 
development [33]. Research indicates that increasing growth temperatures can decrease both 
individual seed weight and overall seed yield, with a more pronounced impact on yield [34]. 
In the semiarid regions like Rajasthan, pearl millet varieties exhibit short life cycles, typically 
maturing in less than 90 days to synchronize with the brief rainy season [35]. Manipulating 
photoperiods has been shown to influence crucial growth stages, with longer photoperiods 
delaying panicle initiation while potentially extending plant height and biomass. However, 
extending photoperiods for short-day pearl millet can also prolong the time to anthesis and 
alter plant morphology, adversely affecting grain yield [36]. Thus, optimal sunlight duration 
is imperative for timely grain filling and maximizing yield potential, particularly given the 
limited soil moisture available.

Comparison of individual with ensemble models
In this investigation, a total of nine models, comprising both individual and ensemble 
approaches, were scrutinized for their efficacy in predicting pearl millet yield utilizing weather 
data across nine districts of Rajasthan. Initially, model performances were assessed employing 
Taylor diagrams [37] and scatter diagrams generated for each location, facilitating the iden-
tification of superior performing individual and ensemble models as detailed in the results 
section. However, discerning the overall best performing model across all locations remained 
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challenging. For instance, while ensemble models exhibited subpar performance in Barmer 
and Nagaur, their performance ranged from satisfactory to commendable in other locations. 
To identify the best model, all models were ranked based on their R2 and nRMSE (%) values, 
and average ranks were computed, with lower ranks indicating superior performance [38]. 
Model ranking parameters were categorized into two groups namely “higher is better,” such as 
R2, and “lower is better,” such as nRMSE (%) [39]. For parameters where higher values indi-
cate better performance, the highest values were assigned the best rank, whereas for parame-
ters where lower values indicate better performance, the lowest values were assigned the best 
rank. Subsequent calculations revealed the performance order during calibration as I-GLM 
(1.42) >  I-XGB (1.52) >  I-RF (4.28) >  E-ELNET (4.50) >  E-GLM (5.64) >  I-ELNET (5.86) >  
I-SVR (6.00) >  E-RF (7.19) >  E-Cubist (8.53), where “I” denotes individual models and “E” 
denotes ensemble approaches. During validation, the ranking was determined as I-SVR (3.81) 
>  I-ELNET (4.03) >  E-GLM (4.11) >  E-ELNET (4.14) >  E-RF (4.86) >  I-RF (5.06) >  E-Cubist 
(5.78) >  I-XGB (6.08) >  I-GLM (7.14). Intriguingly, while individual GLM and XGB models 
demonstrated superior performance during calibration, they exhibited poorer performance 
during validation, potentially indicating issues of data overfitting [12]. Thus, it is imperative 
to ascertain the overall best performing models in both calibration and validation phases. To 
achieve this, combined average ranks were recalculated, revealing the model performance 
ranking as I-XGB (3.83) >  I-GLM (4.28) >  E-ELNET (4.32) >  I-RF (4.67) >  E-GLM (4.88) >  
I-SVR (4.90) >  I-ELNET (4.94) >  E-RF (6.03) >  E-Cubist (7.15). Table 4 depicts the average 
ranks of all models for each location.

In Alwar, Churu, and Jaipur districts, the ensemble ELNET approach emerged as the 
top-performing model for predicting pearl millet yield, whereas in Jalore district, the ensem-
ble GLM model exhibited the highest efficacy. These findings align with previous research by 
[40,41], which also observed the superiority of ensemble approaches over individual mod-
els. Conversely, the individual GLM model demonstrated superior performance in Barmer 
and Nagaur districts. Additionally, individual RF and XGB models outperformed others in 
Jhunjhunu and Jodhpur districts, respectively, while for Sikar district, both individual XGB 
and RF models yielded identical scores for pearl millet yield forecasting. This pattern of 
individual models outperforming ensemble approaches is consistent with findings by [15,42]. 
Similarly, findings of [43] suggest that ensemble models generally performed well, they did 
not consistently outperform their individual counterparts, supporting the results of this 
study. Among the nine locations examined, ensemble approaches outperformed individual 
models four times, while individual models proved superior in five instances for predicting 

Table 4. Overall average ranks of all models based on R2 and nRMSE (%).

Location/ Model Individual Models Ensemble Approaches Best Model
GLM ELNET XGB SVR RF GLM ELNET Cubist RF

Alwar 5.25 4.25 3.75 6.88 7.00 4.25 2.88 5.63 5.13 E-ELNET
Barmer 1.75 5.00 4.13 4.75 4.38 5.25 4.75 7.88 7.13 I-GLM
Churu 4.63 6.25 4.88 4.38 5.63 4.88 3.88 5.00 5.50 E-ELNET
Jaipur 4.75 5.50 4.00 5.00 5.25 4.00 3.13 8.50 4.88 E-ELNET
Jalore 5.25 4.38 4.38 4.75 4.38 4.13 4.50 6.50 6.75 E-GLM
Jhunjhunu 4.63 4.38 3.50 3.50 2.50 6.88 5.63 7.88 6.13 I-RF
Jodhpur 5.25 5.13 3.00 4.00 5.00 5.50 4.50 6.50 6.13 I-XGB
Nagaur 2.63 4.50 3.38 6.25 4.38 4.00 3.13 8.50 8.25 I-GLM
Sikar 4.38 5.13 3.50 4.63 3.50 5.00 6.50 8.00 4.38 I-XGB=I-RF
Overall 4.28 4.94 3.83 4.90 4.67 4.88 4.32 7.15 6.03 I-XGB

https://doi.org/10.1371/journal.pone.0317602.t004

https://doi.org/10.1371/journal.pone.0317602.t004
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pearl millet yield. In the overall ranking, individual XGB and GLM models emerged as the 
top performers. However, considering the potential issue of data overfitting, the ensemble 
ELNET approach is recommended, followed by the individual RF model, for accurate predic-
tion of pearl millet yield.

