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Abstract
Understanding the causal relationships between data variables can provide crucial insights into the construction of tabular
datasets. Most existing causality learning methods typically focus on applying a single identifiable causal model, such as the
Additive NoiseModel (ANM) or the Linear non-Gaussian Acyclic Model (LiNGAM), to discover the dependencies exhibited
in observational data. We improve on this approach by introducing a novel dual-step framework capable of performing both
causal structure learning and tabular data synthesis under multiple causal model assumptions. Our approach uses Directed
Acyclic Graphs (DAG) to represent causal relationships among data variables. By applying various functional causal models
including ANM, LiNGAM and the Post-Nonlinear model (PNL), we implicitly learn the contents of DAG to simulate the
generative process of observational data, effectively replicating the real data distribution. This is supported by a theoret-
ical analysis to explain the multiple loss terms comprising the objective function of the framework. Experimental results
demonstrate that DAGAF outperforms many existing methods in structure learning, achieving significantly lower Structural
Hamming Distance (SHD) scores across both real-world and benchmark datasets (Sachs: 47%, Child: 11%, Hailfinder: 5%,
Pathfinder: 7% improvement compared to state-of-the-art), while being able to produce diverse, high-quality samples.

Keywords Adversarial causal discovery · Tabular data synthesis · Directed acyclic graph learning · Post-nonlinear model ·
Additive noise model · Linear on-gaussian acyclic model

1 Introduction

Understanding causal relationships between variables in a
dataset is a crucial aspect of data analysis, as it can lead
to numerous scientific discoveries. Although randomized
controlled trials, which involve manipulating data through
interventions, are still considered the gold standard for learn-
ing causal structures, such experiments are often impractical
or even impossible due tomany ethical, technical, or resource
constraints. Addressing this challenge has led to a growing
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demand for causal studies to identify causal relationships
from passive observational data.

In the last few decades, numerous approaches have
emerged for performing observational causal discovery
across various scientific fields, including bioinformatics [1–
3], economics [4], biology [5, 6], climate science [7, 8], and
social sciences [9]. Most causal studies employ conditional
independence-based algorithms, such as PC [10], FCI [11],
and RFCI [12]; discrete score-based methods like GES [13],
GES-mod [14], and GIES [15]; or continuous optimiza-
tion techniques, includingNOTEARS [16], DAG-GNN [17],
GraN-DAG [18], and DAG-WGAN [19]. All these method-
ologies for causal structure learning have been rigorously
tested and demonstrated substantial empirical evidence of
their ability to produce accurate graphical representations of
dependencies within datasets. However, strong performance
does not necessarily resolve the issue of non-uniqueness in
causal models, where multiple causal graphs can be used to
define the same distribution.

To resolve the issue of non-uniqueness in causal models
(e.g. Markov equivalent), where a single observed dataset
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may have multiple underlying structures, researchers often
introduce additional assumptions [20]. They employ Func-
tional Causal Models (FCM) parameterized with various
structural equations to ensure that a unique causal graph is
identified from a given distribution. Currently, there exist
a significant amount of works that apply various identi-
fiable (in most cases) models to learn causal structures
from observational data. Noteworthy examples include the
extensively researched linear non-Gaussian acyclic model
(LiNGAM) [21], the additive noise model (ANM) [22],
which provides limited support for non-linearity by assuming
the relationships between variables are additive and the post-
nonlinear model (PNL) [23] designed for studying complex
non-linear relationships.

Among the aforementioned FCMs, the post-nonlinear
(PNL) model is notable for being realistic and more accu-
rately representing the sensor or measurement distortions
commonly observed in real-world data [24]. It is also consid-
ered a superset that encompasses both ANM and LiNGAM.
The PNL model consists of two functions: 1) an initial
function that transforms data variables, with independent
noise subsequently added to all transformations; and 2) an
invertible function that applies an additional post-nonlinear
transformation to each variable. Although the PNL model is
one of the most general FCMs for modeling causal mecha-
nisms in real data distributions, it is less studied than other
identifiablemodels due to challenges associatedwith its post-
nonlinearity and invertibility constraints.

Several approaches have been developed to investigate
causal structure learning under the assumption of post-
nonlinear (PNL) models, with most focusing on accu-
rately approximating the invertibility function. For example,
AbPNL [25] uses an autoencoder architecture to learn a func-
tion and its inverse by minimizing a combination of indepen-
dence and reconstruction loss terms. This model is applied
to both bivariate and multivariate causal discovery within the
context of PNL. Another approach, DeepPNL [26], param-
eterizes both functions of the PNL model using deep neural
networks. Similarly, CAF-PoNo [27] employs normalizing
flows to model the invertibility constraint associated with
PNL. Rank-PNL, proposed by [28], adapts rank-based meth-
ods to estimate the invertible function of the causal model.
The latest work in this area,MC-PNL [29], aims to efficiently
perform structure learning for PNL estimation by model-
ing nonlinear causal relationships using a novel objective
function and block coordinate descent optimization. Despite
recent advances in PNL estimation, causal structure learning
under this functional causal model assumption remains rela-
tively unexplored compared to other models such as ANM.

Most existing causality learning methods typically focus
on applying a single identifiable causal model to discover the
dependencies exhibited in observational data. This presents
a significant disadvantage as such approaches have no way to

determinewhether themodel they assumed can learn an accu-
rate representation of the underlying structure in a dataset.
This is a critical problem to address, as misidentification of
causal relationships in a dataset can result in incorrect data
analysis, leading to bias in classification or inaccurate pre-
dictions.Moreover, causal discovery is also closely related to
tabular data synthesis, where externally learned causal mech-
anisms are applied in Deep Generative Models (DGM) (e.g.
DECAF [30], Causal-TGAN [31] and TabFairGAN [32]) to
synthesize new data samples. This method has its limitations
because the accuracy of the causal knowledge must be evalu-
ated prior to its application, which requires the availability of
the true underlying structure of the dataset. This assumption
proves to be impractical for real-world data, as such datasets
are usually complex and extensive, with their causal struc-
tures often remaining unknown.

Recent advancements in generative modeling, including
Digital Twins and transformer-based multi-attention net-
works, provide alternative approaches for modeling complex
data relationships. Digital Twin models aim to create vir-
tual representations of real-world systems, making them
highly relevant for synthetic data generation. Similarly,
attention-based architectures, such as multi-attention net-
works, dynamically weigh dependencies between variables.
As generative models continue to gain popularity, there is
significant potential to integrate them with causal discovery
under a unified framework, enablingmore accurate and inter-
pretable data generation that remains faithful to underlying
causal structures.

In this paper, we aim to address some of the chal-
lenges outlined above by proposing a novel framework called
DAGAF, which is capable of modeling causality resem-
bling the underlying causal mechanisms of the input data
(i.e learnable causal structure approximations) and employ-
ing them to synthesize diverse, high-fidelity data samples.
DAGAF learns multivariate causal structures by applying
various functional causal models and determines through
experimentation which one best describes the causality in
a tabular dataset. Specifically, the framework supports the
PNL model along with its subsets, which include LiNGAM
andANM.Unlike other methods that assume data generation
is limited to a single causal model, DAGAF satisfies multiple
semi-parametric assumptions. Additionally, supporting such
a broad spectrum of identifiable models enables us to exten-
sively compare our approach against the state-of-the-art in
the field. We complete our study by investigating the quality
of the discovered causality from a tabular data generation
standpoint. We hypothesize that a precise approximation of
the original causal mechanisms in a given probability distri-
bution can be leveraged to produce realistic data samples. To
prove our hypothesis, DAGAF incorporates an adversarial
tabular data synthesis step, based on transfer learning, into
our causal discovery framework.
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The contributions made throughout this work are outlined
as follows:

• We unify causal structure learning and tabular data
synthesis under a single framework capable of approxi-
mating the generative process of observational data and
producing realistic samples. This approach allows us to
generate quality synthetic data from the input, while pre-
serving its causality (Section 3).

• The proposed framework seamlessly integrates ANM,
LiNGAM, and PNL models by leveraging a multi-
objective loss function that combines adversarial loss,
reconstruction loss, KL divergence, andMMD. This flex-
ible formulation enables robust causal structure learning
under diverse data-generating assumptions.Additionally,
we provide a theoretical analysis to elucidate the contri-
butions of these loss terms and how they complement
each other in guiding convergence toward the true causal
structure. We also analyze causal identifiability, provid-
ing conditions under which causal relationships can be
uniquely determined, and examine how real-world data
characteristics-such as noise, missing values, and dis-
tribution shifts-can impact identifiability (Sections 3.1
and 4).

• We employ transfer learning in the context of causally-
aware tabular data synthesis. DAGAF uses a two-
step iterative approach that combines causal knowledge
acquisition with high-quality data generation. The causal
relationships identified in the first step are transferred and
leveraged in the second step to facilitate causal-based tab-
ular data generation. This enables more faithful synthetic
data generation, preserving the underlying causal mech-
anisms (Section 3.2).

• We validate the effectiveness of DAGAF on synthetic,
benchmark, and real-world datasets. Our results show
significant improvement in DAG learning in comparison
with other methods (Sachs: 47%, Child: 11%, Hailfinder:
5%, Pathfinder: 7% improvement compared to state-of-
the-art). They also demonstrate that the learned causal
mechanism approximations can be used to generate high-
quality, realistic data (Section 5).

2 Prerequisites

This section explores the mathematical aspects of causal-
ity, relevant to the field of machine learning. In particular,
we provide a brief overview of Functional Causal Models
(FCM) [33] and the assumptions employed in our causal
structure learning algorithm.

Letχ denote a tabular dataset such thatX = {X1, . . . , Xd}
is a set of d random data variables, and χ ⊆ R

n×d represents
a dataset consisting of n samples X = {X1, . . . ,Xn} drawn

from the joint distribution P(X). Individual data points and
their attributes are denoted asXi and X j , respectively. Addi-
tionally, let GA ∈ D be a ground truth Directed Acyclic
Graph (DAG) representing the relationships between all
the attributes {X1, . . . , Xd}. Then, P(X) can be expressed
using a functional causal model (FCM), which describes the
relationships within {X1, . . . , Xd}. In this context, FCMs
facilitate causal discovery from tabular datasets by encod-
ing variables as nodes, and edges between them represent
the underlying causal mechanisms responsible for data gen-
eration.

According to theory, an FCM is formulated as a triplet
MGA〈X,F ,Z〉, where X = {X1, . . . , Xd} is a set of
endogenous variables, F = { f1, . . . , fd} is a set of struc-
tural equations, andZ = {Z1, . . . ,Zd} is a set of exogenous
(noise) variables. Under the local Markov condition and the
causal sufficiency assumption, the joint distribution ofX can
be factorized as P(X) = ∏d

j=1 P(X j | Pa j ), where X j is a
child of its parent variables Pa j in the graph GA. Each X j

can be modeled in its non-parametric form as:

X j := f j (Pa j ,Z j ). (1)

This representation of P(X) allows us to sequentially
model the causal mechanisms underlying χ , defining its gen-
erative process.