Although the models demonstrate high accuracy in predicting pearl millet yield, it 
is essential to acknowledge that even small forecast errors can have significant conse-
quences in operational settings. For example, inaccurate yield predictions may lead to 
suboptimal decisions regarding irrigation scheduling, input planning (such as fertilizer 
or pesticide use), and yield estimation for market supply. These errors, if unaccounted 
for, can result in either resource overuse or shortages, ultimately affecting farm profit-
ability and food security.

To mitigate the risks associated with forecast errors, we propose a cautious approach 
where machine learning models are combined with expert knowledge and historical data 
to enhance decision-making. By integrating human expertise and additional contextual 
information, stakeholders can account for factors that the models might overlook, such as 
sudden weather anomalies or socio-economic variables that influence farming practices. 
This hybrid approach offers a more robust and reliable system for agricultural planning, 
allowing for better resource allocation and reducing the negative impacts of potential 
forecasting errors.

Conclusion
Through rigorous evaluation using Taylor diagrams and scatter diagrams, superior 
performing models were identified at each location. Despite variations in performance 
across districts, ensemble ELNET emerged as the top-performing model in Alwar, Churu, 
and Jaipur, while ensemble GLM excelled in Jalore district. These findings support prior 
research indicating the superiority of ensemble approaches over individual models in cer-
tain contexts. However, notable exceptions were observed, with individual GLM demon-
strating superior performance in Barmer and Nagaur districts and individual RF and XGB 
models outperforming others in Jhunjhunu and Jodhpur districts, respectively. These 
performances underscore the importance of tailored model selection based on specific geo-
graphic and environmental conditions. While ensemble models generally performed well 
in the study, they did not consistently outperform individual models, aligning with previ-
ous studies. There are several potential reasons why the ensemble models in this study may 
have underperformed compared to individual models in certain districts. One significant 
factor could be data overfitting, where the ensemble models, due to their complexity, may 
have fit too closely to the training data, capturing noise rather than meaningful patterns. 
This can lead to reduced performance during validation or testing when new, unseen data 
is introduced. Additionally, model complexity in ensemble methods can sometimes lead to 
difficulties in capturing the specific, subtle relationships between the predictors and yield 
that individual models may handle more effectively. Ensembles often combine multiple 
algorithms, and this complexity can lead to issues such as poor generalization, especially 
when the data quality or quantity is limited. Moreover, interpretability issues arise as 
ensemble models can obscure the underlying relationships between variables, making it 
challenging to understand the key drivers of yield variability, which individual models 
might more transparently reveal. These factors combined could explain the unexpected 
performance outcomes in this study.

Overall, considering the potential issue of data overfitting, the ensemble ELNET 
approach is recommended for accurate prediction of pearl millet yield, followed by the 
individual RF model. This study contributes valuable insights into the optimization of 
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machine learning approaches for agricultural yield forecasting in diverse agro-climatic 
regions.

Limitations
One limitation of this study pertains to the availability of long-term yield data, which could 
further validate the efficacy of individual and ensemble approaches over extended periods. 
While the current analysis provides valuable insights into model performance based on exist-
ing data, the lack of long-term yield datasets limits the assessment of model robustness and 
predictive accuracy over multiple growing seasons. Another potential limitation of this study 
could be the reliance on weather data alone for pearl millet yield prediction, without consider-
ing other relevant factors such as soil quality, pest infestations, or agronomic practices. While 
weather variables play a crucial role in crop growth and development, omitting other influ-
ential factors may restrict the comprehensive understanding of yield variability and limit the 
accuracy of predictive models.

Another significant constraint is the overfitting observed in the XGB and GLM models. 
During calibration, these models demonstrated excellent performance, but their predictive 
accuracy declined sharply during validation, indicating that they were too closely fitted to the 
training data and failed to generalize well to new data. This overfitting issue suggests that the 
use of XGB and GLM models in isolation should be approached with caution, as they may not 
provide reliable predictions in practical, real-world applications.

Future prospect
The findings of this study pave the way for several promising avenues of future research in 
the field of pearl millet yield forecasting. First and foremost, further investigations could 
delve deeper into refining the existing predictive models by incorporating additional data 
sources and variables, such as soil quality, agronomic practices, and pest management 
strategies, to enhance the accuracy and robustness of the models. Additionally, longitudinal 
studies involving multi-year data collection would provide valuable insights into the long-
term performance and reliability of both individual and ensemble approaches across diverse 
climatic and agronomic conditions. Furthermore, exploring the applicability of advanced 
machine learning techniques, such as deep learning algorithms, and integrating remote 
sensing data for real-time monitoring and prediction of pearl millet yield could represent 
promising avenues for future research.
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