Furthermore, we assume faithfulness, which enables the
discovery of causal structures from continuous observa-
tional data using various nonlinear and semi-parametric
models. Our framework is applied to several types of models,
including: Linear non-GaussianAcyclicModels (LiNGAM),
Additive Noise Models (ANM), and Post-Nonlinear Models
(PNL). Each of these models has been proven to be causally
identifiable under specific assumptions:

• LiNGAM: The causal identifiability ofLiNGAMis guar-
anteed under the assumption of non-Gaussianity in the
noise terms. Specifically, if the noise variables are non-
Gaussian and independent from X , it has been shown that
the underlying causal structure can be uniquely identi-
fied [21].

• ANM: Additive Noise Models (ANM) assume that the
Gaussian noise termZ j is independent of the parent vari-
ables Pa j . This assumption enables the identifiability of
the causal direction between variables. Additionally, the
function f j (·) must be non-linear and three times dif-
ferentiable, to ensure that the application of this model
results in a unique determination of the causal direction
between variables [22].

• PNL: Post-Nonlinear Models (PNL) extend the ANM
framework by introducing an additional non-linear trans-
formation g j (·) after the function f j (·). The key assump-
tions for identifiability in PNL include the independence
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of theGaussian noise terms and the non-linear and invert-
ible nature of the function g j (·). Under these conditions,
the causal structure can be identified, even in the presence
of complex non-linear interactions [23].

3 DAGAF: A general framework for
simultaneous causal discovery and tabular
data synthesis

DAGAF learns DAG structures from input data to simu-
late the generative process of their probability distribution.
We model GA to represent the causal relationships within a
dataset χ . The model is capable of facilitating realistic sam-
ple synthesis with minimal loss of fidelity and diversity. We
formalize our goal as follows.

Goal Given n i.i.d. observationsX ∼ P(X) ∈ χ , we propose
a general framework to learn GA ≈ GA ∈ D together with a
set of structural equations F = { f1, ... fd}, such that X̃ j :=
f j (Pa j ,Z j ) yields X̃ ∼ PGA (X̃) ∈ χ̃ matching the input.
The DAGAF framework focuses on learning an approx-

imation of the causal mechanisms { f j (Pa j ,Z j )} involved
in the generation of observations X. The (semi)parametric
assumptions outlined in Section 2 define each node X j ∈
GA as a function f j : R

d → R. Under such circum-
stances, the general nonparametric form E[X j |X pa( j)] :=
EZ ( f j (X ,Z)) can be reduced to one of the following: 1)
Linear non-Gaussian Acyclic Models (LiNGAM): X̃ :=
f (X) + Z , where f (X) is a linear function of X and Z
is a non-Gaussian noise term independent of X ; 2) Addi-
tive Noise Models (ANM): X̃ j := f j (Pa j ) + Z j , where
f j is a nonlinear function of the parent variables Pa j , and
Z j ⊥⊥ f j (Pa j ),Z j ∼ N (μ, σ 2

j ); 3) Post-Nonlinear Mod-

els (PNL): X̃ j := g j ( f j (Pa j )+Z j ), where g j is a nonlinear
function and Z j ⊥⊥ f j (Pa j ),Z j ∼ N (μ, σ 2

j ).
Algorithm 1 provides an overview of the training process.

Section 3.1 details Step 1, which focuses on causal struc-
ture learning. Furthermore, since the framework recovers the
causal structure by learning the underlying data generative
process of X, it is naturally well-suited for data synthesis.
However, it requires training a separate Deep Generative
Model (DGM) involving a discriminator and a generator in an
additional training phase, which is explained in detail in Sec-
tion 3.2. The architecture and training procedure of DAGAF
are described in Section 3.3. A visual representation of the
model pipeline is provided in Fig. 1.

3.1 Loss functions for causal structure learning

InStep1ofDAGAF training, the goal is tomodelDAGsusing
a sophisticated objective function that integrates a combina-

Algorithm 1 DAGAF training algorithm.
Require: Sample n observational data points {X1, . . . ,Xn} from the
training data and d noise vectors {Z1, . . . , Zd } from normal dis-
tributions. Generate n synthetic data samples {X̃1, . . . , X̃n}, with
data attributes X̃ := f (X) + Z, X̃ j := f j (Pa j ) + Z j or X̃ j :=
g j ( f j (Pa j ) + Z j ) depending on whether LiNGAM, ANM or PNL
is assumed.

Ensure: The acyclicity constraint value h(AL0 ( f )) is higher than its
tolerance of error h_tol set to 1e-8. Each step during training has its
own instance ofDAG-Notears-MLP.Causal information is transferred
from the FCM into the DGM architecture.

Step 1: Poly-assumptive causal structure learning
LiNGAM, ANM→ learn f by minimizing a combination of loss

terms including
adversarial loss (2), Mean Squared Error (3), Kullback-Lieber

divergence (4),
Maximum Mean Discrepancy (5) and the acyclicity constraint

from [34]
PNL → learn f using the loss terms described in the LiNGAM,

ANM case and
g−1 by solving (8)
This step recovers a graph representation GA of the causal mech-

anisms in X.

Step 2: Generative process simulation under multiple causal model
assumptions

LiNGAM, ANM → learn f by computing (2)
PNL → learn f and g by finding the optimal value for (2)
This step models a generative process involving GA through

adversarial
training, producing new data samples.

tion of loss terms used for causal structure learning. In its
basic form, the framework covers LiNGAM and ANM by
utilizing adversarial training and reconstruction loss, along
with some regularization terms, to learn how to generate X̃
fromX. One benefit of our framework is its flexibility, allow-
ing the basic approach to be easily adapted to support causal
structure learning using PNL. The advanced form further
extends the functionality of the framework to cover PNL by
adding an additional reconstruction loss term to model the
non-linear function g j .

3.1.1 Adversarial loss with gradient penalty

DAGAF simulates X by learning how to generate X̃ using
causal mechanism approximations of { f j (Pa j ,Z j )} ∈
P(X). To achieve this, we do not directly model X̃ but
instead focus on recovering the causal mechanisms F =
{ f1, . . . , fd}, where each f j is defined as f j (Pa j ;W 1

j , . . . ,

WL
j ) +Z j . Learning the causal mechanisms involves deter-

mining the immediate parents of each variable, which are
encoded in the causal structure of X. We minimize the
Wasserstein distanceWp(P(X), PGA (X̃)) through adversar-
ial training, which implicitly refines the causal structure
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Fig. 1 Pipeline of the DAGAF algorithm

GA, facilitating the identification of the causal mechanisms.
The Wasserstein distance with gradient penalty loss term is
defined as follows:

Ladv(X, X̃) = sup
‖φ‖L≤1

EX∼P(X)[φ(X)]−EX̃∼PGA (x |G)
[φ(X̃)]

= EX∼P(X)[D(X)] − EX̃∼PGA (X̃)
[D(X̃)]

+EX̂∼P(X̂)
[(||∇X̂D(X̂)||2 − 1)2], (2)

where φ(X) is a 1-Lipschitz function used to approximate
the Wasserstein distanceWp(P(X), PGA (X̃)). The function
D(X) serves as the discriminator, which is trained adversari-
ally to learnφ(X) and distinguish between real and generated
samples.

In this framework, adversarial training to optimise (2)
involves learning the set of structural equations F =
{ f1, . . . , fd}, where each f j models the causal mechanism
of node X j . The FCM-based generator M learns to gener-
ate synthetic data that mimics the true distribution, while
the discriminator D(X) evaluates the divergence between
real and generated samples. The objective is formulated as
a min-max optimization, where M aims to minimize the
discrepancymeasured by D(X), while D(X) is trained to dis-
tinguish between real and generated distributions, typically
using the Wasserstein distance. Theoretically, this min-max
optimization problem achieves its optimal point typically
characterized as a Nash equilibrium, when the generator can
yield synthetic data that is indistinguishable fromX, thereby
approximating the generative process of X (i.f.f. the causal
structure in GA is correctly identified).

Proposition 1 Let the ground-truth DAG GA be uniquely
identifiable from P(X), then minimizing the adversarial loss
ensures that the implicitly generated distribution PGA (X̃)

aligns with P(X).

inf
GA∈DLadv(X, X̃) = 0 ⇒ PGA (X̃) = P(X) and consequently GA = GA.

Proof The proof of Proposition 1 is available inAppendixA.1.
��

3.1.2 Reconstruction loss

We add a reconstruction loss to enhance causal structure
learning. In this context, we use Mean Squared Error (MSE)
as the reconstruction loss:

LMSE(X, X̃) = EX,X̃(||X − X̃||2) = 1

n

n∑

i=1

d∑

j=1

||Xi j

−{ f j (Pa j ;W 1
j , ...,W

L
j ) + Z j }i ||2 (3)

By reducing (3) through parameter optimization, we min-
imize the residual distance between individual samples ||X−
X̃|| such that our model produces X̃ ∼ PGA (X̃) by implic-
itly learning the causal dependencies of X represented in
GA. Essentially, this reconstruction process results in a closer
approximation of the causal mechanisms responsible for pro-
ducing X.

Proposition 2 The MSE loss ensures point-wise alignment
between the data and the prediction of the model, improving
the smoothness of the gradient and the stability of adversarial
optimization.

inf
GA∈DLMSE(X, X̃) = 0 ⇒ ∀i, X̃i = Xi

Proof The proof of Proposition 2 is available inAppendixA.2.
��

The MSE loss plays a key role in DAG learning, as evi-
denced by our experiments. This aligns with the approach
taken by most existing works in DAG-learning, where MSE
is the most commonly used loss function.

3.1.3 Kullback-Leibler divergence

We introduce Kullback-Leibler divergence (KLD) [35] as
a regularization term for nonlinear cases with additive
Gaussian noise in ANM to prevent overfitting of X and
inaccurate causal mechanisms in the generative process
of X̃. The KLD term is typically applied in Variational
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Autoencoders (VAE) as a regularization component of the
Evidence Lower Bound (ELBO) loss function for latent
variables. It is defined as DKL

(N (μ, σ 2)‖N (0, 1)
) =

1
2

∑n
i=1

(
σ 2
i + μ2

i − log(σ 2
i ) − 1

)
whereμ and σ denote the

mean and standard deviation of X̃. In our setup, we apply
this to regularize X̃. Additionally, we only model the mean
of PGA (X̃) and set its variance to 1, hence reducing the reg-
ularization function to:

LKLD(X, X̃) = DKL(P(X)||PGA (X̃)) = 1

2

n∑

i=1

(μ2
i ). (4)

We use the Kullback-Leibler divergence (KLD) as a reg-
ularization term for X̃, the model-generated data, to simulate
an additive noise scenario where noise is incorporated into
each data point. By applying KLD to X̃, we encourage the
model to produce X̃ that closely matches the true data dis-
tribution while accounting for the variability introduced by
noise. This regularization helps the model avoid overfitting
by ensuring that the generated data reflects the natural vari-
ations present in the real data, leading to more robust and
realistic samples. As our model involves learning causal
mechanisms, this prevents the model from learning incor-
rect causal structures, such as misidentifying child nodes as
parent nodes.

Proposition 3 The LKLD(X, X̃) regularization provides a
statistical prior on the learned distribution PGA (X̃), ensur-
ing it adheres to a Gaussian assumption. It also acts as
a stabilizing factor in optimization, particularly under the
additive Gaussian noisemodel. It complements the adversar-
ial andMSE losses, ensuring both alignment and smoothness
of PGA (X̃).

Proof The proof of Proposition 3 is available inAppendixA.3.
��

Note, this is not applicable to the LiNGAM causal model,
due to the non-Gaussianity of the noise term Z under that
specific assumption.

3.1.4 Maximummean discrepancy

The reconstruction loss and its regularization term focus
solely on learning the mean of P(X), while completely
disregarding its variance. This implies that the reconstruc-
tion process involved in DAGAF is highly sensitive to rare
occurrences (i.e. outliers) in P(X). To address this issue,
we further reduce the residual distance between the input
distribution X ∼ P(X) and the generated data distribution

X̃ ∼ PGA (X̃) by introducing the Maximum Mean Discrep-
ancy (MMD) [36]. We apply the kernel trick [37] to compute
the solution to this formula.

LMMD(X, X̃) = ||EX∼P(X)[k(X)] − EX̃∼PGA (X̃)
[k(X̃)]||2H

= 1

n

n∑

i �= j

k(Xi ,X j ) − 2

n

n∑

i �= j

k(Xi , X̃ j ) + 1

n

n∑

i �= j

k(X̃i , X̃ j ),
(5)

where H denotes the reproducing kernel Hilbert space
(RKHS) and k ∈ H is a kernel function.

The MMDmaximizes mutual information between P(X)

and PGA (X̃), leading to alignment in both their means and
overall shapes. Specifically, by matching the shapes of the
distributions, the MMD term can help bring their variances
closer together. Hence, by applying (5) we indirectly model
the standard deviation of PGA (X̃) to mitigate mode collapse
in X̃ and discover the causal mechanisms responsible for
producing its outliers.

Proposition 4 Minimizing the Maximum Mean Discrepancy
(MMD) loss LMMD(X, X̃) aligns higher-order statistics
of P(X) and PGA (X̃), complementing adversarial loss to
achieve overall distributional alignment.

Proof The proof of Proposition 4 is available inAppendixA.4.
��

Our ablation study in Appendix B indicates that theMMD
term incorporated fromDAG-GAN [38]makes contributions
to causal discovery.

3.1.5 Post-nonlinear FCM

So far, we have discussed the loss terms for the LiNGAM
andANM cases, where X̃ generated using causal mechanism
approximations X̃ := f (X) + Z or X̃ j = f j (Pa j ) + Z j is
treated as the final output of the model to mimic the training
data X via minimizing ||P(X) − PGA (X̃)||. One of the key
advantages of DAGAF is its flexibility, allowing this to be
extended to handle Post-Nonlinear Models (PNL).

PNL is crucial for causal discovery as it provides a more
realistic approach to modeling causality by capturing non-
linear effects in observational data. Furthermore, PNL is
considered a general superset that encompasses other iden-
tifiable models, such as ANM [39] and LiNGAM [21].

X j := g j ( f j (Pa j ) + Z j ),∀ j,Z j ⊥⊥ f j (Pa j ) (6)

Without loss of generality, we rearrange (6) into

Z j = g−1
j (X j ) − f j (Pa j ), (7)
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where g−1 is the inverse of g. Under this setting (from the
rearranged equation), the problem has been broken into two
parts, which are to learn f (·) and g−1(·) respectively.

Learning f (·) follows the same process as in theANMand
LiNGAMcases, as described so far in Sections 3.1.1 to 3.1.4.
However, learning g−1(·) is an additional step specific to the
PNL case. In practice, both functions g−1(·) and f (·) are
modeled using two different neural networks, where f (·)
is the same as before and g−1(·) is the inverse of a general
MLP. There is an additionalMean Squared Error (MSE) term
involved in the training procedure, which we define as:

LPNL(X̂, X̃) = MSE(X̂, X̃) = 1

n

n∑

i=1

d∑

j=1

||g−1
j (X j )i

− f j (Pa j )i ||2, (8)

where X̂ is the output of g−1.
It is worth noting that the reason why the loss terms in

Sections 3.1.1-3.1.4 (where f (.) is treated as the final output
of the model) can be used by the PNL case is based on the
idea of skip connections, as those used in ResNet. Although
the output from f (·) in the PNL case is not the final output,
we can still use it directly in these loss terms by essentially
skipping the final function g(·), allowing the model to apply
the same loss terms as in the ANM and LiNGAM cases. For
more information on this concept, see [40].

3.1.6 Causal structure acyclicity

Minimizing the reconstruction and adversarial loss terms
does not guarantee thatGA will be acyclic. To prevent cycles
from occurring in the learned causal structures, we employ
the implicit acyclicity constraint from [34] h(AL0( f )) =
0, where AL0 ∈ R

d×d is the weighted adjacency matrix
described implicitly by the model weights. More details can
be found in [34].

3.2 Simulating data generative processes

In the second stage of Algorithm 1, we focus on synthe-
sizing realistic tabular data samples using the causal graph
GA produced from Step 1. Our data generation process
assumes a different instance of the FCM M used in the
causal discovery step, which we refer to as generator G here.
Causal knowledge is transferred between FCM instances
by loading WL0 from M into L0 ∈ G. To enable tabu-
lar data synthesis, we incorporate an additional noise vector
Z = {Z1, ...Zd} ∼ N (μ, σ 2) into the architecture of the
generator.

The models used in this step are trained adversarially to
ensure that PGA (X̃) closely approximates P(X). Specifically,
the network G creates samples while competing against a

discriminator D : R
d → R, whose aim is to distinguish

between synthetic samples and observational samples. We
applyWasserstein-1 with gradient penalty to train our DGM,
resulting in realistic samples indistinguishable from X. The
loss function is the same as (2). More specifically, we con-
sider each connected layer α(L j ) ∈ {α(L1), ...α(Ld)} as
an individual generator G j (Z j ) ∈ {G1(Z1), ...Gd(Zd)}.
This approach enables us to model each causal mechanism
f j ∈ { f1, ... fd} such that X̃ j is generated as either X̃ :=
G(X) +Z; X̃ j := G j (Pa j ) + Z j or X̃ j := g j (G j (Pa j ) +
Z j ), depending on whether we assume LiNGAM, ANM or
PNL. In other words, we generate a synthetic tabular dataset
X̃ ∈ χ̃ ⊆ R

n×d = F(Z) = { f j (Pa j , Z j )}. During train-
ing,we only update the parametersW = {W 1, ...,WL } of the
locally connected hidden layers, sincemodifying theweights
of L0 would affect the structural equationsF used to produce
X̃.

Our experiments in Section 5.4 indicate that our DGM
can produce high-quality data under both the ANM and PNL
structural assumptions.

3.3 Model architecture and training specifications

Figure 2 presents the overall architecture of the DAGAF
framework. Figure 2a illustrates the ANM and LiNGAM
setting, where input dataX is processed by function f to pro-
duce X̂. The optimization is guided by multiple loss terms:
Ladv(X, X̃), LMSE(X, X̃), LKLD(X, X̃), and LMMD(X, X̃),
withLKLD(X, X̃) specifically excluded in theLiNGAMcase.
Figures 2b extends 2a by incorporating the PNL model. The
right-hand branch follows the same structure as Fig. 2a,
while the additional left-hand branch applies g−1 to invert
X. This inversion contributes to computing LPNL(X̂, X̃),
which is then integrated with the other loss terms from the
right-hand branch, forming a unified optimization frame-
work. Figure 2c depicts the data generation process used to
synthesize artificial data, demonstrating how the framework
facilitates structured data synthesis.

We incorporate the Multi-Layer Perceptron (MLP) from
[34] as an FCMM tomodel f in the causal structure learning
step. Its architecture consists of two components: 1) an ini-
tial linear layer L0, which constitutes an implicit definition of
GA, enabling the modelling of causal structures and 2) a set
of locally connected hidden layers L = {α(L1), ..., α(Ld)},
withα being a nonlinear transformation applied to each layer,
designed to approximate and learn F = { f1, ..., fd} ∈ GA.
Meanwhile, g is a general MLP with five linear layers [d
- 10d - 10d - 10d - d] (1 input, 3 hidden and 1 output)
and nonlinearity applied using the ReLU activation func-
tion (only used in the PNL case). More specifically, each
feature in X is modeled with a neural network of L hid-
den layers f j (Pa j ,Z j ;W 1

j , ...,W
L
j ), j ∈ [1, d], where Wl

j
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Fig. 2 A Visual Representation
of DAGAF. (a) The optimization
structure under ANM and
LiNGAM, where input data is
processed to reconstruct X̃ using
multiple loss terms, excluding
LKLD in the LiNGAM case. (b)
The extended framework
integrating ANM, LiNGAM,
and PNL, where an additional
inversion function g−1 is
introduced to compute LPNL,
unifying the optimization
process. (c) The synthetic data
generation process, illustrating
how the framework enables
structured data synthesis while
preserving underlying causal
relationships

denotes the parameters of the lth layer. Let W (0)
j ∈ R

h×d be
the weight matrix within L0 connecting to the local neural
network modeling X j , where h is the latent size and d is the
number of input variables. For each pair of variables X j and
Xk , the Ridge regression norm of the weights connecting Xk

to all latent units in the network for X j is computed as:

A jk =
∥
∥
∥W

(1)
j,k,:

∥
∥
∥
2

=
√
√
√
√

h∑

m=1

(
W (1)

j,k,m

)2
, (9)

whereW (1)
j,k,m represents theweight connecting the k-th input

variable Xk to the m-th latent unit in the first layer of the
network for X j .

Throughout the training process, a learning rate of 3 ×
10−3 is employed, with a batch size set at 1000. Ridge regres-
sion regularization is applied in both steps by setting the
weight decay of both discriminators to 1×10−6. The models
within our framework undergo iterative optimization, with
their parameters updated through gradient descent.

The adversarial loss is applied to the reconstructed distri-
bution PGA (X̃), hence, in the causal structure learning step, a
noise vector is not involved during training. Once the param-
eters in AL0 have been updated, we convert AL0 to GA using

the post-processing step GA = √
AL0( f ), w2

jk ∈ AL0( f )
followed by thresholding with value 0.3, considered best
by existing works such as DAG-GNN [17], GAE [41] and
many others. These final two steps are required to recover
the weights w jk ∈ GA from AL0( f ) and to reduce the num-
ber of false discoveries in GA.

To learn g−1 for the PNL case, we need to invert the archi-
tecture and training procedure of g such that X̃ is used as
input to produce the original X. We opt to focus on the train-
ing algorithm only as due to the generality of g inverting its
architecturewill not result in any changes to its configuration.

Remark 1 The output data X̃ from Step 1 is solely used to
compute the loss terms during training and then it is dis-
carded. This happens because the reconstruction loss used
to learn the causal structure of X significantly reduces the
range of the generated samples, resulting in X̃ with high
fidelity but low diversity.

We treat the training as a constraint continuous opti-
mization problem because of the requirement to adjust the
parameters of the acyclicity constraint together with the
weights of the model. Hence, we use the modified version of
the augmented Lagrangian [42] employed in DAG-Notears-
MLP to solve it.
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3.4 Computational complexity analysis

TheDAGAF framework comprises three distinct models: the
FCM/Generator (M/G), the Discriminator D (in the ANM
and LiNGAM settings), and an additional MLP g for the
PNL case. These models are trained using an algorithm that
integrates three interconnected components: Causal Struc-
ture Learning, Tabular Data Synthesis, and Augmented
Lagrangian-based Continuous Optimization. This complex
architecture and trainingmethodologymakeDAGAF signifi-
cantlymore intricate compared to other state-of-the-artmeth-
ods, such asDAG-GNN [17], GraN-DAG [18], DECAF [30],
andCausal-TGAN [31], which focus solely on causal discov-
ery or tabular data synthesis and involve fewer models. This
complexity motivated us to assess the efficiency and practi-
cality of our approach.

We examine the resource requirements ofDAGAF for per-
forming causal structure learning and tabular data synthesis
simultaneously. To achieve this, we provide pseudo-code for
Algorithm 1 and analyze its time complexity. This alternative
representation of the training process for our framework is
presented in Appendix E. The space complexity of DAGAF
is O(d), where d represents the number of variables in X,
aligning with the complexity of Notears and its extensions.

To perform a thorough time complexity analysis of our
framework, we evaluate the efficiency of each stage in the
pseudo-code from Appendix E separately. This analysis also
incorporates the augmented Lagrangian and causal knowl-
edge transfer components. The total computational complex-
ity is determined by summing the individual complexities
of each component in the pseudo-code for Algorithm 1 and
identifying the most resource-intensive stage. We start with
the initial phase of the framework, which involves declar-
ing variables, hyperparameters, and model instances. These
operations are treated as atomic and require constant time
O(1).

Next, the training procedure is executed by directly apply-
ing the augmented Lagrangian, which involves three nested
loops: 1) governed by k_max_i ter , 2) constrained by the
range of values for c, and 3) determined by the number of
epochs in the training process. In the worst-case scenario,
each loop runs to its maximum limit, and each has linear
complexity. Assuming the range for each loop is constant,
the time complexity of optimizing the augmentedLagrangian
parameters depends solely on the number of data variables
in the input dataset, resulting in a complexity of O(d) per
each individual loop, where d represents the number of vari-
ables in the observational data. Considering the three nested
loops and the parameter optimization step (which takes con-
stant time, O(1)), the overall computational complexity of
the augmented Lagrangian is cubic, O(d3).

Inside the augmentedLagrangian, the training algorithm is
divided into two stages: causal structure learning and tabular

data synthesis, with an additional step for transferring causal
knowledge between the stages, which takes constant time
O(1). Both stages utilize stochastic gradient descent (SGD)
for optimizing model parameters. Generally, the computa-
tional complexity of SGD isO(knd), where k is the number
of epochs, n is the number of samples, and d is the number of
variables inX. For DAGAF, both k and n are constant hyper-
parameters, meaning the optimization complexity depends
solely on the number of data attributes in the input. There-
fore, the total computational complexity for both stages is
linear, O(d).

The overall time complexity of Algorithm 1 is given by
O(d)3 + 2O(d), which simplifies to O(d)3 as we focus on
the fastest-growing term. This analysis shows that DAGAF
has a cubic computational complexity, aligning with results
reported for similar algorithms in previous studies [16, 18].

4 Causal identifiability

Our theoretical analysis demonstrates that the DAGmodel is
unique and hence identifiable under the assumptions of the
DAGAF framework, which include ANM, LiNGAM, and
PNL. This analysis is conducted under the assumption that
the data is continuous and follows i.i.d. conditions.

Proposition 5 Under the Additive Noise Model (ANM),
Linear non-Gaussian Acyclic Model (LiNGAM) or Post-
Nonlinear Model (PNL) assumption, there exists a unique
DAG GA capable of defining the observed joint distribution
P(X).

Proof The proof of Proposition 5 is available inAppendixA.5.
��

Proposition 5 establishes that for a joint distribution P(X)

over randomvariables {X1, ..., Xd}generatedby a true causal
graph GA, there exists an identifiable causal graph GA such
that GA = GA, provided that the causal model follows the
ANM, LiNGAM, or PNL assumptions.
In addition, we analyze how the loss terms used to train
DAGAF behave under challenging conditions, including
non-i.i.d. data, missing values, and discrete variables.

4.1 Impact of non-i.i.d. conditions

Now we consider some real-world data case, where the sam-
ples {X1, ...,Xn} are no longer independent (i.e. Xi �⊥⊥ X j )
and each data point Xi is drawn from heterogeneous distri-
butions Pi (X). In such settings, the empirical distribution
P ′(X) becomes a biased estimate of the true distribution
P(X), impacting the optimization.

We assume that the true and the implicitly generated
distributions are defined as P ′(X) = P(X) + δ(X) and
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P ′
GA

(X̃) = PGA (X̃) + δ(X̃), where δ(X) and δ(X̃) capture
deviations from the i.i.d. assumptions.

4.1.1 Adversarial loss and identifiability

Under non i.i.d. condition,L′
adv(X, X̃)=D(P ′(X)||PGA(X̃)).

The bias δ(X) affects the gradients of L′
adv(X, X̃):

∇φL′
adv(X, X̃) = ∇φD(P(X)||PGA(X̃))

+∇φD(δ(X)||PGA(X̃)).

The additional term ∇φD(δ(X)||PGA(X̃)) can destabilize
optimization by adding spurious gradient components due to
dependencies or heterogeneity, and by amplifying sensitivity
to noise in the data.

4.1.2 MSE loss and identifiability

Under the non-i.i.d. conditions:

L′
MSE(X, X̃) = LMSE(X, X̃) + δ(X).

If δ(X) introduces correlations between samples Xi and
X j , this violates the independence of the noise terms Z j .
As a result, the non-i.i.d. MSE loss term L′

MSE(X, X̃) may
incorrectly fit spurious patterns across samples. In turn, the
output of f j (Pa j ) may no longer capture the true functional
relationship.

Furthermore, the gradient of L′
MSE(X, X̃) with respect to

θ is:

∇θL′
MSE(X, X̃) = ∇θLMSE(X, X̃) + ∇θ δ(X).

The additional term ∇θ δ(X) introduces instability due to
spurious gradients from dependencies across samples, and
heterogeneity-induced noise in gradients. This instability
makes optimization sensitive to the choice of initialization
and hyperparameters, thus reducing convergence reliability.

4.1.3 Kullback-Leibler divergence loss and identifiability

The empirical estimate of the KLD under non-i.i.d. condi-
tions becomes:

L′
KLD(X, X̃) = 1

n

n∑

i=1

log
PGA (X̃i )

P ′(Xi )
.

Expanding L′
KLD(X, X̃) and applying a first-order Taylor

expansion P(Xi ), we have

L′
KLD(X, X̃) ≈ LKLD(X, X̃) − 1

n

n∑

i=1

δ(Xi )

P(Xi )
.

The term δ(Xi )
P(Xi )

introduces bias, particularly when δ(Xi )

varies significantly across samples. This bias skews the
optimization of PGA (X̃), which potentially leads to an
approximate distribution PGA (X̃) that deviates from P(X).

The gradient of the KLD loss under non-i.i.d. conditions
is defined as:

∇θL′
KLD(X, X̃) ≈ ∇θLKLD(X, X̃) −

∫

∇θ PGA (X̃)
δ(X)

P(X)
dXdX̃.

The additional term
∫ ∇θ PGA (X̃)

δ(X)
P(X)

dXdX̃ adds noise
to the gradients, reducing the stability of optimization. This
may introduce spurious directions in the parameter space,
which make convergence to the true distribution P(X) more
challenging.

4.1.4 MMD loss and identifiability

Expanding all instances of k(.), we have:

k(Xi ,X j ) = k(P(Xi ), P(X j )) + �P(X)(Xi ,X j ),

k(Xi , X̃ j ) = k(P(Xi ), PGA (X̃ j )) + �P(X),PGA (X̃)
(Xi , X̃ j ),

k(X̃i , X̃ j ) = k(PGA (X̃i ), PGA (X̃ j ) + �PGA (X̃)
(X̃i , X̃ j ),

where �P(X)(Xi ,X j ), �P(X),PGA (X̃)
(Xi , X̃ j ) and �PGA (X̃)

(X̃i , X̃ j ) represent perturbations due to non-i.i.d. effects. The
empirical MMD becomes:

L′
MMD(X, X̃) ≈ LMMD(X, X̃) + �,

where the non-i.i.d. effect � is defined as follows:

� = 1

n

n∑

i �= j

�P(X)(Xi ,X j ) − 2

n

n∑

i �= j

�P(X),PGA (X̃)
(Xi , X̃ j )

+ 1

n

n∑

i �= j

�PGA (X̃)
(X̃i , X̃ j )

The term � introduces bias into the empirical MMD esti-
mate, which may no longer converge to the true population
MMD even as n → ∞.

The gradient of L′
MMD(X, X̃) with respect to model

parameters θ is:

∇θL′
MMD(X, X̃) = 2

(

EX,X′∼P ′(X)[∇θk(X,X′)]

−EX∼P ′(X),X̃∼P ′
GA

(X̃)
[∇θk(X, X̃)]

)

.

The additional perturbations �P(X), �P(X),PGA (X̃)
and

�PGA (X̃)
introduce noise into the gradients, potentially desta-

bilizing optimization and making convergence difficult.
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Table 1 DAG structures
recovered from linear data

Model SHD (5000 linear samples)
d=10 d=20 d=50 d=100

DAG-Notears 8.6 ± 7.2 13.8 ± 9.6 41.8 ± 29.4 102.8 ± 53.2

DAG-Notears-MLP 4.6 ± 4.3 7.6 ± 6.3 29.6 ± 18.5 74 ± 30.6

DAG-GNN 6 ± 6.9 11.4 ± 8.2 33.6 ± 21.2 85.4 ± 46.4

GAE 5.5 ± 4.9 10.3 ± 7.2 31.3 ± 13.8 80.2 ± 24.6

GraN-DAG 3.4 ± 5.2 6.4 ± 7.5 25.2 ± 14.6 68.4 ± 25.8

CAREFL 2.7 ± 4.8 5.9 ± 7.1 24.9 ± 14.1 66.9 ± 24.7

DAG-NF 2.4 ± 4.6 5.2 ± 6.9 23.1 ± 13.4 64.2 ± 24.3

VI-DP-DAG 2.1 ± 4.5 4.5 ± 6.7 22.4 ± 12.7 63.7 ± 23.5

DCRL 1.8 ± 2.7 3.1 ± 4.8 18.7 ± 11.9 53.3 ± 21.9

DAG-WGAN 5.2 ± 3.8 9.2 ± 5.7 19.6 ± 12.3 58.6 ± 22.7

DAG-WGAN+ 3.7 ± 3.1 5.6 ± 4.9 17.2 ± 10.5 49.1 ± 20.1

DAGAF 1.4 ± 2.3 2 ± 4.4 16.4 ± 9.8 38.8 ± 18.3

4.2 DAG identifiability in discrete variables

Different DAGs can give rise to the same joint distribution
in the discrete setting, thereby leading to non-uniqueness in
identifying the true DAG GA. For simplicity, consider two
DAGsG1A1

andG2A2
that are structurally different but induce

the same joint distribution. In a discrete setting, the symmetry
between causal relations often implies that reversing edges
or reparameterizing certain relationships leads to the same
joint distribution. More formally:

P(Xi | Pa(Xi )) = P(X j | Pa(X j ))

for some (Xi , X j ) such that X j ∈ Pa(Xi ) or Xi ∈ Pa(X j ).

This symmetry implies that the conditional distributions
from both DAG are equal. Thus, the identifiability of the
DAG is lost in the discrete setting due to the equivalence
of the conditional distributions, even though the underlying
structural graph may differ.

4.3 Impact of missing data

Missing data in real-world datasets can arise from differ-
ent mechanisms. If data is Missing Completely at Random,
the missingness is unrelated to any variables, reducing sam-
ple size but preserving identifiability with sufficient data.
Missing at Random occurs when missingness depends only
on observed variables, potentially introducing bias in inde-
pendence tests but still allowing DAG discovery with robust
imputation. Missing Not at Random is the most problematic,
as missingness depends on unobserved factors, making the
dataset unrepresentative of the true causal structure.

As the identifiability of the true DAG GA relies heavily
on correctly testing conditional independence relationships
(e.g.,Z j ⊥⊥ Pa j in the PNLmodel),missing data reduces the
statistical power of these tests. Missing large portions of data
may lead to unreliable or incorrect conditional independence
tests. Spurious dependencies or independencies may arise
due to imputation strategies or biased sampling. The ANM,

Table 2 DAG structures
recovered from non-linear-1
data

Model SHD (5000 non-linear-1 samples)
d=10 d=20 d=50 d=100

DAG-Notears 11.4 ± 4.5 28.2 ± 10.2 55 ± 23.1 105.6 ± 48.3

DAG-Notears-MLP 5.2 ± 1.8 15.4 ± 4.6 43.8 ± 15.4 86.2 ± 29.8

DAG-GNN 9.2 ± 3.3 23.4 ± 8.4 50.2 ± 19.5 98.6 ± 37.6

GAE 8.6 ± 2.2 20 ± 5.7 47.5 ± 10.2 92.3 ± 18.9

GraN-DAG 4 ± 2.4 11.2 ± 6.5 36.4 ± 11.9 72.8 ± 21.7

CAREFL 3.8 ± 2.2 10.9 ± 6.2 34.1 ± 11.2 71.7 ± 19.1

DAG-NF 3.4 ± 2.1 10.4 ± 5.6 31.6 ± 10.7 69.5 ± 17.3

VI-DP-DAG 3.1 ± 2 9.8 ± 5.1 28.7 ± 9.3 68.1 ± 16.5

DCRL 2.9 ± 1.7 7.5 ± 4 24.3 ± 7.8 61.4 ± 14.9

DAG-WGAN 6.4 ± 1.4 18.6 ± 3.7 22 ± 8.6 64.6 ± 15.2

DAG-WGAN+ 4.9 ± 1.2 14.2 ± 3.3 20.5 ± 6.9 57.1 ± 14.5

DAGAF 2.6 ± 1 5.2 ± 2.8 18.8 ± 6.2 50.2 ± 13.4
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Table 3 DAG structures
recovered from non-linear-2
data

Model SHD (5000 non-linear-2 samples)
d=10 d=20 d=50 d=100

DAG-Notears 10.4 ± 3.9 22.4 ± 8.1 47.6 ± 21.2 112.8 ± 57.8

DAG-Notears-MLP 5.4 ± 1.5 13.8 ± 4.3 30.4 ± 15.7 85.6 ± 35.6

DAG-GNN 8.4 ± 3.2 19.2 ± 7.7 36.2 ± 18.6 91.8 ± 49.3

GAE 7.3 ± 1.8 17.4 ± 5.1 33.7 ± 13.7 88.4 ± 26.6

GraN-DAG 4.2 ± 2.1 11.6 ± 5.6 25.2 ± 14.5 71.6 ± 29.7

CAREFL 3.8 ± 1.8 10.5 ± 5.3 24.8 ± 13.8 69.9 ± 26.1

DAG-NF 3.3 ± 1.7 9.7 ± 4.9 24.3 ± 13.1 68.1 ± 24.3

VI-DP-DAG 2.8 ± 1.6 9.3 ± 4.7 23.8 ± 13.3 67.3 ± 23.8

DCRL 2.2 ± 1.3 7.1 ± 2.9 15.1 ± 9.4 59.5 ± 17.2

DAG-WGAN 6.6 ± 1.2 15.2 ± 3.4 22.6 ± 12.9 64.2 ± 21.5

DAG-WGAN+ 5.1 ± 1.1 12.3 ± 2.5 17.5 ± 10.2 56.7 ± 18.4

DAGAF 1.4 ± 0.9 5.8 ± 2.2 14.2 ± 8.3 51.8 ± 16.2

LiNGAM and PNL model assume that the noise term Z j is
independent of its parents (Z j ⊥⊥ Pa j ). Missing data can
obscure or distort observed relationships, making it difficult
to separate noise from modeled contributions.

In addition, the functional forms f j (nonlinear for ANM,
linear for LiNGAM) and g j (nonlinear for PNL) are assumed
to be known or learnable. However, the data incompleteness
characteristic often associated with real-world data violates
this assumption. In the LiNGAM case, non-Gaussian noise
becomes harder to test.

Identifiability relies on correctly estimating marginal dis-
tributions. Missing data distorts these estimates, especially
when parent variables or structural nodes are disproportion-
ately missing.

5 Experimental results

We conduct a range of experiments on the proposed gen-
eral framework for causal structure learning using various
datasets that include continuous and discrete data types to
assess the following aspects:

• Structure learning accuracy, which assesses the effective-
ness of modeling the relationships between features in
observational data.

• Synthetic data quality, which investigates the quality of
the data produced from the learned generative process.

• Ablation study and sensitivity analysis to assess the con-
figuration of the loss terms and the hyper-parameter
settings for the training. - formore information, the reader
is referred to Appendices B and C.

In this section, we outline the configurations for the causal
discovery and data quality experiments, and present the
results along with the metrics employed for their evaluation.

For evaluating structure learning, our model is com-
pared with leading DAG-learning methods, including DAG-
WGAN [19], DAG-WGAN+ [43], DAG-Notears-MLP [34],
Dag-Notears [16], DAG-GNN [17], GraN-DAG [18], GAE
[41], CAREFL [44], DAG-NF [45], DCRL [46] and VI-
DP-DAG [47]. The metric used throughout all experiments
to measure the quality of the discovered causality is the
Structural Hamming Distance (SHD) [48]. We selected SHD
because it integrates several individual metrics, including
True Positive Rate (TPR), False Discovery Rate (FDR), and
False Positive Rate (FPR). It is important to acknowledge
that the set of metrics SHD = {TPR,FDR,FPR} used in
this study is not the only approach to evaluating the accu-
racy of the learned structures. Other metrics, such as Area
Under Curve (AUC) and Area Over Curve (AOC), can also
be employed.

Table 4 DAG structures
recovered from
post-non-linear-1 data

Model SHD (5000 post-non-linear-1 samples)
d=10 d=20 d=50 d=100

DAG-GNN 13.7 ± 9.2 21.7 ± 10.4 63.7 ± 31.2 118.6 ± 50.1

GAE 12.3 ± 8.1 19.1 ± 8.8 56.2 ± 24.6 101.3 ± 37.4

CAREFL 11.8 ± 6.4 18.5 ± 7.9 52.1 ± 22.8 97.2 ± 34.9

DAG-NF 11.2 ± 5.3 16.2 ± 6.1 47.3 ± 19.5 92.5 ± 31.3

DAG-WGAN 10.5 ± 4.7 15.6 ± 5.8 44.5 ± 17.7 88.7 ± 29.6

DAG-WGAN+ 8.4 ± 3.3 12.8 ± 4.3 32.8 ± 13.6 66.1 ± 21.2

DAGAF 5.6 ± 2.5 7.3 ± 3.2 25.4 ± 11.3 52.4 ± 15.7
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Table 5 DAG structures
recovered from
post-non-linear-2 data

Model SHD (5000 post-non-linear-2 samples)
d=10 d=20 d=50 d=100

DAG-GNN 10.8 ± 8.7 16.1 ± 11.9 37.1 ± 30.3 128.3 ± 48.2

GAE 9.1 ± 6.3 14.3 ± 9.5 31.5 ± 24.8 105.7 ± 34.4

CAREFL 8.3 ± 5.8 13.5 ± 8.3 29.8 ± 22.4 92.1 ± 32.3

DAG-NF 7.7 ± 5.5 12.8 ± 7.4 28.4 ± 21.7 84.8 ± 28.5

DAG-WGAN 7.2 ± 5.2 11.4 ± 6.2 25.2 ± 18.6 76.5 ± 27.6

DAG-WGAN+ 4.5 ± 3.6 8.6 ± 5.1 21.7 ± 12.3 69.4 ± 19.1

DAGAF 2.9 ± 2.4 5.7 ± 3.6 18.6 ± 10.5 47.2 ± 14.7

We also analyze the quality of the synthetic data pro-
duced by DAGAF. In particular, we conduct various tests
to examine the statistical properties of X̃. We evaluate the
similarity between P(X) and PGA (X̃) using boxplot analy-
sis and marginal distributions. Additionally, we calculate the
correlation matrices for both χ and χ̃ to explore the interde-
pendencies among their covariates.

5.1 Continuous data

We conduct tests on continuous data types using simu-
lated data produced from predefined structural equations and
Directed Acyclic Graph (DAG) structures. Specifically, we
construct an Erdos-Renyi [49] causal graph with an expected
node degree of 3, which serves as the ground-truth DAG GA
and can be represented by a weighted adjacency matrix A.
Afterwards, we generate 5000 observational data samples
for each test by utilizing different equations (namely linear:
X̃ := AT X + Z , non-linear-1: X̃ := Acos(X + 1) + Z ,
non-linear-2: X̃ := 2sin(A(X + 0.5)) + A(X + 0.5) + Z ,
post-non-linear-1: X̃ := sinh(Acos(X + 1) +Z), and post-
non-linear-2: X̃ := tanh(2sin(A(X +0.5))+ A(X +0.5)+
Z)). These structural equations have been widely used in
numerous papers in DAG learning, including the DAG-GNN
model [17], Gran-DAG [18], GAE [41], DAG-WGAN [19],
DAG-WGAN+ [43] and Notears-MLP [34] - to name but
a few. The application of these popular equations allow us
to perform a comprehensive and robust comparison against
other leading models in the field. The final two equations are
modifications of the second and third ones designed to pro-
vide suitable test cases for experiments involving the PNL
assumption. Ensuring the acyclicity of GA and satisfying the
causal model assumptions outlined in Section 2, with the

given above equations, enables us to generate i.i.d. samples
that are appropriate for causal structure learning under the
faithfulness condition.

Remark 2 Although the list of equations provided in this
section serves as a good collection of test cases for the contin-
uous data experiments, it is not exhaustive. Other equations
can be used as well.

Our work follows the same methodology used in most
other state-of-the-art DAG learning models, such as DAG-
GNN, GraN-DAG, DAG-Notears and GAE among others,
where the process of splitting data into training and valida-
tion sets is not as commonly applied as in traditional machine
learning. Train-test splitting or cross-validation is typically
used in predictive modeling tasks, but causal structure iden-
tification is focused on structural constraints and conditional
independencies rather than predictive accuracy. Since causal
relationships are structural, they are generally assumed to
hold throughout the dataset, and therefore, partitioning the
data may not provide significant additional benefit in terms
of discovering the structure.

To evaluate the scalability of themodel, we perform exper-
iments with datasets that have 10, 20, 50, and 100 columns.
To account for sample randomness and ensure fairness, each
experiment is repeated five times, and the average Structural
Hamming Distance (SHD) is reported. The results are shown
in Tables 1, 2, 3, 4 and 5.

The results presented in Tables 1, 2, 3, 4 and 5 demonstrate
that our proposed general framework for causal discov-
ery consistently outperforms state-of-the-art DAG-learning
methods across all tested scenarios-linear, non-linear-1, non-
linear-2, post-nonlinear-1, and post-nonlinear-2-regardless
of whether the underlying data-generating process follows

Table 6 DAG structures
recovered from benchmark data

Datasets Nodes SHD
DAG-WGAN DAG-WGAN+ DAG-GNN DAGAF

Child 20 20 19 30 17

Alarm 37 36 35 55 43

Hailfinder 56 73 66 71 63

Pathfinder 109 196 194 218 181

123



  602 Page 14 of 27 H. Petkov et al.

Table 7 DAG structures recovered from real data

Model Sachs Dataset
SHD

DAG-WGAN 17

DAG-WGAN+ 15

DAG-NF 15

DAG-GNN 25

GAE 20

GraN-DAG 17

VI-DP-DAG 16

DAGAF ANM 9 / PNL 8

LiNGAM, ANM, or PNL assumptions. Notably, the gap in
SHD between our model and the others grows further in our
favor with the increase in data dimensionality. This observa-
tion highlights the enhanced performance of our approach for
DAG-learning in datasets with a large number of variables.

It is also worth mentioning that, according to our results,
DAGAFsurpasses both traditionalmodels in thefield, includ-
ing Notears, GAE, DAG-GNN, and GraN-DAG, as well
as more recent approaches like DAG-WGAN(+), CAREFL,
DAG-NF, DCRL and VI-DP-DAG, demonstrating the supe-
riority of our model.

5.2 Benchmark experiments

In our experiments, we also included discrete datasets as part
of an empirical study to demonstrate how our framework per-
forms on such data. However, from our theoretical analysis
presented in Section 4,we recognize that identifiability issues
arise when applying our method to discrete datasets.

Specifically, we obtained the Child, Alarm, Hailfinder,
and Pathfinder benchmark datasets, with their ground truths,
from theBayesianNetworkRepository https://www.bnlearn.
com/bnrepository. These datasets are specifically organized

Fig. 3 Comparison of the correlation matrices for real (left) and synthetic (right) features reveals that the statistical correlations across the feature
space for both real and synthetic data are nearly identical, in both the ANM (first row) and the PNL (second row) case
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Fig. 4 Principal Component Analysis (PCA) between the original and
synthetic samples for both the ANM (left) and the PNL (right) case. We
observe both the input and the synthetic samples have similar clusters

and outliers. The results indicate that the implicitly generated distri-
bution resembles the original distribution in both mean and standard
deviation, making them indistinguishable from each other

to facilitate scalability testing and enable a fair compari-
son with state-of-the-art methods. We evaluated our model
against DAG-GNN and both versions of DAG-WGAN, with
the results presented in Table 6.

According to the benchmark experiment results shown
in Table 6, our method significantly outperforms DAG-
GNN across all four datasets (Child, Alarm, Hilfinder,
and Pathfinder). Additionally, both DAG-WGAN and its

Fig. 5 Feature importance comparison between real (left) and synthetic (right) data, in both the ANM (first row) and the PNL (second row) case.
The synthetic features with their relevance are indistinguishable from the original ones, allowing for their application in regression tasks
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Fig. 6 Visualizing the Wasserstein distance between the original and
synthetic data over the course of the augmented Lagrangian algorithm.
The significant discrepancy between the real and the generated samples
(165-170 and from 300 epochs onward) occurs because of fluctuations
in the SHD, courtesy of the parameter-tuning for the continuous opti-
mization approach. Conversely, the lowest SHD is detected when the
Wasserstein Distance is at its lower conversions (50-150 and 175 - 275
epochs)

improved version, DAG-WGAN+, deliver inferior results
compared to our framework on three out of the four datasets.
Similar outcomes are observed in experiments with con-
tinuous datasets, where the SHD gap between our method
and the others widens as the number of data variables in-
creases.

5.3 Real data experiments

While our experiments with simulated data show the ability
of DAGAF to generate decent results, they are not entirely
conclusive, as simulations differ from real-world scenarios.
To address this issue,we conducted experiments using awell-
known real-world dataset called Sachs [50], which is widely
recognized in the research community. This dataset com-
prises 7466 samples across 11 columns, with an estimated
ground truth containing 20 edges. Additionally, our approach
assumed both ANM and PNL during this test and compared
the SHD produced by these FCM to determine whether the
post-nonlinear model is superior when applied to real-world
data. The results are presented in Table 7.

Fig. 7 Visualizing the
distributions of the real and
synthetic features, we plotted x5
against x8 (left), x3 against x6
(right), in the case of ANM, and
x3 against x4 for the PNL case.
The joint and marginal
distributions are accurately
modeled with no significant
differences between the real and
synthetic features
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The experiment with the Sachs dataset shows that our
method can also accurately discover DAG structures from
real data.As indicated inTable 7, our framework significantly
outperforms all other state-of-the-art algorithms involved
in the study. Additionally, the empirical evidence suggests
that the PNL assumption enables our approach to learn a
more precise causal structure approximation compared to the
application of other identifiable causal models.

5.4 Synthetic data quality

In this work, we have advocated for the superiority of our
method over current state-of-the-art models by combining
causality learning with synthetic data generation. To further
support this claim, we compare the features (d=10) from two
tabular datasets of simulation data (one based on the ANM
and the other on the PNL assumption) with the features gen-
erated by our approach. We consider the special case where
our model achieves an SHD of 0 on the simulation data, as
this would result in the highest quality samples due to the
complete knowledge of causal mechanisms in the generative
process.

Our finding demonstrate that the synthetic samples gen-
erated by the proposed framework accurately replicate the
correlations (Fig. 3) and capture the underlying patterns
and structure of the original data (Fig. 4). Furthermore, the
generated data contains enough predictive information to
support regression tasks (Fig. 5). Minimizing the Wasser-
stein distance between observations and simulations (Fig. 6)
implies that both the means and standard deviations of their
respective probability distributions are matched, yielding an
overlap of the joint and marginal distributions of their fea-
tures (Fig. 7). We present only a few examples of each
analysis in this section; additional results can be found in
Appendix D.

6 Conclusion & future work

This research introduces a novel framework for multivariate
causal structure learning aimed at holistically discovering
DAG structures in a dataset to model its generative mecha-
nisms and produce synthetic samples that closely resemble
real data. We conducted a theoretical analysis demonstrat-
ing that the Wasserstein-1 distance metric can be leveraged
for structure learning and explained how the integration of
regularization and reconstruction loss terms in our training
process can enhance the identification of causal relationships
fromobservational data. Furthermore, we showcased the per-
formance of our approach through extensive experiments,
where themethod significantly outperformed state-of-the-art
DAG-learning techniques. The experimental results demon-

strate that our method effectively handles numerical and
categorical data types to accurately recover DAG structures
under LiNGAM, ANM or PNL assumptions, while gen-
erating realistic data samples. The analysis of our results
suggests that theWasserstein distance plays a significant role
in enhancingDAG learning.Our findings also indicate a close
relationship between the simultaneous generation of diverse
high-quality data and the learning of accurate DAG struc-
tures, suggesting that the synthesis of realistic data samples
is facilitated by the recovery of meaningful variable relation-
ships.

All results are generated using LiNGAM, ANM or PNL,
which are proven to be identifiable [21–23, 52]. However,
our experiments have been restricted to these models, which
is a limitation. In future work, we plan to explore other
identifiable structures, such as generalized linear models,
polynomial regression and index models. Furthermore, our
tabular data synthesis experiments have also been quite
limited, focusing only on analyzing primitive features of
datasets. We plan to extend our investigations by compar-
ing the output of DAGAF with other causality-based tabular
data generation methods [30–32]. This comparison will be
conducted using more appropriate metrics, such as Cross-
Validation Score (CVS) [53], Kolmogorov-Smirnov (KS)
test [54] or Chi-Square test [55], to offer a more comprehen-
sive qualitative analysis of the data generation capabilities of
our framework.

In essence, our approach identifiesDAGstructures by inte-
gratingMLEwith adversarial loss components and enforcing
an acyclicity constraint via an augmented Lagrangian. Con-
sequently, ourmodel exhibits high computational complexity
and a complicated loss function.Weplan to exploremore effi-
cient structure learning methods and adversarial loss training
to develop a faster model that relies exclusively on the
Wasserstein loss.

The proposed causal learning-based synthetic data gener-
ation framework is closely connected to recent advances in
generativemodeling, includingDigitalTwins and transformer-
based architectures. DAG learning naturally embodies the
essence of attention mechanisms by identifying the direct
causal parents of each variable, similar to how transform-
ers dynamically weigh relevant dependencies. Moreover, our
approach aligns with the principles of Digital Twins, which
aim to simulate real-world systems and generate data that
accurately reflect their underlying causal structures. This
study establishes a unified framework for causal discovery
and generative modeling, leveraging adversarial learning,
MSE, MMD, and KLD regularization to ensure robust struc-
ture learning and high-fidelity synthetic data generation.

Our future work will include several mitigation strategies
to address missing data. We will employ data imputation
techniques such as mean/mode imputation, multiple impu-
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tation, and advanced methods like matrix completion and
variational autoencoders (VAEs), while acknowledging that
imputation introduces assumptions about missingness that
may bias results. Additionally, we will leverage structural
information, using partial knowledge of the directed acyclic
graph (DAG), such as domain expertise, to help compensate
for missing data. Another approach involves explicitly mod-
eling missingness mechanisms by introducing a missingness
variable into the DAG to represent whether a specific vari-
able ismissing.Moreover,wewill also apply causal inference
techniques, including latent variable models and specialized
methods designed for incomplete data, to ensure robust and
accurate analyses.

Finally, as part of our future work, we will examine the
flexibility of our framework by experimenting with differ-
ent combinations of FCM and DGM to identify the optimal
configuration for enhancing the output quality of the pro-
posed method and extending its application to time-series
data. For example, recently developed concepts such as digi-
tal twin layer via multi-attention networks [56, 57] can offer
exciting avenues for future exploration. This can be achieved
through their multi-attention mechanisms, which effectively
highlight relevant features while filtering out irrelevant noise
and misleading correlations. Their ability to adaptively han-
dle mixed-variable datasets, align higher-order statistics of
distributions, and dynamically capture multi-modal depen-
dencies can complement the causal discovery framework
presented in this work. Future research could focus on inte-
grating these mechanisms to improve the robustness and
scalability of causal discovery and synthetic data genera-
tion for complex real-world datasets. Such integration would
bridge the gap between foundational theoretical insights and
practical applications, addressing challenges like non-i.i.d.
data and variable heterogeneitywhile enabling the creation of
robust, high-fidelity synthetic datasets for downstream tasks.

The novel setup will be supported by an extensive study
of hyper-parameters to determine their best possible values,
resulting in more realistic data samples generated through a
more accurately simulated generative process.

Appendix A Mathematical proofs

This appendix provides the proofs associated with the propo-
sitions and theorems found in Section 3.

A.1 Proof of proposition 1

Proposition 1 Let the ground-truth DAG GA be uniquely
identifiable from P(X), then minimizing the adversarial loss
ensures that the implicitly generated distribution PGA (X̃)

aligns with P(X).

inf
GA∈DLadv(X, X̃) = 0 ⇒ PGA (X̃) = P(X) and consequently GA = GA.

Proof Let X̃ ∼ PGA (X̃) denote the distribution generated by
a DAG GA. Assume the true data distribution X ∼ P(X)

is generated from the ground-truth graph GA. The adver-
sarial loss Ladv(X, X̃) based on the Wasserstein distance
Wp(P(X), PGA (X̃)) is expressed in (2). Therefore, mini-
mizing Ladv(X, X̃) aligns PGA (X̃) with P(X):

PGA (X̃) = P(X) ⇒ Wp(P(X), PGA (X̃)) = 0,

at the global minimum of the distance metric

Wp(P(X), PGA (X̃)) = 0 ⇒ PGA (X̃) = P(X).

For GA �= GA, the generated distribution PGA (X̃) cannot
match P(X) because the structure GA is incorrect:

Wp(P(X), PGA (X̃)) > 0.

Therefore, minimizing Ladv(X, X̃) aligns PGA (X̃) with
P(X), and the identifiability assumption guarantees that this
occurs only when GA = GA, thus concluding the proof. ��

A.2 Proof of proposition 2

Proposition 2 The MSE loss ensures point-wise alignment
between the data and the prediction of the model, improving
the smoothness of the gradient and the stability of adversarial
optimization.

inf
GA∈DLMSE(X, X̃) = 0 ⇒ ∀i, X̃i = Xi

Proof From the definition of LMSE(X, X̃), it is minimized if
and only if:

‖Xi − X̃i‖2 = 0, ∀Xi ∈ P(X), ∀X̃i ∈ PGA (X̃), ∀i ∈ {1, . . . , n},

which implies Xi = X̃i , ∀i ∈ {1, . . . , n}.
The gradient of LMSE(X, X̃) with respect to the model

parameters θ (which define GA) is given by:

∇θLMSE(X, X̃) = 1

n

n∑

i=1

2 · ||Xi − X̃i || · ∇θ X̃i .

As the model predictions X̃i approach the true dataXi the
residual distance ‖Xi − X̃i‖ becomes smaller:

‖Xi − X̃i‖ → 0 ⇒ ∇θLMSE(X, X̃) → 0.
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This behavior arises because the residual distance ‖Xi −
X̃i‖ directly scales the gradient. As X̃i aligns with Xi ,
the gradient magnitude decreases, reducing the size of
updates during optimization. Therefore, the MSE loss offers
optimization stability by smooth gradients. By steady con-
vergence as X̃i → Xi , preventing oscillatory behavior, thus
concluding the proof. ��

A.3 Proof of proposition 3

Proposition 3 The LKLD(X, X̃) regularization provides a
statistical prior on the learned distribution PGA (X̃), ensur-
ing it adheres to a Gaussian assumption. It also acts as
a stabilizing factor in optimization, particularly under the
additive Gaussian noisemodel. It complements the adversar-
ial andMSE losses, ensuring both alignment and smoothness
of PGA (X̃).

Proof This term is used to ensure that the residual noise
Z j conditioned on Pa j is Gaussian. The residual Z j can
be expressed as Z j = X j − f j (Pa j ). By minimizing
LKLD(X, X̃), the model is encouraged to fit f j such that
Z j ∼ N (0, σ 2

j ), namely: P(Z j |Pa j ) ≈ N (0, σ 2
j ). Let

LKLD(X, X̃) act as a penalty on deviations of P(Z j |Pa j )

fromN (0, σ 2
j ). The gradient of LKLD(X, X̃) with respect to

GA is:

∇GALKLD(X, X̃) =
d∑

j=1

EPa j

[

∇GA log
P(Z j | Pa j )

N (Z j ; 0, σ 2
j )

]

.

The term logN (Z j ; 0, σ 2
j ) is quadratic in Z j , making

∇GALKLD(X, X̃) smooth and less sensitive to small vari-
ations in GA. This prevents overfitting to noise in X j ,
stabilizing the optimization of f j . Hence, the KLD term can
improve the overall stability of our model by approximat-
ing the implicitly generated distribution PGA (X̃) to a normal
(Gaussian) distribution.

The KLD term also complements other loss terms. The
adversarial loss Ladv(X, X̃) ensures global alignment of
P(X) and PGA (X̃), but does not directly enforce the additive
Gaussian assumption. The MSE loss LMSE(X, X̃) focuses
on point-wise alignment of Xi and X̃i , but does not account
for statistical properties of Z j . The KLD regularization
LKLD(X, X̃) explicitly enforces theGaussianity ofZ j , ensur-
ingZ j matches the additiveGaussian assumption, preventing
f j from overfitting to non-Gaussian noise, thus concluding
the proof. ��

A.4 Proof of proposition 4

Proposition 4 Minimizing the Maximum Mean Discrepancy
(MMD) loss LMMD(X, X̃) aligns higher-order statistics

of P(X) and PGA (X̃), complementing adversarial loss to
achieve overall distributional alignment.

Proof The MMD loss term is

LMMD(X, X̃) = 1

n

n∑

i �= j

k(Xi ,X j ) − 2

n

n∑

i �= j

k(Xi , X̃ j )

+ 1

n

n∑

i �= j

k(X̃i , X̃ j ).

The gradient of LMMD(X, X̃) with respect to the parame-
ters θ defining the model GA can be written as:

∇θLMMD(X, X̃) = 2(EX̃∼PGA (X̃)
[∇θk(X̃i , X̃ j )]

− EX∼P(X),X̃∼PGA (X̃)
[∇θk(Xi , X̃ j )]),

where X̃ ∼ PGA (X̃) are samples from the model-generated
distribution,X ∼ P(X) are samples from the truedistribution
and k(X, X̃) is a positive-definite kernel, often chosen as a
Gaussian kernel or other characteristic kernel.

The kernel function k(X, X̃) implicitly captures higher-
order statistics of the distributions P(X) and PGA (X̃),
including the internal consistency of the model distribution
via the third term in LMMD(X, X̃), EX̃∼PGA (X̃)

[k(X̃i , X̃ j )],
which aligns model-generated samples X̃i and X̃ j to ensure
that the higher-order moments within PGA (X̃) are coherent.
It also allows alignment with the true distribution via the
second term, EX∼P(X),X̃∼PGA (X̃)

[k(Xi , X̃ j )].
LMMD(X, X̃) explicitly captures higher-order discrep-

ancies through the kernel-induced feature mappings k(.).
This provides a complementary mechanism to adversar-
ial losses, ensuring both global and fine-grained alignment
between P(X) and PGA (X̃). Together, LMMD(X, X̃) and
Ladv(X, X̃) form a robust framework for distributional align-
ment, addressing both large-scale and higher-order mis-
matches, thus completing the proof. ��

A.5 Proof of proposition 5

Proposition 5 Under the Additive Noise Model (ANM),
Linear non-Gaussian Acyclic Model (LiNGAM) or Post-
Nonlinear Model (PNL) assumption, there exists a unique
DAG GA capable of defining the observed joint distribution
P(X).

Proof We split the proposition into two lemmas for identifi-
ability under: 1) LiNGAM and ANM; 2) PNL, respectively.
��
Lemma 6 Under the additive noise model (ANM) or the lin-
ear non-Gaussian acyclic model (LiNGAM) assumption, the
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true DAG GA is uniquely identifiable from P(X)

P(X) �= P ′(X) ⇒ GA �= G′A′ .

Proof Let the dataset χ consist of X = {X1, ..., Xd} data
attributes, where each X j is generated under the ANM or
LiNGAM assumption, both described using the following
equation:

X j = f j (Pa j ) + Z j ,

where f j : Rd → R are deterministic functions (nonlinear
in ANM, linear in LiNGAM), Z j ∼ P(Z) are indepen-
dent noise variables (non-Gaussian in LiNGAM, Gaussian
in ANM), Pa j represents the set of direct parents of X j in
the DAG.

For both ANM and LiNGAM, the independence of Z j

from Pa j plays a crucial role:Z j ⊥⊥ Pa j . The independence
of Z j in the true DAG GA imposes strong constraints on the
functional relationships in GA:

P(Z j ) = PZ j (X j − f j (Pa j )),

where Z j is the independent noise term.
In the case when G′A′ �= GA, the functional relationships

f ′
j ∈ G′A′ must satisfy:

P(Z ′
j ) = PZ ′

j
(X j − f ′

j (Pa
′
j )),

where Z ′
j are the noise terms under G′A′ .

However, when G′A′ �= GA, the new functional rela-
tionships f ′

j will be different from f j in the true DAG.
Furthermore, the new noise terms Z ′

j will not remain inde-
pendent of Pa′

j because the independence ofZ j is specific to
the true causal structure in GA. This implies that G′A′ cannot
satisfy the independence assumptions simultaneously with
GA, leading to a contradiction.

Hence, under the assumptions of the ANM with nonlin-
ear functions and independent noise or the LiNGAM model
with linear functions and non-Gaussian noise, there exists no
other DAG G′A′ �= GA that can generate the same observa-
tional data distribution P(X). Therefore, the true DAG GA
is uniquely identifiable only from P(X), thus concluding the
proof. ��
Lemma 7 Under the Post-Nonlinear (PNL) model assump-
tion, there exists an identifiable DAG GA that generates the
observed joint distribution of the data variables {X1, ..., Xd}.
Proof Let χ be a dataset consisting of {X1, ..., Xd} data
attributes, where each X j is described as follows:

X j := g j ( f j (Pa j ) + Z j ), ∀ j,Z j ⊥⊥ f j (Pa j ),Z j ∼ N (μ, σ 2
j ),

where Pa j is the set of parent nodes for X j , f j are nonlinear
functions modeling parent contributions, g j is a nonlinear
function applied post-summation and Z j is an independent
Gaussian noise term, satisfying Z j ⊥⊥ Pa j .

Moreover, let N j be the input to g j such that:

N j = f j (Pa j ) + Z j .

Under the assumption that Pa j is the true parent set, the
noise term Z j is independent of its parents:

Z j ⊥⊥ Pa j .

In addition, g j does not affect the independence structure.
Thus, for the true set of parents Pa j , the residual noise Z j

remains independent of the parent variables.
Under this setting, the statistical relationship between X j ,

its parents, and the residual noise satisfies specific invari-
ances:

P(X j , Pa j ) = P(X j |Pa j )P(Pa j ),

where P(X j |Pa j ) is derived from the PNL structure.
Now, consider any alternative parent set Pa′

j �= Pa j .
For this incorrect set of parents, the residual noise Z j is
reconstructed as:

Z j = N j − f j (Pa
′
j ).

In this case, the core independence condition Z j ⊥⊥ Pa′
j

is violated. Therefore, when the parent set is incorrect, the
residual noise Z j will exhibit statistical dependencies with
the variables in Pa′

j . This implies that the conditional distri-
bution P(X j |Pa′

j ) cannot reproduce the same invariance due
to the introduced dependencies, thus concluding the proof. ��
Corollary 7.1 Under Lemmas 6 and 7, the uniqueness prop-
erty of GA allows us to reconstruct the generative process of
X.

Corollary 7.1 implies that under the causal model assump-
tion employed in DAGAF, we can accurately generate
synthetic samples with preserved causal structures, which
is only possible if GA = GA. In turn, this implies that
the implicitly generated distribution PGA (X̃) is the same as
the observed distribution P(X). Therefore, we have demon-
strated that there exists a single unique DAG capable of
constructing the input data distribution, thus concluding the
proof.

Appendix B Ablation study

We conducted an ablation study to determine the opti-
mal configuration of the terms in the loss function for
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Table 8 DAGAF ablation study Loss function SHD
Sachs ECOLI70 MAGIC-IRRI ARTH150

w/o recon loss 21 115 163 377

recon loss (MSE) 14 91 117 288

recon loss (NLL) 16 106 132 320

MSE + MMD 10 57 80 189

NLL + MMD 14 91 117 288

MSE + KLD 12 69 99 221

NLL + KLD 12 69 99 221

MSE + KLD + MMD 9 52 71 175

NLL + KLD + MMD 11 60 86 197

Step 1. We carried out nine experiments on the Sachs,
ECOLI70, MAGIC-IRRI and ARTH150 datasets under the
ANM assumption, testing various combinations of loss
terms. These continuous (Gaussian) datasets are available
at https://www.bnlearn.com/bnrepository/. All cases include
the Wasserstein-1 distance. The first configuration is labeled
“w/o recon loss", where the reconstruction loss with its reg-
ularization is excluded from the training algorithm. The rest
are named according to the terms included in the reconstruc-
tion loss, such as MSE [58] and NLL [59]. We also tested
combinations of additional terms such as MMD [36] and
KLD [35]. The results of this study are shown in Table 8.

The ablation study reveals the optimal combination of loss
terms for our method. As shown in Table 8, the best set of
loss terms in Step 1 includes MSE, KLD, MMD, and adver-
sarial training. Further details on each of these metrics and
regularization are provided in Section 3.1.

Appendix C Sensitivity analysis

Toensuremodel robustness,weperforma sensitivity analysis
to examine how the training responds to different hyper-
parameter settings. This studymeasures the accuracy ofDAG
reconstruction (i.e., SHD) under various hyper-parameters,

Table 9 DAGAF sensitivity analysis

Hyper-parameters Sachs Dataset
SHD

lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 100 9

lr = 3e-3, dropout = 0.0, z-size = 1, batch-size = 100 10

lr = 3e-3, dropout = 0.5, z-size = 2, batch-size = 100 10

lr = 3e-3, dropout = 0.5, z-size = 5, batch-size = 100 11

lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 500 9

lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 1000 10

lr = 2e-4, dropout = 0.5, z-size = 1, batch-size = 100 11

lr = 1e-3, dropout = 0.5, z-size = 1, batch-size = 100 12

including learning and dropout rates (lr, dropout), noise
vector and batch sizes (z-size, batch-size). We begin with
a baseline setting of lr = 0.001, dropout = 0.5, z-size =
1, batch-size = 100, then modify each value individually to
observe the changes inSHD.All experimentswere conducted
on the Sachs dataset by applying the ANM causal model, and
the results are presented in Table 9.

The results from Table 9 indicate that lowering the learn-
ing and dropout rates significantly affects the performance
of our model. On the other hand, increasing the size of the
noise vector and the input data batch results in only minor
variations in the accuracy of the algorithm.

Appendix D Additional results

In this section, we present further examples to reinforce
the data quality analysis discussed in Section 5.4. We pro-
vide real-synthetic statistical comparisons for all features
(Table 10), additional visualizations of the synthetic feature
distributions (Fig. 8), and the remaining machine learning
regression results (Fig. 9).

Table 10 Mann-Whitney t-test results for all real and synthetic features
to supplement Fig. 7

Feature p-value

x1 7.7952e-07

x2 0.5004

x3 0.1683

x4 0.0020

x5 0.8563

x6 0.9127

x7 0.0364

x8 0.1747

x9 0.2089

x10 6.4502e-26

We observe some failure cases, where the real and synthetic features
differ significantly (p < 0.05)
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Fig. 8 Further examples of the synthetic joint andmarginal distributions for our method on the dataset presented in Section 5.4.We observe multiple
cases with different distribution shapes. Additionally, we depict one case of severe mode collapse (bottom) in the produced data from DAGAF
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Fig. 9 Remaining examples of feature importances to supplement the results in Section 5.4. We observe some failure cases, where the synthetic
features differ significantly from their real counterparts
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Fig. 9 continued

Appendix E DAGAF pseudo-code

1: λ ← 0, c ← 1
2: current_h(AL0( f )) ← ∞, h_tol ← 1e − 8
3: k_max_i ter ← 100, epochs ← 300
4: for k < k_max_i ter do
5: while c < 1e + 20 do
6: for epoch < epochs do
7:

8: if pnl == True then � The beginning of the
Causal Discovery (CD) Step

9: X̃ := {g1( f1(Pa1;W 1
1 , ...,WL

1 ) + Z1), ...,

gd( fd(Pad;W 1
d , ...,WL

d ) + Zd)}

10: else
11: X̃ := { f1(Pa1;W 1

1 , ...,WL
1 ) + Z1, ..., fd

(Pad ;W 1
d , ...,WL

d ) + Zd}
12: end if
13: DiscLoss = Ladv(X, X̃)

14: GenLoss = LG(X)

15: RecLoss = LMSE (X, X̃) + LK LD(X, X̃)

+ LMMD(X, X̃)+ c
2 |h(AL0)|2+λh(AL0)

16: PnlLoss = LPNL(X̂, X̃) � if PNL is assumed
17: DiscGradients = DiscLoss.backward()
18: GenGradients = GenLoss.backward()
19: RecGradients = RecLoss.backward()

123



DAGAF: A directed acyclic generative adversarial... Page 25 of 27   602 

20: PnlGradients = PnlLoss.backward() � if PNL is
assumed

21: DiscParameters =DiscParameters - 1e−3 *Dis-
cGradients

22: GenParameters =GenParameters - 1e−3 *Gen-
Gradients

23: RecParameters = RecParameters - 1e−3 * Rec-
Gradients

24: PnlParameters = PnlParameters - 1e − 3 * Pnl-
Gradients � if PNL is
assumed

25: DS{WL0} ← CD{WL0} � Parameter transfer
between steps

26:

27: if pnl == True then � The beginning of the
Data Synthesis (DS) Step

28: X̃ := {g1(G1(Pa1;W 1
1 , ...,WL

1 ) + Z1), ...,

gd(Gd(Pad;W 1
d , ...,WL

d ) + Zd)}
29: else
30: X̃ := {G1(Pa1;W 1

1 , ...,WL
1 ) + Z1, ...,Gd

(Pad;W 1
d , ...,WL

d ) + Zd}
31: end if
32: DiscLoss = Ladv(X, X̃)

33: GenLoss = LG(Z)

34: DiscGradients = DiscLoss.backward()
35: GenGradients = GenLoss.backward()
36: DiscParameters =DiscParameters - 1e−3 *Dis-

cGradients
37: GenParameters =GenParameters - 1e−3 *Gen-

Gradients
38: end for
39: if h(AL0( f )) > 0.25 then
40: c ← c ∗ 10
41: else
42: break
43: end if
44: end while
45: current_h(AL0( f )) ← h(AL0( f ))
46: λ ← c ∗ current_h(AL0( f ))
47: if current_h(AL0( f )) ≤ h_tol then
48: break
49: end if
50: end for
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